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Decadally cycling soil carbon (dSOC) is the main component of the terrestrial

soil carbon (C) pool. The response of dSOC to warming largely determines the

feedback between climate warming and the C cycle. However, there is a lack of

investigations about the effect of warming on the relative change in turnover

rate (RCT) of dSOC and annually cycling SOC (aSOC) in dissolved organic

carbon (DOC), microbial biomass carbon (MBC) and CO2. We clarified this issue

by incubating two C3-C4 vegetation switch soils (23 years switch, HA soil and

55 years switch, GG soil) at 20°C and 30°C in the recently improved continuous

airflow CO2 trapping system for 1 year. Warming increased the contribution of

dSOC (C3-C) by 21℅ (soil HA) and 8℅ (soil GG) in MBC, and 38℅ (soil HA) and

15℅ (soil GG) in CO2, while only 2%–3℅ increase in DOC at the final stage of the

incubation. Furthermore, warming increased the RCT in MBC and CO2 by 5.3-

and 4.1-fold, respectively, but had no significant influence on the RCT in DOC,

indicating that soil microbes may be an important engine to accelerate dSOC-

derived CO2 emission in a warming world.
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Introduction

Soil is the largest organic carbon (C) pool in terrestrial ecosystems, and thus even a

small variation in soil C stock can significantly change atmospheric CO2 concentration

(Batjes, 1996; Kirschbaum, 2006). The increase in CO2 can cause a series of global climate

and ecosystem changes, including global warming (Hausfather et al., 2022) and plant
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photosynthesis increases (Keenan et al., 2021; Kumar et al.,

2021). Most studies presume that climate warming will

accelerate soil organic carbon (SOC) mineralization and

increase CO2 efflux and thus further exacerbate climate

warming, forming positive feedback (Melillo et al., 2002;

Giardina et al., 2014). However, the intensity of this feedback

may largely depend on the response of soil C pools with different

turnover rates to warming.

According to the turnover rate, the soil C stocks can be

conveniently divided into annually cycling carbon (aSOC),

decadally cycling carbon (dSOC), and millennially cycling

carbon components (mSOC) (Davidson and Janssens, 2006).

The aSOC is relatively labile and has a much small size (only 0%–

5%). The mSOC would be beyond our concerns with the

turnover time of a few centuries and much stronger stability

(Dungait et al., 2012). The dSOC with turnover times of

10–100 years is the main component of SOC stocks (60%–

85%), and its response to global change will significantly alter

the global C cycle (Jones et al., 2005). Therefore, it is crucial to

better understand the response of dSOC to warming (Conant

et al., 2011).

The response of soil C turnover to warming might depend on

the chemical recalcitrance and physical accessibility of microbial

substrates, and the change of soil microbial community activity/

composition and extracellular enzymes (Schimel and Schaeffer,

2012; Xu et al., 2018). Relevant observations have shown that

14 years-warming caused shifts in soil microbial community

activity/composition and thus accelerated the turnover of

labile, but not recalcitrant organic C in a tallgrass prairie soil

(Stuble et al., 2019). Microbial community influences on SOC

turnover in mineral soils are based on physical access to the

occluded or sorbed substrates, and how organisms allocate the C

they take up (Xu et al., 2018). Soil C pools containing less labile

material have a longer turnover time with higher activation

energy, and thus are more temperature-sensitive as projected

by a three-pool model (Knorr et al., 2005). However, the

underlying mechanisms driving this process are still unclear.

There are two main methods to assess the response of soil C

pools to climate warming. Firstly, based on soil respiration rates

from laboratory incubation and modeling (Paul et al., 2001;

Paterson et al., 2009; Jagadamma et al., 2014; Jiang et al.,

2018). Secondly, according to 13C isotopic tracer (Martin

et al., 1990; Roscoe et al., 2001; Blagodatskaya et al., 2011) or

radiocarbon (14C) dating measurement and modeling (O’Brien

et al., 2013; Han et al., 2017; Hall et al., 2018).

In this study, we determined the effect of warming on SOC

decomposition via the assumed pathway of SOC → dissolved

organic carbon (DOC) → microbial biomass carbon (MBC) →
CO2 by using the natural 13C isotopic tracing method. The

relative change in turnover rate (RCT) of dSOC increased

while aSOC decreased in DOC, MBC and CO2 were assessed

in a 1-year incubation experiment using two C3-C4 vegetation

switch soils at 20°C and 30°C. In this study, we hypothesized that

1) warming increased the contribution of dSOC to DOC, MBC

and CO2; and 2) warming increased the RCT in MBC and CO2.

Materials and methods

Soil used

Two C3-C4 vegetation switch soils were sampled from the

plow layer (0–20 cm). One soil was obtained from the

experimental station of Heilongjiang Academy of Agricultural

Sciences, Harbin, in the northeast of China (HA soil), where C4-

maize (δ13C = −13.9‰) was planted for 23 years after mixed C3

grass causing a shift in the δ13C of SOC from −25.6‰ to −20.4‰

in HA soil [Corg = 17.0 g kg−1; Ntotal = 1.4 g kg−1; pH (CaCl2) =

6.7]. The other soil was obtained from the agricultural region of

Guigang in southwest China (GG soil), where C4- sugarcane

(δ13C= −13.0‰) was grown for 55 years on a C3 paddy field

shifting the δ13C of SOC from −27.9‰ to −15.4‰ in GG soil

[Corg = 22.6 g kg−1; Ntotal = 2.0 g kg−1; pH (CaCl2) = 6.9]. These

differences in δ13C were used to distinguish dSOC (C3 signal) and

aSOC (C4 signal).

Experimental design and soil incubation

The 1-year laboratory incubation experiment on air-dried,

root-free soils was executed. The procedures in detail are given in

(Lin et al., 2015). Specifically, each soil was screened by 2 mm,

mixed evenly, air-dried in the field, and brought back to the

laboratory. The plant roots and visible gravel were carefully

removed before incubation. 300 g soil was put into a

polypropylene column with a diameter of 5 cm and a height

of 25 cm. The bottom of the column was plugged with a silicone

plug with a hose for ventilation, and the top was covered with a

parafilm film with a small hole for water retention and

ventilation. Each column was placed in an incubator with an

accuracy of ±0.2°C (SHELLAB LI20-2, United States) at 20°C and

30°C. Before the experiment, soil moisture was adjusted to 60% of

the maximum soil moisture holding capacity (WHC) by adding

deionized water. Soil moisture was kept constant by weighing

during the 360-day incubation period. To avoid anaerobic

conditions, each column was vented for 1 h each day with

CO2-free air.

Soil respiration and δ13C-CO2

An improved continuous air-flow CO2 trapping system was

used for soil respiration rate and δ13C-CO2 measurement

(Virginia, 1993; Lin et al., 2015). Soil respiration and

δ13C-CO2 were measured at 14, 45, 60, 120, 180, 240, 320,

and 360 d. Soil respiration was measured by using an infrared
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CO2 analyzer (LiCOR 6262, Lincoln, NB, United Stat) coupled

with a digital mass flowmeter (GFM17, Aalborg Instruments and

Control Inc., New York, United States). The δ13C-CO2 was

measured by analyzing NaOH solution by Cavity Ring-Down

Spectroscopy (CRDS) with Automate Module (Picarro G2131-i

Analyzer, United States) after CO2 trapping. Blanks without soil

were included as a reference to correct handling errors.

DOC, MBC, SOC, and δ13C

The content and δ13C of DOC and MBC were measured at

14, 45, 60, 120, 180, 240, 320, and 360 d in HA soil and at 14, 45,

320, and 360 d in GG soil, respectively. The content and δ13C of

SOC were measured at 14, 320, and 360 d in soil HA and soil GG.

DOC from 50 g soil was extracted with 0.5 MK2SO4 in a 1:2 ratio.

MBC from another 50 g of soil was fumigated by chloroform and

then extracted in the same way. The conversion factor of Kc is

0.38 for MBC (Vance et al., 1987). The extracts were determined

by a TOC/TN analyzer (Multi N/C 3100, Analytik Jena,

Germany). An aliquot of 20 ml K2SO4 extract was measured

for the δ13C by Picarro iTOC-CRDS analyzer (Picarro Inc., Santa

Clara, CA, United States). In brief, inorganic C in the extracts was

removed by 5% phosphoric acid at 70°C, and then organic C in

the extract was converted into CO2 by 10%Na2S2O8 at 98°C. SOC

was analyzed by dry combustion using an Elementar analyzer

(Vario ELⅢ, elementar, Germany). The δ13C of SOC was

determined by WS-CRDS (Picarro G2131-i Analyzer, Picarro

Inc., Santa Clara, CA, United States).

Calculations and statistical analysis

In order to calculate the respiration rate of the soil samples,

we used the formula (Tian et al., 2014; Lin et al., 2015):

R � C–C0( ) × v × 12 × 24 × 60 × 0.001[ ]/ 22.4 × W( ) (1)

where R is soil CO2 efflux (µg CO2-C g−1 dry soil day−1), C is the

recorded CO2 concentration (µmol CO2 mol−1) in the sample jar,

C0 is the recorded CO2 concentration in the blank jar, v is the

recorded CO2 flow rate by digital mass flow meter (ml min−1),

22.4 is the molar volume of gas under standard conditions (L/

mol), and W is gram dry weight of the soil sample.

The portion (F) of aSOC (maize or sugar cane-derived C) in

DOC, MBC, SOC, and CO2 was estimated by the following

equation (Amelung et al., 2008):

F � δ13Ct–δ13C3( )/ δ13C4–δ13C3( ) (2)

where δ13Ct is the δ13C value of the C pools (SOC, DOC, MBC)

and CO2-C under maize or sugar cane; δ13C3 is the δ13C value of

SOC in reference soil with continuous C3 vegetation (Lin et al.,

2015). The δ13C of DOC, MBC and CO2-C in reference soil were

calculated according to the δ13C shift between SOC and the C

pools (Blagodatskaya et al., 2011). The δ13C4 was calculated based

on the δ13C value of maize or sugar cane (mean of leaves, stems

and roots) and corrected by subtracting the difference between

δ13C of SOC in C3 reference soil and δ13C of corresponding C3

plant (i.e., rice, wheat or fescue) by assuming similar isotopic

fractionation from C3 and C4 plants in humification processes

(Schneckenberger and Kuzyakov, 2007).

MTT � MBC × 1–Y( )/ Rs–MBC × Rm( ) × Y[ ] (3)

where Rs is soil respiration rate; MBC is microbial biomass C; Y

(microbial substrate utilization efficiency) is 0.45; Rm (soil

microbial maintenance respiration rate) is 0.08% of the

biomass day−1.

Based on the 13C shift, the relative change in the turnover rate

(RCT) of dSOC increased while aSOC decreased in DOC, MBC

and CO2 was calculated as follows (Blagodatskaya et al., 2011):

RCT � C3 − Cfinal/C3 − Cinital[ ]/ C4 − Cfinal/C4 − Cinital[ ] (4)

where C3-C is C3-derived C in DOC, MBC or CO2; C4-C is C4-

derived C in DOC, MBC or CO2. “Final” represents the stage of

the last 45 d during 1-year incubation. “Initial” represents the

stage of the first 45d from the beginning of 1-year incubation.

Statistical analyses for all data were performed using SPSS

Statistics 20. The Fischer LSD test was used for mean

comparisons at p<0.05. Curve fitting was performed using

SigmaPlot12.5.

Results

Dynamics of δ13C in CO2-C, MBC and DOC

The δ13CCO2 continuously depleted with time prolonged and

warming, suggesting the C source for microbial respiration

increasingly transformed from aSOC to dSOC (Figure 1). The

δ13CMBC firstly increased at the initial stage, and then

continuously decreased and was stable at the final stage for

both soils at 20°C and 30°C, indicating that a relative

contribution switched from aSOC to dSOC for microbial

assimilation with the incubation time prolonged. On the

contrary, the δ13CDOC and δ13CSOC were almost constant

throughout the whole incubation and warming, indicating an

equal contribution of dSOC and aSOC to DOC.

Contribution of dSOC to CO2-C, MBC and
DOC under warming

At the initial stage (first 45 d) of the incubation, warming

increased the C3/Ctotal by 3℅ (soil HA) and 7℅ (soil GG) in

MBC, and 9℅ (soil HA) and 12℅ (soil GG) in CO2, while had a
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1%–3℅ increase on C3/Ctotal in DOC. Furthermore, warming

increased the C3/Ctotal by 21℅ (soil HA) and 8℅ (soil GG) in

MBC, and 38℅ (soil HA) and 15℅ (soil GG) in CO2, while

having a slight increase in C3/Ctotal in DOC by 2%–3℅ at the final

stage of the incubation (Table 1).

Relative change in turnover rate

Relative change in turnover rate (RCT) in MBC and CO2

significantly increased with temperature increasing for both soils.

However, the RCT in DOC was not significantly different

between 20°C and 30°C in soil HA and GG, respectively

(Figure 2).

δ13C shift in the direction of SOC→DOC
→MBC→CO2

Warming simultaneously depleted the δ13C of SOC→DOC

andMBC→CO2 for soil HA and GG at the initial and final stages

(Figure 3). However, warming enriched the δ13C of DOC→MBC

at the initial stage, while depleting the δ13C of DOC→MBC at the

final stage for soil HA and GG. The change of the δ13C in

DOC→MBC further verified that the microbial substrate source

transforms from aSOC to dSOC with warming and

incubation time.

Discussion

Microbial substrates gradually switched from aSOC to dSOC

with warming and prolonged time. Under a sufficient supply of

available substrates, aSOC-derived substrates were immediately

preferentially utilized and decomposed by microorganisms

metabolically for CO2 release (Esperschütz et al., 2009; Vain

et al., 2021). Under the warming, aSOC was further utilized by

microorganisms for soil respiration and microbial assimilation.

The δ13C was different in soil C pools and their metabolites

(Figure 1). The δ13C pathway of DOC→MBCwas prolonged, and

the absolute δ13C values were enriched by 1.5%–2.6‰ across soil

HA and soil GG after warming at the initial stage (left scheme on

Figure 3), which further verified that microorganisms selectively

utilize more available aSOC that mainly originated from C4-C,

i.e., recent C from C3-C4 vegetation switch, such as root exudate

fractions fromDOC at the initial warming stage. On the contrary,

compared with the initial stage, the δ13C pathway of DOC→MBC

shortened with warming and incubation time at the final stage,

and the absolute values of δ13C were depleted by 0.3%–0.8‰

across the two soils (right scheme Figure 3). This indicated a

decreased microbial uptake of aSOC from DOC, so that more

dSOC was assigned to microbial growth and respiration, which

enhanced the contribution of dSOC to MBC and CO2 with

incubation prolonged and warming (Table 1).

The RCT is an indicator of the relative change in the turnover

rate of dSOC (C3-C) increased when aSOC (C4-C) decreased,

which is more indicative here as the relative contribution of

dSOC in MBC or CO2 increased while those of aSOC decreased

during the 360-d incubation (Blagodatskaya et al., 2011). The

RCT in MBC and CO2 were much higher at the higher

temperature in Figure 2, which confirmed that warming

accelerates the relative change in the turnover rate of dSOC-

derived C in MBC and CO2. Nutrient availability impacts the

response of SOC pools to warming by altering substrate

stabilization, microbial community composition and

extracellular enzyme activity (Doetterl et al., 2018). SOC

FIGURE 1
The effect of temperature on the δ13C dynamics in C pools during incubation of the soil after C3-C4 vegetation change. Bars indicate standard
errors (SE, n = 3).

Frontiers in Earth Science frontiersin.org04

Liu et al. 10.3389/feart.2022.1089544

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1089544


TABLE 1 The contribution of aSOC (C4) and dSOC (C3) to CO2-C (μg CO2-C g−1 soil d−1), MBC (μg C g−1 soil) and DOC (μg C g−1 soil) at the initial 45d and the final 45d stages of incubation. Values are means ± standard
errors (n = 3). Values with different lowercase letters in each column and capital letters in each row are significantly different (p < 0.05). T: incubation temperature (oC).

C3-C4 soil HA soil GG soil

C Source T (oC) DOC MBC CO2 DOC MBC CO2

Initial Final Initial Final Initial Final Initial Final Initial Final Initial Final

total 20 123.2Ab ±9.9 62.2Bb±1.8 170.0Ab±5.2 154.1Bb±3.4 8.5 Ab±0.2 6.5 Bb±0.3 85.0Aa±3.1 55.4Ba±0.6 298.9Aa±8.5 267.0Ba±0.7 21.6Aa±0.6 12.3Ba±0.8

30 123.8Ac±8.0 62.1Bb±2.3 170.4Ab±5.4 120.6Bc±4.7 11.7Aa±0.6 9.4 Ba±0.3 82.6Aa±0.8 54.1Ba±0.7 279.9Aa±3.4 249.5Bb±1.9 26.3Aa±0.4 14.6Bb±0.2

C4 20 6.2Aa±0.3 4.1Bb±0.1 46.1Ab±4.7 45.1Bb±0.6 5.2Ab±0.1 3.6 Bb±0.2 10.4Aa±0.4 5.6Ba±0.07 90.5Aa±0.8 53.7Ba±0.4 18.1Aa±0.8 6.6Ba±0.4

30 4.6Aa±0.2 3.0Bb±0.1 51.3Aa±3.3 10.1Bb±3.5 6.1Aa±0.2 1.6Bab±0.1 7.7Ab±0.8 4.0Bb±0.2 104.5Ab±4.9 30.4Bb±3.5 18.8Aa±0.3 5.6Bb±0.1

C3 20 116.9Aa±3.3 58.1Bb±2.0 124.0Bb±5.4 109.1Ab±1.3 3.3Ab±0.1 2.9 Bb±0.1 74.6Aa±3.4 49.9Aa±0.6 208.5Aa±8.9 213.3Aa±1.1 3.5Aa±0.4 5.7Ba±0.4

30 119.2Aa±0.9 59.1Bb±0.5 119.1Bc±4.3 110.6Ac±6.1 5.6Aa±0.1 7.7 Ba±0.1 74.9Aa±1.2 50.2Aa±0.6 175.5Ab±6.7 219.1Ba±2.6 7.5Ab±0.2 9.1Bb±0.1

C4/Ctotal 20 0.05 0.07 0.27 0.29 0.62 0.55 0.12 0.10 0.30 0.20 0.83 0.53

30 0.04 0.05 0.30 0.08 0.53 0.17 0.09 0.07 0.37 0.12 0.71 0.38

C3/Ctotal 20 0.95 0.93 0.73 0.71 0.38 0.45 0.88 0.90 0.70 0.80 0.17 0.47

30 0.96 0.95 0.70 0.92 0.47 0.83 0.91 0.93 0.63 0.88 0.29 0.62

C4 (final/initial stage) 20 1.52 1.10 0.90 0.82 0.67 0.65

30 2.28 0.28 0.33 0.81 0.33 0.54

C3 (final/initial stage) 20 0.98 0.97 1.16 1.03 1.15 2.39

30 0.99 1.32 1.74 1.02 1.40 2.16
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turnover mostly involves several steps with distinct inherent

kinetics, such as aggregate disruption and then exoenzymes

breaking up the polymers (Liang and Balser, 2011; Poeplau

et al., 2017). Microbial biomass is a small size and relatively

labile C pool, and thus it turnovers much quicker relative to SOC.

Microbial growth may primarily utilize the dead cells and dSOC

under a shift of C substrate types with incubation time. Warming

might intensify the decomposition of the dSOC by deactivating

aggregate-binding (Poeplau et al., 2017). Once dSOC loses the

physi-chemical protection of soil aggregates, it will be exposed to

microorganisms. Thus, microorganisms can quickly access dSOC

and further improve the turnover of SOC at the final stage of the

incubation. A meta-analysis showed that C-degradation-related

enzyme activities differentially respond to warming. Ligninase

activity and turnover of recalcitrant C pools were gradually

enhanced with experiment duration and warming (Chen

FIGURE 2
RCT variation after 1-year incubation at 20 C and 30 C. RCT is an indicator as the relative change of contribution of C3-C in DOC, MBC, and
CO2-C increased while that of C4-C decreased during the incubation. Different lowercase letters denote significant differences at p < 0.05 level
between 20°C and 30 C.

FIGURE 3
Changes in the δ13C signature of C pools during the 1-year incubation. Values are presented based on δ13C of C pools in the soil after C3-C4

vegetation change. We assumed that the transformations go in the following direction: SOC→DOC→MBC→CO2. Error bars show ±SE (n = 3).
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et al., 2018). Another relevant study found that a 14-year

warming-induced change in the shift of soil microbial

community activity and composition accelerated the turnover

of labile, but not recalcitrant C pools (Stuble et al., 2019).

Similarly, warming-induced losses of unprotected SOC were

detected from 4 to 9 years of whole-ecosystem warming

experiments in a grassland (Phillips et al., 2016).

The average microbial turnover time (MTT) was estimated

according to the amount of CO2-C respired compared to the

amount of MBC by assuming a steady state at the final stage of

incubation (Eq. 3). It was observed that warming accelerated the

turnover of microbial biomass by 1.6–2.6 and 1.5–2.0 times in

dSOC- and aSOC-derived MBC, respectively (Figure 4). The

MTT was estimated as 17.7–47.2 d and 6.6–15.4 d in dSOC- and

aSOC-derivedMBC across two soils and two temperatures in this

study (Figure 4), which is lower than that of 64.5 d in dSOC and

20.7 d in aSOC reported in Blagodatskaya et al. (2011).

Obviously, the sensitivity of dSOC- and aSOC-derived MBC

turnover to warming is inconsistent. Furthermore, Li et al. (2019)

found that warming increases microbial biomass turnover using

a probabilistic inversion approach by integrating a microbial-

enzyme model with two decades of soil warming measurement.

However, the difference in temperature sensitivity of microbial

turnover in soil C pools with different turnover rates (such as

aSOC and dSOC) is not considered in the model predictions. It is

crucial to accurately evaluate the prediction of soil C budget

caused by warming. Thus, it should be focused on in the

following research.

Conclusion

Based on a natural 13C isotopic tracer, the effect of

warming on RCT of dSOC in DOC, MBC and CO2 was

investigated by incubating two C3-C4 vegetation switch soils

for 1 year. Warming increased the contribution of dSOC to

total SOC by 8%–21℅ in MBC, and 15%–38℅ in CO2, while

only 2%–3℅ in DOC. The RCT in MBC and CO2 increased

by 5.3- and 4.1-fold due to warming, respectively, but had no

significant variation in DOC, indicating that soil microbes

may be an important engine to accelerate dSOC-derived CO2

emission in a warming world. The following research should

focus on microbial regulation in the dSOC transformation

process and temperature sensitivity of soil C pools with

distinct turnover rates in MBC and CO2 for correctly

projecting the feedback between climate warming and soil

C storage.
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