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In the marine geosciences, observations are typically acquired using research

vessels to understand a given phenomenon or area of interest. Despite the

plateauing of ship time and active research vessels in the last decade, the rate of

marine geoscience data production has continued to increase. Simultaneously,

there exists large quantities of legacy data aggregated within data repositories;

however, these data are rarely curated to be both discoverable and machine-

readable (i.e., accessible). This results in inefficient use, or even omission, of

high-quality data, that is, both increasingly important to utilize and impractical

to recollect. The proliferation of newly acquired data, and increasing

importance of legacy data, has only been met with incremental evolution in

the methods of data integration. This paper describes some improvements at

each stage of the data lifecycle (acquisition, curation, and integration) that could

align the marine geosciences better with the “big data” paradigm. We have

encountered several major issues coordinating these efforts which we outline

here: 1) geologic anomalies are the primary focus of data acquisition and pose

difficulty in understanding the dominant (i.e., baseline) marine geology, 2)

marine geoscience data are rarely curated to be accessible, and 3)

aforementioned issues preclude the use of efficient integration tools that

can make optimal use of data. In this paper, we discuss challenges and

solutions associated with these issues to overcome these concerns in future

decades of marine geoscience. The successful execution of these

interconnected steps will optimize the lifecycle of marine geoscience data in

the “big data” era.
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Introduction

The field of open marine geoscience (in contrast to coastal geoscience, which is

comparatively more data-rich) has experienced a dramatic increase in the volume and

variety of data production since the late 1950s, which corresponds with the initiation of

the R2R (Rolling Deck to Repository, https://www.rvdata.us). The R2R houses all UNOLS

(University-National Oceanographic Laboratory System) digital data acquired and

constitutes a representative, but not comprehensive, repository of both structured (e.g.
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, multibeam, seismic, etc.) and unstructured (e.g., core log, grab

sample description, etc.) marine geoscience data. Using data

trends within R2R as a proxy for the broader marine

geoscience field shows the total amount of digital data

acquired has exponentially increased over the last three

decades, while growth of active ships, cruises per year, and

days at sea within the last decade (~2010) has stagnated

(Figure 1).

These trends in the R2R dataset are consistent with other

analyses that observe recent data quantity increases due to

new advancements in technologies (e.g., Watts, 2020). Data

production velocity stands to further increase as novel

technologies mature, particularly the development of

autonomous (e.g., autonomous underwater/surface

vehicles (AUVs/ASVs)) and stand-alone passive systems

(e.g., distributed acoustic sensing). This exponential

growth in data volume and the development and

utilization of more data-intensive technologies will

necessitate ‘big data’ approaches (informally defined as

computational analysis of large, i.e., terabyte-scale,

volumes of structured and unstructured data) for the

marine geosciences. However, the marine geoscience data

lifecycle is currently not designed to house, or even properly

utilize, this data.

The current state of data curation in the marine geosciences

is incrementally evolving as data sharing mandates from funding

agencies and scientific journals push for open-source data

policies (e.g., FAIR principals of findable, accessible,

interoperable, and reusable data; Wilkinson et al., 2016).

However, this approach still largely resembles the 20th

century model, whereby data hosted online in a variety of

disparate formats and states of curation, often in a data

repository, i.e., a place to store data, which is not a substitute

for a structured, discoverable, and machine readable database.

Further, the acquisition, curation, and integration of data are

often uncoordinated between research campaigns, even if science

objectives are heavily linked. Since data-driven workflows require

‘big data’ volumes, linking the data lifecycle with data acquisition

is increasingly important.

This paper is divided into three sections, one for each of the

three phases of the data lifecycle: acquisition, curation, and

integration. The data lifecycle involves: 1) the acquisition of

new data, 2) the curation of data for future use, and 3) the

integrating of data by secondary users to test new hypotheses. In

FIGURE 1
Ship, cruise, days at sea, and datametrics from the R2R data repository. Note: gigabytes of digital data acquired are represented as log scale. The
downtrend in 2020 and 2021 are due to the impact of the COVID-19 pandemic.
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each section, we briefly describe the current paradigm using

examples from representative, but not comprehensive, marine

geoscience datasets and identify the challenges that we, as data-

driven marine geoscientists, have dealt with. To address these

challenges, we put forth potential improvements as both existing

approaches to be encouraged, and new approaches to be

implemented and developed. We believe these improvements,

while not comprehensive, would represent wholesale steps in

moving marine geoscience into the “big data” era.

Marine geoscience data acquisition

Current paradigm

Field data acquisition in the marine geosciences is influenced

by a balance of obstacles and incentives. Data acquisition is

constrained by barriers which can be: financial (field efforts are

expensive), logistical (mobilizing/demobilizing is challenging),

and administrative (permitting and regulations are limiting).

Therefore, the ability to collect field data on seagoing vessels

is limited to those with the proper funding, resources, and

permits, resulting in biased datasets (Coperdock et al., 2021).

An example of these biases can be found in the New Global Heat

Flow (NGHF) database (Figure 2; Fuch et al., 2021), where data

acquisition is biased to the northern hemisphere (e.g., Figure 2B),

particularly the United States and Western Europe (e.g.,

Figure 2C). This also results in a shallow water depth bias

(e.g., Figure 2A; Diesing, 2020).

Another acquisition bias stems from field efforts that focus

on geologic anomalies. These anomalous and/or societally

important phenomena are often quantified more frequently

than baseline (i.e., observational majority) regions

(Figure 2D). Anomaly-focused observations are implicitly

encouraged via incentives that drive marine geoscience data

acquisition, i.e., appealing to funding agencies and/or high

impact peer-reviewed journals. The inherent and sometimes

necessary (i.e., marine hazard assessment) bias of funding and

subsequent sampling towards anomalies makes for a dataset, that

is, not representative of the marine realm as a whole.

Challenges

Despite innovations in marine geoscience data acquisition

(e.g., AUVs), the vast majority of the seabed will likely never be

surveyed or sampled at high spatial and/or temporal resolution.

Under the current paradigm, marine geoscience datasets tend to

FIGURE 2
(A). Global heat flow database (n ≈ 70,000) from the New Global Heat Flow (NGHF) (Fuch et al., 2021) binned every 2° by latitude (B) and
longitude (C) to emphasize geospatial sampling bias. In particular the northern hemisphere and around theNorth American and European continents
show high data concentration relative to deep water regions and other continental margins. Anomaly bias (D) is illustrated using averagemarine heat
flow estimates from a variety of sources andmethodologies (e.g., Stein and Stein, 1992; Davies and Davies, 2010; Hasterok and Chapman, 2011;
Davies, 2013), and the unfiltered average heat flow from the NGHF. Typically, “anomalous” heat flow values are filtered to obtain global estimates,
however here we preserve those high values to emphasize the bias towards the anomalies in the NGHF compared to the “representative” heat flow
estimates from marine regions.
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be anomaly biased (e.g., Figure 2D). This bias can cause

challenges for data-driven modeling of the broader marine

realm, since data-driven methods can only learn from what

has been previously observed. With anomalies overrepresented

in observational datasets, an accurate representation of the

marine realm can be more challenging to obtain.

In addition to heat flow, an “anomaly-driven” dataset exists

in the study of seafloor fluid expulsion anomalies (SEAFLEAs),

such as seafloor seeps (Phrampus et al., 2020). In this example,

marine scientists are driven to sites of anomalous fluid flow due

to their large chemical gradients, which alter seabed

biogeochemistry and host diverse benthic communities (e.g.,

Skarke et al., 2014). Subsequently, SEAFLEAs observations are

most commonly reported as anomalies only (i.e., no absence

points), which can heavily influence data-driven analyses. This

bias limits data-driven analyses and results in poorly-generalized

results due to the limited feature selection capability, and fuzzy

delineation between anomaly and no-anomaly locations due to

the limited capability in identifying unobserved phenomena

(Phrampus et al., 2020). Anomaly bias can also be observed in

marine geochronology, which also omits sediment cores with

zero net sediment accumulation (e.g., Restreppo et al., 2021).

More representative datasets with absence data (e.g., Diesing

et al., 2021) would bypass analysis limitations and result in more

comprehensive examination of global phenomena.

Without representative datasets, we have limited recourse to

deal with anomaly-driven sampling bias, and are restricted to

accounting for this bias post hoc. Additionally, “anomaly-driven

research” tends to be performed under the implicit assumption

that “normal” areas will remain “normal” under rapid changes in

the thermal, chemical, and biological seabed induced by

anthropogenic climate change on region to margin scale

(Kopf, 2009; McKenna, 2015; Rillo et al., 2019; Marchese

et al., 2022). Any understanding derived from biased marine

geoscience datasets will serve as poor baselines for forward

modeling efforts.

Improvements

The wholesale adaptation of autonomous research platforms

(AUVs/ASVs, see Sahoo et al. (2019) for overview) by the marine

geoscience community can serve to combat anomaly bias. These

platforms provide obvious appeal to researchers due to reduced

operational expense and extensive data collection with days,

weeks, or even months of data acquisition between platform

recoveries. From our perspective, the limited control of survey

patterns may be an overall benefit in making data acquisition less

anomaly-focused.

While autonomous research platforms provide promise to

deliver systematic data acquisition at reduced cost, seabed

sampling (including coring, heat flow measurements, and

geotechnical profiling) is unlikely to become an autonomous

activity in the near future. Therefore, we believe public funding

agencies, who subsidize the majority of marine geoscience

research, should incentivize systematic or exploratory data

acquisition designs, as was common in the 1960s and 70s

during the early days of marine geoscience exploration (e.g.,

GeoMapApp archived Analog Seismic Reflection Profiles

collected by R/Vs Robert D. Conrad, Eltanin, Vema, etc.). One

potential method funding agencies could use is adding a prompt

such as “do these data contribute to a representative data

baseline?” to proposal evaluation rubrics.

Marine geosciences data curation

Current paradigm

Following field collection and data moratoriums, funding

agencies often require principal investigators to be good stewards

of their funding and publish their data in a data repository. These

data can be tremendously useful and even invaluable as certain

exploratory datasets will likely never be acquired again. For

example, a long offset seismic line acquired continuously from

Cape Hatteras to the Mid-Atlantic Ridge is approximately

3,400 km long (Agena et al., 1993). Seismic data along this

trackline is unlikely to ever be reacquired due to logistics,

expense, and sanctions. Therefore, making this legacy data

both discoverable and machine-readable is a high priority.

Currently the largest data holdings are hosted within data

repositories operated by public institutions, such as NOAA’s

National Center for Environmental Information (NCEI) and

Germany’s PANGAEA (Diepenbroek et al., 2002). These

repositories provide some parsing capabilities, including

keyword and geographic search parameters. However, these

repositories are not discoverable and machine readable

databases. For example, the amalgamation of ocean drilling

data (e.g., International Ocean Discovery Program JANUS

website) is a repository since the data lacks both ease of

access and a consistent structure between expeditions.

Conversely, Lamont-Doherty Earth Observatory’s

GeoMapApp application houses a database with a large

amount of discoverable marine geoscience data stored within

a georeferenced GIS application. The GeoMapApp stands as an

exception to the general rule that marine geoscience data are

deposited “as-is” in repositories by mandate of funding agencies

or publishing journals.

Challenges

The largest challenge in data curation is the lack of incentive

for researchers to domore than the bare minimum to curate their

data. With the Agena et al. (1993) example, the data have issues

such as non-uniform sample rates, missing traces, and
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inconsistent or missing deep-water delays. These issues of

insufficiently quality-controlled data can result in huge time

sinks for data re-users. Issues like these are frequent and

persistent throughout public platforms and marine geoscience

data types.

Another issue for marine geoscience data curation is the lack

of data format uniformity and required metadata. Few marine

geoscience data types have an almost universally accepted

format, such as SEG-Y for seismic data (SEG Technical

Standards Committee, 2017). Point data, such as sediment

cores, are inherently less structured than gridded data formats

such as seismic and multibeam, and are typically in a delimited

text file. However, field names, separators, data units, and other

metadata can vary widely between data acquirers. The variety

and lack of uniformity of these unstructured data creates a data

conditioning time sink before data can be integrated. Finally, data

organizations often arrange data based on geographic region and

rarely based on data-type, which further inhibits bulk data

download capabilities necessary for global analyses.

Improvements

We believe better data curation can be achieved using a

“carrot instead of stick” approach, wherein researchers are

incentivized to better curate their (or other’s) data instead of

punishing them for not. Accordingly, instead of withholding

funding from researchers if data are not sufficiently curated,

funding agencies could include data curation metrics in their

proposal evaluation rubric. This would motivate proposal writers

to include “data literate” scientists on their teams, such as data

scientists and/or personnel from data curating agencies like

NCEI, who are funded to curate data (https://www.ncei.noaa.

gov). The inclusion of data literate scientists can also lead to a

consensus on data formats within a realm of study, resulting in

consistent data structures across the marine geoscience

community.

Data curation is not always possible for legacy datasets for

which data rescue is the only option. Due to the high cost of re-

acquiring datasets, rescue efforts can have an outstanding return

on investment. For example, Analog Seismic Reflection Profile

data housed within the GeoMapApp constitutes ~2.3 M km of

continuous single-channel profile data. Assuming a ship speed of

~8.3 km/h (4.5 knots) and 24 h operations, a single ship would

cover ~200 km/day. To recollect this data would require

11,769 days at sea. With a conservative day-rate of $50k

(USD) for a global class ship, the total cost of re-collection

would be ~$588M.

Considering this cost, we encourage funding institutions to

treat standalone data rescue proposals with equal priority to data

acquisition efforts. Data journals (such as Scientific Data) and

repositories with standalone DOIs for data (such as Zenodo) are

also strong positive reinforcement tools for researchers to

properly curate their data after publication. Data journals

publish peer-reviewed curated data, creating a product that

tangibly counts towards a researchers’ productivity.

To address issues of disparate data formats, we believe the

marine geoscience community should look to other earth

science disciplines for inspiration. SEG-Y is one of the few

marine geoscience data formats that has a stringent data/

metadata format and is widely adopted. For many other

types of data, particularly gridded data, the NetCDF

(Network Common Data Format; Rew and Davis, 1990)

format provides a self-described and flexible format, that is,

compatible with many popular data processing and analysis

software packages. Formats such as these, coupled with

established metadata (e.g., units) and attribute names, could

collate disparate data formats. Finally, adding utilities to bulk

download data by type would be useful for analyses of one

geologic quantity and would allow for quicker turnaround in

utilizing and integrating data.

Marine geosciences data integration

Current paradigm

The final, often repetitive, stage of the data lifecycle is the

integration and reutilization of data. In this step, datasets are

integrated into a holistic analysis tool such as machine learning

and/or a GIS-based workflows. Data-driven approaches, like

machine learning, have remained relatively novel tools in the

marine geosciences, despite the common use in diverse fields

such as meteorology and finance (Dixon et al., 2020; Chase et al.,

2022). We believe this is, in part, due to the data issues described

above which make data mining particularly difficult in the

marine geosciences.

In the contemporary paradigm, it is uncommon that

integrated data are used quantitatively to guide future research

endeavors, including where and what kinds of measurements to

collect. Only in specific circumstances has a systematic approach

been taken in data collection via the filling in geospatial gaps in

datasets (e.g., Mayer et al., 2018 initiative). However, this

geospatial approach only makes sense when a “complete”

dataset is practically attainable, i.e., measurements acquired

underway without holding station. Therefore, other methods

to identify where and what kinds of measurements should be

taken require a more data-driven, instead of geospatial,

approach.

Challenges

Within our data integration and rescue efforts, one of the

largest issues we’ve encountered has been finding and training

scientists with both marine geoscience and data science expertise.
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The classically trained marine geoscientist uses tools such as

geophysical data interpretation and/or geological sediment

analysis over relatively small spatial/temporal scales to better

understand a region. Such methods require expertise with highly

specific types of data (e.g., subbottom profiler data or

geochemical isotopes), but generally not expertise in data

integration and reuse. This limited perspective requires

marine geoscientists to only be data literate within the bounds

of their data, which inherently hinders their ability to make their

data usable to the community outside their specific expertise.

The challenges discussed above are exacerbated by a lack of

collaboration between traditional field-based, observational

marine geoscientists and data miners. Without an effective

institutional incentive structure in place to aid this

collaboration, data miners can only offer authorship (and/or

model outputs) to data acquirers in exchange for data access.

This transactional approach is inefficient at best at maximizing

the utility of marine geoscience data.

Improvements

Marine geoscience data integration is inherently limited by

data acquisition and curation. Accordingly, the suggestions that

apply to the previous sections also apply here. Particularly,

suggestions to incentivize collaboration between data scientists

and marine geoscientists at the proposal stage would help bridge

the existing gap in the marine data science lifecycle. Efforts for

marine geoscientists to become “data literate” beyond the

immediate needs of their own datasets are already underway

FIGURE 3
Data life cycle in the marine geosciences. Yellow boxes represent the current paradigm of the marine geoscience data lifecycle. Green boxes
represent a preferable future data lifecycle. In the new data lifecycle data undergoes a complete circle (indicated by red arrow), where the data drives
acquisition efforts.
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through organizations such as Community Surface Dynamics

Modeling System (CSDMS) and the Research Data Alliance

(Berman et al., 2014).

An example of data-driven marine geoscience can be found in

recent machine learning efforts that provide both marine geoscience

analyses and identify parametrically unique regions to sample (e.g.,

Lee et al., 2019; Graw et al., 2020). Analyses such as these pinpoint

regions of geologic interest, instead of geographic interest, that are

ideal for further data collection. We believe that using the data to

inform future data acquisition is the next great Frontier of the

marine geosciences, allowing the data to drive future collection and

making the data lifecycle come full circle (Figure 3).

Summary

In order to move the marine geosciences into the “big data”

era, the three stages of the data lifecycle (acquisition, curation,

and integration) need to be deliberately linked. Many challenges

discussed herein are due to the recent exponential increase in

volume and variety of marine geoscience data (Figure 1), with

only incremental changes in how data are handled. Below is a

brief summary of our opinion regarding the three largest issues

facing the marine geoscience community in the movement

towards the “big data” era:

1) Contemporary data acquisition is both geospatially and

anomaly focused resulting in biased observational datasets.

2) There are not enough incentives for data acquirers to do more

with their data than meet basic funding agency guidelines

(i.e., depositing their data “as-is” in a repository).

3) Data integration is currently performed as a largely

standalone effort, instead of a coordinated effort between

data acquirers and curators.

In this paper, we outline possible steps to address these

problems, which can be summarized as:

1) Utilize autonomous research platforms, and fund systematic/

exploratory data efforts to collect data in a less biased manner.

2) Incentivize data curation through research proposal evaluation

rubrics and citable/publishable databases and journals.

3) Utilize data-driven sampling methodologies, such as

parametric sampling, and “cross-train” marine geoscientists

in all three phases of the data lifecycle.

The solutions proposed above will not singlehandedly deliver

the marine geoscience community to the ‘big data’ era. However,

we believe these solutions are tangible steps to make the marine

geoscience community capable of handling the acquisition,

curation, and integration of the data we have today and better

face the data challenges of the coming decades. Diepenbroek

et al., 2002,Diesing, 2020,Rew and Davis, 1990.
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