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Introduction

Jiaodong is the most prolific gold province in China. Based on the spatial distribution and
structural characteristics of gold deposits, the province can be divided into three ore belts,
i.e., (from west to east) the Laizhou-Zhaoyuan-Pingdu, Penglai-Qixia, and Muping-Rushan
(Chen et al., 1989). The Jiaodong gold deposits are usually divided into three types: altered-rock
type (aka. Jiaojia type, e.g., Jiaojia, Sanshandao, Xiadian, and Xincheng) (Li, 1988; Lu et al.,
1999a; Wen et al., 2016; Ma et al., 2017), quartz vein type (aka. Linglong type, e.g., Linglong,
Jiuqu, and Baotouqing) (Qiu et al., 1988; Lu et al., 1999b; Yang et al., 2016a) and pyrite-
carbonate type (aka. Liaoshang type, incl. Liaoshang, Tudui, and Shawang) (Li et al., 2017).
Many previous studies have analyzed the source and properties of ore-forming fluids of the
Jiaodong gold deposits, with the main findings include: 1) the ore-forming fluids have had input
from the mantle (Deng et al., 2015; Liang et al., 2015), magmatic water (Zhao et al., 2015; Zhang
et al., 2017), and a mixture of metamorphic-hydrothermal fluids and meteoric water (Xu et al.,
2016; Tan et al., 2018); 2) the ore-forming fluids likely changed from early-stage medium-high
temperature and medium-low salinity to late-stage medium-low temperature and low salinity
(Wang et al., 2014; Yan et al., 2014; Deng et al., 2015; Yang et al., 2017); 3) the ore-forming
materials may have sourced from the mantle, Yanshanian (Jurassic-Cretaceous) granites, and
Yanshanian (Jurassic-Cretaceous) granite-greenstone (Zhou et al., 2000; Zhang et al., 2014;
Deng et al., 2015; Yang et al., 2016b). However, some workers argued that ore-forming fluids of
the different ore types are not very different, and the physicochemical properties and
interpreted ore-fluid sources are largely the same. This implies that these different types of
gold deposits were formed in the same ore-forming event, and the ore geological differences
were likely caused by the ore-controlling structures (Yang et al., 2006).

The Zhaoxian gold deposit (altered-rock type) is located at the junction between the
Sanshandao-Cangshang and Laizhou-Longkou gold belts. Built on previous works, our study
focuses on the trace element compositions (e.g., Rb, Ta, Nb, Sr, Zr, Hf) of fluid inclusions and
ore-stage granite at Zhaoxian. We discuss the ore-fluid properties, the ore-material source(s),
and the gold metallogeny at Zhaoxian, in order to provide reference for regional gold
exploration and research.

OPEN ACCESS

EDITED BY

Kit Lai,
Fortescue Metals Group, Australia

REVIEWED BY

Junming Yao,
Xinjiang Institute of Ecology and
Geography (CAS), China
Changzhou Deng,
Institute of Geochemistry (CAS), China

*CORRESPONDENCE

Guangzhou Mao,
gzmaonjunwu@163.com

Mingping Cao,
cmp4688164@163.com

SPECIALTY SECTION

This article was submitted
to Economic Geology,
a section of the journal
Frontiers in Earth Science

RECEIVED 31 October 2022
ACCEPTED 28 December 2022
PUBLISHED 12 January 2023

CITATION

Li Z, Mao G, Liu C, Liu X, An P and Cao M
(2023), Nature and geochemical
characteristics of ore-forming fluids in the
Zhaoxian gold deposit, Jiaodong gold
province, eastern China.
Front. Earth Sci. 10:1085398.
doi: 10.3389/feart.2022.1085398

COPYRIGHT

© 2023 Li, Mao, Liu, Liu, An and Cao. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Data Report
PUBLISHED 12 January 2023
DOI 10.3389/feart.2022.1085398

https://www.frontiersin.org/articles/10.3389/feart.2022.1085398/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1085398/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1085398/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1085398/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1085398/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.1085398&domain=pdf&date_stamp=2023-01-12
mailto:gzmaonjunwu@163.com
mailto:gzmaonjunwu@163.com
mailto:cmp4688164@163.com
mailto:cmp4688164@163.com
https://doi.org/10.3389/feart.2022.1085398
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.1085398


Regional geology

The Jiaodong gold province is located in the eastern part of Tanlu
fault zone, which is the tectonic junction of the North China Craton,
Yangtze Block and Qinling-Dabie Orogen (Figure 1A). The province
comprises (from north the south) the Jiaobei uplift, Jiaolai basin, and
Sulu ultra-high pressure (UHP) belt (Figure 1B) (Li et al., 2007; Tan
et al., 2012; Li, 2016). Rocks in the province include mainly
Precambrian metamorphic basement rocks and Mesozoic magmatic
rocks. The former includes the Archean Jiaodong Group (incl.
Neoarchean Qixia tonalite-diorite gneiss and Malianzhuang
metagabbro), Paleoproterozoic Jingshan and Fenzishan Groups,
and the Neoproterozoic Penglai Group (Tang et al., 2007; Tang
et al., 2008; Zhai and Santosh., 2013); The Mesozoic magmatic
rocks include mainly ca. 160–150 Ma crustal source Linglong
medium-grained biotite monzogranite, ca. 130–126 Ma Guojialing
granodiorite with a crust-mantle mixed origin (Yang et al., 2012;
Yang et al., 2014), and the intermediate-mafic dikes (incl.
lamprophyre, diorite porphyrite, and diabase porphyrite). Gold
deposits are mainly hosted in the Linglong granite and Guojialing
granodiorite, and the contact zone between the granite and
Precambrian metamorphic rocks. Tectonic activity in the
northwestern Jiaodong region has formed brittle and brittle
structures (Li et al., 2003; Song et al., 2020). The Sanshandao,

Jiaojia, and Zhaoping faults are the main ore-controlling structures
in the region, which control the formation and distribution of gold
deposits (Song et al., 2010a).

Deposit geology

Stratigraphy, structure, and magmatic-
metamorphic rocks

At the Zhaoxian gold deposit, exposed pre-Quaternary strata
comprise mainly the Paleoproterozoic Lugezhuang Formation
(Jingshan Group) granulite, marble and schist, and the Cenozoic
Zhubidian Formation (Wutu Group) pebbly feldspar sandstone
and clayey sandstone (Zhu, 2018). The Jiaojia fault (~60 km long,
max 1 km wide) at Zhaoxian is divided into three segments,
i.e., (from north to south) the Gaojiazhuangzi-Xincheng,
Xincheng-Jiaojia (Matang), and Sizhuang. The fault strikes
30°–50° and has a dip angle of 80° (Shu et al., 2022). The Jiaojia
fault branches out into secondary structures locally and is featured
by multistage movements (Song et al., 2010b; Hen et al., 2015; Cao
et al., 2016; Sun et al., 2018). Magmatic rocks are widely distributed
at Zhaoxian, and comprise (from old to young) the meta-gabbro in
the Neoarchean Malianzhuang sequence (Figure 2), the Qixia

FIGURE 1
Types and spatial distribution of key ore deposits in the Jiaodong gold province (modified after Yang et al., 2017).
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gneiss, biotite tonalite, (weakly gneissic) early Yanshanian
Linglong medium-grained monzogranite, the late Yanshanian
Guojialing porphyritic granodioritez, and some younger dykes
(Song et al., 2010b).

Wallrock alteration

Alteration is well developed along the faults at Zhaoxian. In the
hanging-wall, there is a cataclastic zone with sericitized wallrocks,

FIGURE 2
Geological and mineral map of the study area (modified after Song et al., 2018).
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FIGURE 3
Schematic alteration zoning profile in the Zhaoxian gold deposit.

FIGURE 4
Photos of wallrock alteration at the Zhaoxian gold deposit ((A). Silicification; (B). Pyrite-sericite alteration; (C). Chloritization, K-feldspar alteration;
(D). Carbonate alteration).
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which transitions into a partially pyrite-sericite-altered cataclastic
zone. The footwall also contains a pyrite-sericite-altered cataclastic
zone, which transitions into pyrite-sericite alteration in the granite
wallrocks (Figure 3).

Major alteration styles in the wallrocks include mainly 1)
silicification (Figure 4A), which is often associated with metal
sulfides and gold mineralization; 2) pyrite-sericite alteration
(Figure 4B), with the mineral assemblage of sericite + quartz ±
pyrite in cataclastic rocks; 3) chloritization (Figure 4C), which is
altered from magmatic hornblende and biotite, occurring locally as
patches or veinlets; 4) K-feldspar alteration (Figure 4C), which
occurred in an early hydrothermal stage and the altered rocks have
a fleshy red color; 5) carbonate alteration (Figure 4D), which occurs as
late calcite veining (cutting the ores) and locally massive aggregates.

Orebody characteristics

The orebodies at Zhaoxian can be divided into four groups (I to
IV) (Figure 5): I) The orebodies in the pyrite-sericite-altered
cataclastic zone on the footwall (Figure 5), containing 20 orebodies
and accounting for 71.04% of the estimated total resource. Among
them, No. I-2 orebody is the main orebody, accounting for 42.44% of
the total resource; II) The orebodies in the pyrite-sericite-altered
granitic cataclastic zone below Group I (Figure 5), containing
13 orebodies and accounting for 19.93% of the estimated total
resource. Among them, No. II-1 orebody is one of the largest,

accounting for 10.48% of the total resource; III) The nine
orebodies in the pyrite-sericite-altered granite belt below Group II
(Figure 5), accounting for 3.95% of the estimated total resource; IV)
The orebodies in the pyrite-sericite-altered granite cataclastic zone
above the main fault surface (Figure 5), containing seven orebodies
and accounting for 5.08% of the estimated total resource.

Alteration and mineralization paragenesis

Based on the field crosscutting relationships and mineral
assemblages, the alteration/mineralization at Zhaoxian can be
divided into four stages, namely (from old to young):

1) Pyrite-quartz-K-feldspar (Figures 6A,B): Pyrite is coarse-grained
subhedral, and occurs as patches and veins with cataclastic texture.
The quartz is coarse-grained milky and with wavy extinction. The
K-feldspar is coarse-grained anhedral granular, and is commonly
altered to sericite in the later hydrothermal stages. At this stage,
minor native gold mineralization is observed under the microscope.
The gold particles are small and mostly included in pyrite.

2) Pyrite-quartz-sericite ± chlorite (Figures 6C,D): The pyrite is fine-
grained (mostly 50–300 μm) euhedral with local corroded margin.
The quartz and sericite were derived from the alteration of stage I
minerals. Stage 2 gold occurs mainly in inclusions or fissures.

3) Polymetallic sulfide-quartz (Figures 6E–G): This stage is featured
by fine-grained quartz + sulfides (galena, pyrite, chalcopyrite,

FIGURE 5
Integrated profile north of the Zhaoxian gold deposit (modified after Wang et al., 2022).
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sphalerite) in veinlets or disseminations, with the veinlets cutting
early-stage pyrite veins. The quartz veins are smoky gray, and gold
is abundant and exists in various forms, including fissure or
interstitial among galena, chalcopyrite, and pyrite grains.

4) Quartz-calcite ± pyrite (Figures 6H,I): Pyrite is coarse-grained
(10 mm) cubic, and occurs in veins. Quartz and calcite are mainly
distributed in ore-cutting veins/veinlets.

Fluid inclusion types and compositions

Sampling and analytical methods

The samples were collected from the ZK01 drill-hole at 2038–2,146 m
depths (Figure 2). Because the Jiaojia fault has undergone multistage
faulting and hydrothermal alteration andmineralization, we collected four
ore samples at different depths to recover quartz grains from the different
ore-stages. The samples consist of pyrite-sericite-altered cataclasitic
granite (ZX5, ZX6) and pyrite-sericite-altered clastic rock (ZX11,
ZX21). The samples were prepared into double-polished thin-sections
(0.3 mm thick) for optical microscopic observations. Representative

quartz-hosted fluid inclusions (FIs) from the early-ore I), main-ore (II,
III), and late-ore IV) stages were selected formicrothermometric and laser
Raman spectroscopic analyses.

The FI microthermometric measurement was performed at the
Fluid Inclusion Laboratory of the Analysis, Test and Research
Center (Beijing Institute of Geology of Nuclear Industry), on a
Linkam-THMS600 temperature control stage. The heating and
freezing stages were calibrated by using the synthetic FI
standard provided by Fluid Inc. (United States). The instrument
measurement accuracy is ± 0.5°C down to −120°C, ±0.2°C
at −70°C–100°C, and ±2°C at 100°C–500°C. The heating rate is
0.2°C–10°C/min, and that for the CO2-bearing FIs decreased to
0.2°C/min near the melting point, and to 0.2°C–0.5°C/min near the
freezing point and homogenization for the aqueous FIs (Hu et al.,
2021). All the raw data were processed with the MacFlincor
program (Brown and Hagemann, 1995). Laser Raman probe
analysis (RAM) was performed at the same laboratory, using a
LABHR-VIS LabRAM HR800 microlaser Raman spectrometer.
The analysis used a YAG crystal frequency-doubled solid-state
laser with 532 nm wavelength, 100–4,200 cm−1 scanning range, and
2 cm−1 spectral resolution. Detailed sample preparation and

FIGURE 6
Photomicrographs of ores and altered rocks from the different metallogenic stages at Zhaoxian: (A) and (B) Pyrite-quartz-K-feldspar stage; (C) and (D)
Pyrite-quartz-sericite stage; (E,F) and (G) Polymetallic sulfide-quartz stage; (H) and (I) Quartz-calcite stage. Abbreviations: Au-Native gold; Py-Pyrite; Ccp-
Chalcopyrite; Gn-Galena; Q-Quartz; Kfs-K-feldspar; Chl-Chlorite; Cal-Calcite; Ser-Sericite.
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analytical procedures follow those by Wei et al. (2015) and Shu
et al. (2022).

Fluid inclusion types

Syn-ore FIs at Zhaoxian can be divided into primary and
secondary ones, with the former comprising four types: CO2-H2O

three-phase I), H2O aqueous II), CO2 single-phase III) and gaseous
CO2 and H2O with daughter minerals IV).

Type I FIs account for ~30% of the total FIs, and can be divided into
two subtypes (Ia and Ib): type Ia FIs contain a liquid water phase (LH2O), a
liquid CO2 phase (LCO2), and a gaseous CO2 phase (VCO2) (Figures 7E, F,
I–J). The LCO2+VCO2 phase accounts for ca. 15–40 vol% of the FIs. VCO2

has relatively large volume. LCO2 usually forms a thin dark rim around
VCO2, and this FI type ismostly stripy. These FIs are generally 2 × 2 to 12 ×

FIGURE 7
Photomicrographs of ore-stage fluid inclusions from the Zhaoxian gold deposit: (A) CO2 single-phase; (B) aqueous single-phase; (C) two-phase
aqueous inclusions; (D) two-phase H2O + CO2 inclusions; (E) and (F) three-phase (LH2O + LCO2 + VCO2) inclusions; (G) gaseous CO2 and H2O with daughter
minerals; (H) neck contraction inclusions; (I) pre-ore-stage inclusions; (J) and (K) syn-ore-stage inclusions; (L) post-ore-stage inclusions.
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14 μm in size. In type Ib two-phase (LH2O+VCO2) FIs (Figures 7D, I–J), the
volume percentage of VCO2 is largely similar (ca. 15–20 vol%). Most of
these FIs are oval or negative crystal shape, with sizes of 2 × 3 to 4 × 10 μm
(mostly 3 × 4 μm).

Type II FIs can also be divided into two subtypes: type IIa gas-liquid
(LH2O+VH2O) FIs (Figures 7C, L) have their gas phase accounting for ca.
15–20 vol% (and ~60% of the total number of type II FIs). They have
mostly oval or negative crystal shape, with sizes of 2 × 3 to 4× 6 μm(mostly
2 × 3 μm). Type IIb (aqueous single-phase LH2O) FIs (Figures 7C, K) are
colorless, transparent, and without air bubbles. They are usually long or
oval shaped and are typically 2 × 5 μm in size.

Type III FIs (Figures 7A, J) are composed of a pure CO2 gas phase,
accounting for ~7% of the total number of FIs. These inclusions are
usually dark black with size of 3 × 3 μm.

Type IV FIs (Figures 7G, K) are composed of the gas phase
(VH2O+VCO2) and daughter minerals S), and account for ~3% of the
total number of FIs. Daughter minerals (size: 1–2 μm) consist mainly of
halite, and occur in aqueous LH2O at room temperature. Type IV FIs are
generally 4 × 10 to 5 × 12 μm in size (Figures 7H).

Fluid inclusion morphology and
microthermometry

Homogenization temperature and salinity
The types, distribution characteristics and microthermometric results

of the primary FIs from Zhaoxian are shown in Table 1 and Figures 8 and
Figure 9. Stage I quartz contains mainly type Ia (LH2O + LCO2 + VCO2)

(Figure 7I) and type Ib (LH2O + VCO2) FIs (Figure 7I). Type IIa (LH2O +
VH2O) FIs are also uniformly distributed, commonly with small size (2 ×
3 μm). Type Ia FIs are homogenized partially to gaseous or liquid phase at
28.5°C–31.2°C, and completely at 234°C–357°C (mainly 260°C–269°C) to
liquid phase and (minor) to gaseous phase (Table 1; Figure 8). The fluid
salinity is 3.52–11.61 (mainly 8.00–9.90) wt.% NaCleqv. (Figure 9), whilst
the fluid pressure and density are 261–353MPa and 0.73–0.94 g/cm3,
respectively (Table 1). For type Ib (LH2O+VCO2) FIs, the ice-freezing and
homogenization temperatures are -5.4°C–5.6°C and 234°C–276°C,
respectively. The salinity is 8.03–8.41 wt.% NaCleqv., whilst the density
is 0.83–0.97 g/cm3 (Table 1).

During the main-ore stages II and III, the smoky-gray quartz contains
all four FI types (I to IV), but are dominated by type Ia. The FIs are mostly
5–10 μm in diameter and occur as isolation or in groups. Type Ia FIs are
homogenized partially at 24.0°C–31.2°C, and completely at 229°C–299°C
(mostly 229°C–269°C) (Table 1; Figure 8). The FIs have 0.43–11.61 (mostly
4.00–7.90) wt.% NaCleqv. salinity (Figure 8), 217–321MPa fluid pressure,
and 0.73–0.94 g/cm3 density. Type IIa FIs have ice-freezing and
homogenization temperatures of -7.3°C to 6.6°C and 176°C–213°C,
respectively. They have 3.39–10.86 wt.% NaCleqv. salinity and
0.83–0.97 g/cm3 density (Table 1).

Stage IV quartz has mainly type Ib FIs, with size of 2 × 3 μm. These
FIs are clustered or randomly distributed, most of which are elliptical
or irregular-shaped. The ice-freezing and total homogenization
temperatures are -5.6°C–6.8°C and 175°C–264°C (175°C–209°C),
respectively (Table 1; Figure 8). The FIs have 1.57–8.68 (6.00–9.90)
wt.% NaCleqv. salinity, and 0.80–0.95 g/cm3 density (Figure 9;
Table 1).

TABLE 1 Microthermometry results of ore-stage fluid inclusions from the Zhaoxian gold deposit.

Ore stage FI type Th,CO2/°C Th,ice/°C Th,tot/°C Salinity (wt% NaCleqv) Pressure (MPa) Density (g/cm3)

Early Ia 28.5–31.2 234–357 3.52–11.61 261–353 0.73–0.94

Ib, IIa −5.4–5.6 234–276 8.03–8.41 0.83–0.97

Main Ia 24–31.2 229–299 0.43–11.61 217–321 0.73–0.94

Ib, IIa −7.3–6.6 176–213 3.39–10.86 0.83–0.97

Late Ib −5.6–6.8 175–264 1.57–8.68 0.80–0.95

Th,CO2 = partial homogenization temperature of CO2; Th,ice = ice-freezing temperature; Th,tot = total homogenization temperature. The pressure is calculated with the FLINCOR, computer program,

using the Th,tot and Th,CO2 of H2O-CO2 three-phase inclusions (Touret, 1979; Sterner, 1991).

FIGURE 8
Homogenization temperature histogram of fluid inclusions from the different metallogenic stages at Zhaoxian.
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Fluid inclusion temperature of the various ore stages
The ore-fluid temperature and salinity decrease gradually from the

early to late ore stage. Type Ia and Ib FIs with different phase ratios
coexist in this stage, and they have similar homogenization
temperature range (176°C–299°C) but different homogenization
modes (homogenized to liquid and gas phase, respectively). The
CO2 content decreases markedly in the late ore stage (Table 1).

Stage I: The CO2 liquid and gas phases of the FIs are homogenized
to liquid. The partial (Th,CO2) and total (Th,tot) homogenization
temperatures are 28.5°C–31.2°C and 234°C–357°C, respectively.

Stage II and III: Both the CO2 liquid and CO2 gas phase in the FIs
homogenized to liquid, with Th,CO2 = 24°C–31.2°C. The Th,tot of type
Ia FIs is generally higher than that of type Ib FIs.

Stage IV: A small number of type II FIs are observed in quartz and
calcite, but those in the calcite are not fit for microthermometric
measurement. The ice-freezing and homogenization temperatures of
type IIa FIs in quartz are -5.6°C–6.8°C and 175°C–264°C, respectively,
with corresponding salinity of 1.57–8.68 wt.% NaCleqv.

Density
The following formula is used to calculate the density of type Ib

and IIa FIs from Zhaoxian (Potter et al., 1977; Lu et al., 2004):

ρ � A + Bt + Ct2

A � 0.993531 + 8.72147*10−3pS − 2.43975p10−5pS2
B � 7.11652p10−5 − 5.2208*10−5pS + 1.26656p10−6pS2

C � −3.4997p10−6 + 2.12124p10−7*S − 4.52318p10−9pS2

where t = Th,tot of the gas‒liquid two-phase FIs (Th (t°C)), S = salinity
(wt.% NaCleqv.), and ρ = fluid density (g/cm3).

The following formula is used to calculate the density of ore-stage
type I FIs from Zhaoxian (Potter et al., 1977; Lu et al., 2004):

ρ I( ) � 0.4683 + 0.001441p 3.35 − t( ) + 0.1318p 3.35 − t( ) 1
3

ρ � φ CO2( )pρ I( ) + 1 − φ CO2( )( )pρ aq( )

where t = (Th,CO2) of the gas phase CO2 (°C), φ (CO2) = volume
percent of the CO2 gas phase and liquid phase in the FIs (%),
ρ(I) = density of the CO2 phase when homogenized to liquid

(g/cm3), ρ(aq) = brine density (g/cm3), and ρ = ore fluid density
(g/cm3).

The calculated density (0.73–0.97 g/cm3) is shown in Table 1. The
density of type Ia FIs and type Ib and IIa FIs are 0.73–0.94 and
0.80–0.97 g/cm3, respectively, indicating that the fluid has low density.

Metallogenic depth estimation

The trapping pressure of our FI samples is 217–353 MPa (mainly
260–330 MPa). The metallogenic depth H) is estimated to be
7.4–12.0 km with the equation of: P = ρgH (ρ = 3 g/cm3), where
P = metallogenic pressure (Sheperd et al., 1985).

Laser Raman spectroscopic results

Representative type Ia, Ib and IIa were analyzed, and the resulting
laser Raman spectra show characteristic CO2 peaks (1,386 cm−1,
1,285 cm−1, 1,282 cm−1) (Figure 10) and a slightly weaker CH4 peak
(2,912 cm−1) (Figure 10). Laser Raman spectra also show that the early
ore stage type Ia FIs has pure CO2 Besides, the gas phase basically does
not contain CH4.

Trace element compositions of ore-
stage granite

In this study, we have analyzed the sericite-pyrite-altered cataclasitic
granite (n = 4) (main-ore) and sericite-pyrite-altered cataclastic rocks (n =
3) (main-ore) from Zhaoxian, using the ME-MS81 method at the ALS
Laboratory (Guangzhou) Co. Ltd. The analysis used an
Elan9000 inductively coupled plasma mass spectrometer (ICP‒MS)
(United States), with better than 5% analytical accuracy (Xiao and
Liao, 2016). Detailed sample preparation and analysis methods follow
those of Zhang and Guo (2012). The data are given in Table 2. The ore-
stage granites have the following geochemical characteristics: 1) low Nb/
Ta ratios. The Nb/Ta is largely unaffected by fractionation. Tatalum and

FIGURE 9
Salinity distribution histogram of fluid inclusions from the different metallogenic stages at Zhaoxian.
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Nb is enriched and depleted in the crust, respectively, and thus the Nb/Ta
ratio can indicate the degree of crustal involvement in magma formation
(Green et al., 1995). The Nb/Ta ratio of our granite samples are is 0.22 ±
1.88 (except for sample ZX9), which is significantly lower than the average
Nb/Ta (11) of the post-Archean continental crust (Green et al., 1995).

During magmatic fractionation, Rb could replace K in K-feldspar,
and Sr replaces Ca in plagioclase. Therefore, highly fractionated
magma would have higher K-Rb and lower Ca-Sr. Our granite
samples have high Rb/Sr (0.19–0.51, avg. 0.38), suggesting high
degree of fractionation (Table 2). This is consistent with the low
Zr/Hf and Th/U ratios of the granite samples (Zhang and Guo, 2012).
The primitive mantle-normalized multielement plot for the granite
samples shows that the granites are obviously enriched with large-ion
lithophile elements (LILEs) such as Rb and Th, and depleted in Nb and
Sr (Figure 11).

Discussion

Ore fluid properties and evolution

The FI petrographic, microthermometric and laser Raman
spectroscopic data show that the ore fluids are of medium-low

salinity and belong to a CO2-H2O system, consistent with the
published data from the shallow part of the Jiaojia gold deposit
and most Jiaojia-type gold deposits in this area. The features are
different from typical high-temperature and high-salinity magmatic
ore-forming fluids, but resemble the ore-forming fluids of most
orogenic-type gold deposits.

Our results show that the main ore stage fluids are hotter and are
more CH4-rich than those of the early ore stage. Some studies
suggested that the early ore-forming fluids of Jiaojia-type gold
deposits are CO2-rich and CH4-poor, while the main ore stage
fluids contain more CH4 (Fan et al., 2005; Wen et al., 2016). There
are two possible sources of CH4: 1) re-equilibrium by the infiltration of
H2 into the FIs (Hall and Bodnar, 1990; Ridley and Hagemann, 1999);
2) the H2O-NaCl-CO2 fluids produced a small amount of CH4 with
the decreasing temperature and oxygen fugacity from the early to main
ore stage.

Because the fluid immiscibility would cause substantial CO2 loss,
the temperature drop would lead to a decrease in the SiO2 solubility,
forming the late-stage quartz-calcite veins (Shu et al., 2022). The low
salinity in type II FIs suggests that the late-stage fluids are of low-
salinity and CO2-poor.

In the early ore stage, the FIs are dominantly CO2-bearing three-
phase, and thus the ore-forming fluid is CO2-rich and of high

TABLE 2 Trace element contents and ratios of syn-ore granite at Zhaoxian (trace element unit: ppm).

Sample number ZX3 ZX9 ZX10 ZX21

Rb 3.3 3.2 1.5 0.7

Ba 10.1 68.1 30.6 15.9

Th 4.12 0.89 0.22 0.16

U 0.9 0.6 0.09 0.12

Ta 0.8 0.1 0.9 0.7

Nb 1.5 2.2 0.2 0.19

La 45.7 4.2 4.2 0.9

Ce 84.1 7.4 7.3 1.6

Sr 6.5 6.8 4.6 3.6

Nd 31.1 2.7 2.4 0.7

Zr 55 44 5 3

Hf 1.4 1.3 0.2 0.2

Sm 4.52 0.46 0.38 0.19

Y 3.8 2.8 1.5 1.6

Yb 0.27 0.24 0.13 0.09

Th/U 4.58 1.48 2.44 1.33

Rb/Sr 0.51 0.47 0.33 0.19

Rb/Ba 0.33 0.05 0.05 0.04

Rb/Nb 2.20 1.45 7.50 3.68

Zr/Hf 39.29 33.85 25.00 15.00

Nb/Ta 1.88 22.00 0.22 0.27

Unit of analysis: Aushi Analysis and Testing (Guangzhou) Co., Ltd.; Analysis method: ME-MS81 plasma mass spectrometry.
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temperature. Metal complexes are stable in this weakly acidic
hydrothermal fluid, and thus it could dissolve and carry gold and
other ore-forming elements (Yang, 1986; Liu and Shen, 1999; Phillips
et al., 2004; Hou et al., 2007; Lu, 2011; Mao et al., 2013).

The homogenization temperature of type Ia FIs is higher than
those of type Ib FIs, and the salinity and density of type Ib FIs are
lower than those of type Ib FIs. This may be caused by fluid
immiscibility (Huang, 2021). During fluid immiscibility, the
homogeneous temperature and pressure of inclusions are similar

and can represent the fluid trapping temperature and pressure.
(Huang, 2021). Therefore, the homogenization temperature of type
Ia FIs can represent the capture temperature of immiscible
inclusions, i.e., the ore-forming temperature is 234°C–357°C.
The formation of many CO2-bearing three-phase inclusions in
quartz indicates that the fluid is CO2-rich or carbonic. The
presence of CO2 can increase the solubility of chlorine and
water in magmatic fluids and facilitate metal migration (Rui
et al., 2003; Chen et al., 2006).

FIGURE 10
Laser Raman spectra of the ore-stage fluid inclusions from the Zhaoxian gold deposit: (A) and (B) CO2 inclusions in the early ore-stage; (C,D) CO2 and
CH4 inclusions in the main ore-stage.

FIGURE 11
Primitive mantle-normalized multi-element spidergram of the syn-ore granite at Zhaoxian.
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Source of ore-forming materials

According to previous studies, the ore-forming materials in
northwestern Jiaodong gold province were mainly derived from the
Jiaodong metamorphic rocks (Deng et al., 2004; Li et al., 2007; Guo
et al., 2008; Liang et al., 2015), yet the average gold content of the latter
(2.47 ppb) is lower than that of the crust average (4 ppb) (Li and Ni,
1990). The average Au content of the Neoarchean Jiaodong Group
metagabbro in the Jiaojia fault hanging-wall at Zhaoxian is low
(1.16 ppb) (Yang et al., 1991), and could unlikely represent a main
gold source. The Au content of Linglong granite (19 ppb) and
Guojialing granite (49 ppb) in the Jiaodong district area are higher
(Lu et al., 1999; Xu et al., 2022), and both being interpreted to have a
crust-mantle mixed magma source. An upper mantle source of Au has
also been suggested for the Jiaodong gold deposits (Gui, 2014).

In the geochemical tectonic discrimination plots for granites
(Figure 12), our granite samples all fall inside the volcanic arc
granite field, reflecting that they were formed in an arc setting
(Pearce et al., 1984).

Thus, the granites at Zhaoxian may have emplaced in an arc
environment, with its formation related to mantle-derived magma
underplating. The mantle source may have provided both the heat to
partially melt the crust and mix with the crustal magma (Zhang and
Guo, 2012). Our geochemical data on the Zhaoxian granite show that
the granite is highly fractionated with dominantly continental crustal
source. Therefore, we infer that the gold ore-forming materials were
mainly derived from the upper mantle. During the upwelling of mantle
materials, gold may have ascended with the magma and formed gold
deposits.

Source of ore-forming fluid and the gold
metallogeny

Based on the close spatial relationship of the Jiaodong gold
deposits with the Jiaodong Group metamorphic rocks, Linglong

granite, and Guojialing granodiorite. Many works in the 1980s and
1990s proposed that the ore-forming fluids were magmatic-
hydrothermal sourced with meteoric water input (Wang and Li,
1985; Zhang et al., 1994; Wang et al., 1995.; Zhang et al., 1995; Lin
and Yin, 1998). In recent years, some works have invoked mantle-
derived input for the ore fluids in the Jiaodong gold province, based on
mineral isotope and FI studies (Sun and Shi, 1995; Mao et al., 2002;
Zhang et al., 2002; Liu et al., 2003; Fan et al., 2005).

Published He and Ar isotope data of FIs in pyrite from the
Denggezhuang and Jiaojia gold deposits indicated that the ore-
forming fluids have high 3He/4He and 40Ar/36AR values,
resembling mantle-derived fluids (Zhang et al., 2002). By studying
the carbonate minerals from the Rushan and Jiaojia gold deposits, Liu
et al. (2003) concluded that the Sr-Nd isotopic compositions are
similar to those of the mantle source rocks.

The northwest Jiaodong region has experienced a complex
tectonic evolution. In the Late Jurassic, the regional tectonics was
influenced by the Paleo-Pacific subduction beneath Eastern
China. Since the Early Cretaceous, regional tectonics had
evolved from intracontinental compressional orogeny and
crustal thickening to intracontinental rifting and lithospheric
thinning. The Paleo-Pacific subduction had also led to sinistral
shearing of the transcrustal Tanlu (Yishu) fault and its associated
NE-NNE-trending structures. The transtension may have
provided open space for the ascent of deep magmatic fluid
(and thus gold mineralization) and mafic dyke intrusion
(Goldfarb and Groves, 2015; Guo, 2016; Dou et al., 2021).
During the upwelling of mantle material, gold may have
ascended with the magma, and deposited at the open-space
formed by the transtensional faults.

Conclusion

1) The gold ore-forming fluid at Zhaoxian belongs to a medium-to
low-salinity H2O-NaCl-CO2 ±CH4 system. The main types of

FIGURE 12
Trace element tectonic discrimination diagrams for granites (modified from Pearce, 1984): Yb+Nb-Rb (A); Yb+Ta-Rb (B) tectonic discrimination
diagrams; VAG-Volcanic arc granite; ORG-Ocean ridge granite; WPG-Within-plate granite; COLG-Collision granite.
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FIs (FIs) in quartz are CO2-H2O (type I) and H2O aqueous
(type II). Early- and main-stage mineralization involves
mainly type II and type I, respectively. The phase
proportion changes substantially, and the CH4 content
increases markedly with ore-fluid evolution. The syn-ore FIs
have medium-low homogenization temperature (234°C–357°C)
and low salinity (3.52–11.61 wt.%NaCleqv). The ore-fluid
pressure and density are estimated to be ca. 217–353 MPa
(medium-low pressure) and 0.73–0.97 g/cm3 (low density),
respectively, yielding medium-large ore-forming depth of
7.4–12.0 km.

2) Trace element characteristics of ore-stage granites at Zhaoxian
inferred that the gold ore-forming materials at Zhaoxian were
mainly derived from deep source, possibly associated with
asthenospheric upwelling.

3) In the Mesozoic, the NW-dipping subduction of Paleo-Pacific
plate under Eurasia may have resulted in the left-lateral shear
of the Tanlu fault zone, and the Jiaodong region had
undergone intense tectonic deformation and magmatism.
During the Mesozoic regional tectonic transition, the Tanlu
fault and its secondary structures may have opened by the
transtension and provided channels for the ascending deep
magmatic-sourced fluids. These fluids may have mixed with
the metamorphic water and meteoric water circulating in the
middle-upper crust, and eventually led to the gold
mineralization (Song et al., 2018).
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