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Global warming is inducing dramatic changes in fluvial geomorphology and
reshaping the hydrological connections between rivers and lakes. The water
level and area of the Salt Lake have increased rapidly since the outburst of
the Zonag Lake in the Hoh Xil region of the Qinghai–Tibet Plateau in 2011,
threatening the downstream infrastructure. However, fewer studies have focused
on its spatiotemporal variation and overflow risk over long time series. Here,
we used three machine learning algorithms: Classification and Regression Trees
(CART), Random Forest (RF), and Support Vector Machine (SVM) to extract the
area of the Salt Lake for a long time series, analyzed its spatiotemporal variation
from 1973 to 2021, and finally assessed the overflow risk. The Kappa coefficient
(KAPPA) and the overall accuracy (OA) were used to evaluate the performance
of the models. The results showed that Random Forest performs superior in lake
extraction (KAPPA = 0.98, overall accuracy = 0.99), followed by Classification
and Regression Trees and Support Vector Machine. normalized difference water
index is the relatively important feature variable in both RF and CART. Before the
outburst event, the area change of the Salt Lake was consistent with the variation
in precipitation; after that, it showed a remarkable area increase (circa 350%) in all
orientations, and the main direction was the southeast. Without the construction
of the emergency drainage channel, the simulation result indicated that the earliest
and latest times of the Salt Lake overflow event are predicted to occur in 2020 and
2031, respectively. The results of this paper not only demonstrate that RF is more
suitable for water extraction and help understand the water system reorganization
event.
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1 Introduction

The evolution of lakes is essential for a better understanding of regional climate
change and anthropogenic factors (Vorosmarty et al., 2000; Subin et al., 2012; Tao et al., 2015).
Additionally, lakes are considered important sources of greenhouse gases in the atmosphere
(Wang et al., 2021). The Qinghai–Tibet Plateau (QTP), designated by scholars as the Third
Pole (Qiu, 2008; Zhang et al., 2019; Zheng et al., 2021), has a large number of lakes widely
spread over it. There are almost 1,200 lakes larger than 1 km2 on the QTP, with a total
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area of 46,201.62 km2 (Zhang et al., 2021), which is more than half
the overall lake area in China (Ma et al., 2011). Because of the lack
of direct human intervention and their predominant distribution in
endorheicwatersheds, these lakes are an important indicator of climate
change (Zhang et al., 2020), and they have been regarded as research
hotspots in studies of global surface water changes (Donchyts et al.,
2016a; Pekel et al., 2016).

Global climate change has intensified and stimulated the global
water cycle (Huntington, 2006; Huntington et al., 2018; Ficklin et al.,
2019). Surface water systems in polar regions have been affected by
these hydrological changes (Lu et al., 2021). As a region sensitive
to global warming, the QTP (the Third Pole) warmed faster
than other continental areas between 1970 and 2018, with a
warming rate of 0.36°C/decade in contrast to the global average of
0.19°C/decade (Zhang et al., 2021).The hydrological characteristics in
the region have experienced significant changes due to the warmer
climate (Chen et al., 2015). Noticeable degradation of permafrost and
accelerated glacier retreat has not only influenced the security of the
local infrastructure but also provided ample water for glacial lakes,
causing them to rupture to form glacial lake outburst floods (GLOFs)
(Yao T. et al., 2012; Ran et al., 2018; Shean et al., 2020; Veh et al., 2020;
Yin et al., 2021). The imbalance between liquid (lakes and rivers)
and solid (snow and glaciers) water has augmented since the 1980s,
together with glacier retreat, lake water gain, and increasing runoff
(Yao et al., 2022). Changes in hydrology and geomorphology caused
by this imbalance affect drainage pattern reorganization and trigger
the endorheic-exorheic transition, threatening the ecosystem and
infrastructures (Milner et al., 2017; Liu et al., 2021). For example, In
mid-September 2011, the Zonag Lake in the Hoh Xil region burst,
causing a large amount of lake water to overflow, resulting in a sharp
reduction in the area of theZonag Lake, accompanied by the formation
of permafrost in the following years (Liu et al., 2016; Liu W. et al.,
2019; Zhang et al., 2022). A large amount of lake water flowed into
the Kusai Lake, causing its water to flow into the Haiding Nor Lake
(Yao X. et al., 2012). The flood waters eventually flowed into the Salt
Lake, accelerating permafrost degradation (Wu and Niu, 2013). The
Salt Lake is predicted to overflow by 2026 based on data from 2014
to 2015 (Yao et al., 2018). The possibility of the Salt Lake overflowing
needs to be reassessed because of its faster area growth in subsequent
years. The expanded Salt Lake is less than 10 km from China’s key
infrastructure, like the Qinghai-Tibet Highway and Railway (Lu et al.,
2020), a latent outburst of the Salt Lake may cause destructive floods
and further destroy these two engineering structures that link Tibet
and Qinghai Province (Yao et al., 2018). Therefore, it is crucial to
analyze the spatiotemporal trends of the Salt Lake and evaluate the
risk of lake water overflow.

The extraction of water bodies based on remote sensing
technology first appeared 40 years ago (Work and Gilmer, 1976).
Since then, the methods used to detect and extract surface water from
space have expanded dramatically (Huang et al., 2018; Zhang et al.,
2018; Zhang et al., 2020). The basis of extracting surface water from
multispectral (satellite) imagery is the distinct lower reflectance
of water in infrared channels because of its strong absorption
compared to other land cover types. Hence, single-band methods
based on infrared channels were initially used to derive a water map
(Rundquist et al., 1987; Frazier and Page, 2000). Nevertheless, these
kinds of methods may cause classification errors in topographically
complex environments. Afterwards, multi-band methods such as

water indices were widely developed, based on the calculation of
two or more bands, to distinguish between water and non-water
areas (Huang et al., 2018). Normalized difference vegetation index
(NDVI), which is calculated from the red band (R) and near-
infrared band (NIR) to improve water features, has been used to
delineate the extent of water bodies in studies (Townshend and Justice,
1986; Domenikiotis et al., 2003). While NDVI is actually a vegetation
index, it can only infer water’s existence through identifying above-
ground biomass but does not present direct information about water
(McFeeters, 1996). To rectify this problem, normalized difference
water index (NDWI) was introduced to preferably highlight water
bodies considering its high and low values of spectral reflectance
for the green band (G) and the NIR band (McFeeters, 1996).
However, theNDWI cannot efficiently delineate water bodies in urban
areas. Hanqiu Xu (Xu, 2006) found that the reflectance of water
in the Short-wave Infrared (SWIR) band is lower than that in the
NIR band and substituted the SWIR band for the NIR band and
proposed the modified NDWI index (MNDWI). One disadvantage
to MNDWI is that it cannot distinguish between water and snow
because the reflectance of snow in all visible and infrared channels
is generally higher than that of water (Huang et al., 2018). In general,
NDWI and MNDWI are widely used for water extraction, but many
researchers have tried to develop new spectral indices to better
monitor surface water, such as NDWI3 (Ouma and Tateishi, 2006),
Automated Water Extraction Index (AWEI) (Feyisa et al., 2014),
Water Index (WI 2015) (Fisher, 2016), and so on. Although the effect
of water extraction has improved, all of these spectral indices face the
threshold selection problem (Huang et al., 2018; Zhang et al., 2018).
When using NDWI and MNDWI indices to extract water bodies, the
threshold is usually greater than 0. However, static threshold values
may lead to misclassification of surface water boundaries because
the threshold values usually change with satellite sensor view angle,
atmospheric conditions, topography, and image acquisition quality
(Jain et al., 2005; Ji et al., 2009). It is challenging and time-consuming
when thresholding either the planetary-scale analysis that covers a
considerable amount of water bodies or a time series of images that
include the same water body.

In recent decades, machine learning (ML) algorithms have
become a prevalent method of solving hydrological problems
recognized in previous research (Shen et al., 2018; Bijeesh and
Narasimhamurthy, 2020; Yang et al., 2022). These ML methods
include K-means clustering (Lu and Weng, 2007), Iterative Self-
Organizing Data Analysis Technique (ISODATA) (Zhang et al.,
2017), Maximum Likelihood Classification (MLC) (Frazier and
Page, 2000; Manaf et al., 2016), Support Vector Machine (SVM)
(Rokni et al., 2015; Paul et al., 2018; Liu et al., 2020), Artificial Neural
Network (ANN) (Isikdogan et al., 2020), Tree-based classification
(Donchyts et al., 2016b; Wang et al., 2018; Li and Niu, 2022), and
so on. Several studies have demonstrated that Classification and
Regression Trees (CART), Random Forest (RF), and SVM have
performed well in surface water extraction (Huang et al., 2015;
Donchyts et al., 2016b; Liu et al., 2020). For example, Donchyts et al.
(2016b) used CART to remove the mountain shadows and snow/ice
to refine the surface water map. Wang et al. (2018) analyzed the long-
term dynamic changes of surface water based on RF in the middle
Yangtze River Basin. Liu et al. (2020) designed a river water mapping
algorithm based on SVM, which can quantify the uncertainties of its
result.
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In this paper, three advanced machine learning methods, namely
CART, RF, and SVM,were applied to construct themonitoringmodels
for the Salt Lake using remote sensing data in the Hoh Xil Region. We
prepared separate training and testing sets for the construction of the
models. Models were trained using randomly and repeatedly sampled
training set, while accuracy evaluation used a testing set. Models were
compared by accuracy evaluation metrics, and the most stable and
reliable model was selected to generate water maps for the Salt Lake.
Then, the spatiotemporal variations and the overflow risk for the Salt
Lake were analyzed. Here, the main objectives of this paper are: (1)
to develop an appropriate model for delineating water bodies; (2) to
quantify the contributions of the feature variables to the extraction of
lakes using ML methods; (3) to analyze the spatiotemporal variations
of the Salt Lake from 1973 to 2021; (4) to judge the risk of the Salt Lake
water overflow and simulate its scenario.

2 Materials and methods

2.1 Study area

The Salt Lake is located in Zhidoi County, Qinghai Province.
It lies in the northeastern section of the Hoh Xil National Nature
Reserve in the hinterland of QTP (Figure 1). The Hoh Xil region,
recorded on theWorld Heritage Sites, is noted by an average elevation
of about 4,600 m above sea level (Lu et al., 2020). The Salt Lake
originates from the Tertiary continental down-faulted basin among
the Kunlun Mountains, surrounded by monadnocks comprised of
Tertiary-Pliocene continental strata (Yao et al., 2018).The topographic
features vary remarkably within the drainage basin, characterized
by high terrain in the west and low terrain in the east. An alpine
semi-arid continental climate dominates the lake region with a mean
annual air temperature and precipitation of -4.72°C and 320.42 mm,
respectively (Liu W. et al., 2019). Alpine meadow, alpine steppe, and
alpine desert comprise this region’s three major types of vegetation.
Permafrost and periglacial landforms are broadly developed around
this neighborhood.

The Salt Lake was primarily supplied by seasonal rivers. Until
September 2011, the Salt Lake’s water volume remained stable. There
are three lakes northwest of the Salt Lake: Haiding Nor, Kusai Lake,
and Zonag Lake (Figure 1), which belonged to typical endorheic
lakes before the outburst of the Zonag Lake in September 2011
(Liu et al., 2016). The Zonag Lake is mainly supplied by glacial melt
water through the Zonag River. The Kusai River is the main water
source of the Kusai Lake. The Haiding Nor is fed by the surface
runoff and intermittent stream. After the outburst, the lake water
flowed eastward successively through the Kusai Lake and the Haiding
Nor. Finally, it flooded into the Salt Lake, resulting in the hydraulic
connection of the four lakes with newly-formed channels. The Salt
Lake has experienced rapid expansion since 2011. Figure 2 shows the
considerable growth of the Salt Lake area from 9 November 2011
to 11 November 2012 through the Landsat seven imageries, severely
threatening the engineering constructions.

2.2 Data preparation

2.2.1 Lake inventory dataset
As one of the most eminent satellite series, Landsat has been

observing the Earth for 50 years since 1972, which provides medium-
resolution images for scientific research (Wulder et al., 2022). The
Landsat eight is one of the newest Landsat satellites, and its data has
been widely used for surface water detection (Donchyts et al., 2016a;
Pekel et al., 2016; Albarqouni et al., 2022). Herein, the Landsat eight
satellite imagery was used to obtain lake occurrences for machine
learning modeling via visual interpretation. As a planetary-scale
platform for geospatial analysis, Google Earth Engine (GEE) collects
a large amount of remote sensing data and powerful algorithms
(Gorelick et al., 2017) and was used for the preprocessing of Landsat
eight satellite images in this research. Additionally, we specially
prepared separate training data and testing data from different periods
and regions to effectively evaluate the machine model’s ability to resist
overfitting. We selected the subset of the Inner Tibetan Plateau (Inner
E), where the Salt Lake is located, as the sampling location for training

FIGURE 1
The spatial distribution of the Zonag Lake and the Salt Lake drainage basin.
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FIGURE 2
The variation of the Salt Lake (yellow box) as observed via the Landsat 7 images.

data. A detailed description of the area can be found in this paper
(Wan et al., 2016). We obtained images with a cloud cover percentage
of less than 5% in September and October in the Inner E from 2013
to 2021 and calculated the mean value of the images. Afterwards,
the lakes were manually delineated and converted into sample points
using the algorithm of GEE. Finally, the total number of lake points
was 101,045. Likewise, we collected 124,580 non-lake points. For the
testing data, the images from July to November 2020 in the central
Tibetan Plateau were acquired for mosaicing, and then 537 lake points
and 674 non-lake points were visually interpreted.

2.2.2 Feature variables
The feature variables are crucial for the training of machine

learning models. The variables were selected considering the water
characteristics and data availability. Image bands, water indices, and
topographic variables were finally chosen, referring to the information
in the existing literature (McFeeters, 1996; Frazier and Page, 2000;

Ouma and Tateishi, 2006; Xu, 2006; Feyisa et al., 2014; Yin et al.,
2021). A total of 13 feature variables were selected for surface water
extraction—-namely, the blue band (B), G, R, NIR, SWIR1, SWIR2,
NDWI, NDWI3, MNDWI, AWEIsh, AWEInsh, Slope, and Aspect. For
quick reference, Table 1 lists the water indices mentioned above.
Note that Blue, Green, NIR, SWIR1, and SWIR2 represent top-
of-atmosphere reflectance for corresponding Landsat eight bands.
In this paper, the Landsat five and Landsat eight images from
1986 to 2021 (except 2011 and 2012) were acquired based on the
principle of low cloud cover, and the water indices were calculated
through GEE. All satellite images used in the study are listed in
Supplementary Table S1. Without suitable data from the satellites
mentioned above, we downloaded data from satellite seven in 2011
and 2012 via the United States Geological Survey (USGS, https://
earthexplorer.usgs.gov/, accessed on 3 October 2021), whose imagery
was partially missing due to the Scan Line Corrector (SLC) failure.
Afterwards, the partial images were interpolated locally to obtain
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TABLE 1 Water indexmethods using Landsat OLI data.

No Index Equation Source

1 NDWI (Green—NIR)/(Green + NIR) McFeeters (1996)

2 NDWI3 (SWIR1—NIR)/(SWIR1 + NIR) Ouma and Tateishi (2006)

3 MNDWI (Green—SWIR1)/(Green + SWIR1) Xu (2006)

4 AWEIsh Blue +2.5 × Green—1.5 × (NIR + SWIR1)—0.25 × SWIR2 Feyisa et al. (2014)

5 AWEInsh 4 × (Green—SWIR1)—0.25 × NIR +2.75 × SWIR2 Feyisa et al. (2014)

the complete images, and the lake vector polygons were delineated
through visual interpretation. In addition, we downloaded the earliest
imagery covering the Salt Lake (acquired in 1973) from the USGS
website and visually interpreted it. The Shuttle Radar Topography
Mission (SRTM) data was employed to calculate topographic variables
(i.e., Slope and Aspect).

2.3 Methods

In this study, we used three machine learning models–exactly
CART, RF, and SVM–to extract water. Lake volume and the likelihood
of lake water overflow were calculated using the SRTM data. The
flowchart for thewater extraction and analysis is presented inFigure 3.
The main steps are described as follows.

1) Firstly, we constructed a lake inventory using GEE. This inventory
included separate training and testing data. Five strata were
introduced for better separation of lake samples from non-lake
samples (i.e., cloud, glacier, shadow, land, snow). Regarding feature
selection, SRTM DEM and satellite images were prepared to
construct 13 feature variables. Then, Pearson’s correlation (r) was
employed to assess the correlations between these variables.

2) Secondly, the training and testing data were created according to
a binary variable, where one and 0 represent the lake point and
non-lake point, respectively. The training data was first shuffled
and then randomly sampled at a percentage ratio of 10%. The
testing data was used to measure the performance of the three
models. The models were run 100 times with different sample
combinations using CART, RF, and SVM, and each time, the
training samples were split randomly with a ratio of 10%. After the
models were trained, accuracy evaluation and model comparison
was performed using KAPPA and OA.

3) Thirdly, after the model capabilities were compared, evaluation
metrics for the three models were calculated, the relative
importance of the feature variables for the tree-based models was
obtained, and the best performing model was used to extract the
water body extent.

4) Finally, we conducted a spatiotemporal analysis of the Salt Lake to
assess its changes from 1973 to 2021. Climate characteristics were
analyzed using temperature and precipitation data. In addition, the
watershed in the basin where the Salt Lake is located was derived
through hydrology analysis. The maximum boundary of the Salt
Lake was simulated by iterating DEMuntil its water overflowed the
watershed. The overflow potential of the Salt Lake was assessed by
calculating the increment of the water volume.

CART, RF, and SVMwere employed for lake extraction by relating the
lake inventory dataset to feature variables. All the machine learning
algorithms were implemented using the cloud-based platform–GEE.
Hydrology analysis of the Salt Lake was performed via the geographic
information system (GIS) software. Detailed depictions of the three
machine learning models and hydrology analysis are presented as
follows.

2.3.1 Classification and regression trees
CART belongs to a kind of Decision Trees (DTs) algorithm, which

was first proposed by Breiman et al. (1984). CART is a supervised
classification algorithmwhose input data can be continuous or discrete
variables. Unlike other decision tree algorithms (i.e., ID3, C4.5), CART
can handle both classification and regression tasks (Quinlan, 1986;
Salzberg, 1994). In the classification problem, a simple decision rule
is learned from features in the data to develop a model that predicts
the target variable. Compared to other machine learning techniques,
the principle of CART is simple to understand, and its decision tree
can be visualized. In addition, the input data for CART requires little
data preparation, such as normalization, blank values removal, and
dummy variables creation. In the process of dealing with classification
problems, CART can also yield the importance of each input variable
by the Gini index.

2.3.2 Random forest
RF is an ensemble learning approach that aggregates a large

number of CART decision trees to generate a single model with a
more accurate prediction (Breiman, 2001). RF has been a widely used
model in both classification and regression tasks (Belgiu and Drăguţ,
2016). When handling classification tasks, these CART decision trees
are generated based on different subsets of the training dataset,
which contain randomly selected features and samples (i.e., bootstrap
sample with replacement) (Yin et al., 2021). After RF is established,
samples are first evaluated individually by each decision tree in the
model and then determined by the majority of those decision trees.
As a frequently used bagging model, RF is resistant to overfitting
by combining ensemble learning and bootstrap sample (Guan et al.,
2013). Like the decision tree algorithm, RF can also generate the
importance of each feature variable by the Information Gain (IG),
Information Gain Ratio (IGR), or Gini index when dealing with
classification problems.

2.3.3 Support vector machine
SVM is one of the supervised learning methods widely used for

classification and regression tasks (Cortes and Vapnik, 1995; Vapnik,
1999). The optimal classification hyperplane and the kernel function
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FIGURE 3
Flowchart of the proposed methodology for water extraction in this work.

are the two central principles of SVM (Yao et al., 2008). Optimizing
the classification hyperplane aims to correctly differentiate between
the positive and negative samples while maximizing the classification
margin. The role of the kernel function is to transform the initially
non-separable data into linearly separable data in a higher dimensional
feature space. During the training process, SVM can ignore outliers
and focus on the maximum margin by adjusting the regularization
parameter (Sarp and Ozcelik, 2017). Additionally, SVM can also
effectively handle datasets with more features than samples.

2.3.4 Lake water volume calculation
In order to assess the risk of Salt Lake water overflow, the SRTM

DEM was employed to construct equations between the area and
the volume. In the calculation formula, ΔV represents the change of
lakewater volume in two periods, A1 and A2 represent the area of the

lake in different periods, respectively, with lake areaA1 and levelH1 for
the previous period and lake area A2 and level H2 for the later period.
Thismethod has been frequently used in estimating lake water volume
(Liu et al., 2021; Lu et al., 2021).

ΔV = 1
3
(A1 +A2 +√A1 ×A2)× (H2 −H1) (1)

2.4 Factor importance

Factor importance refers to the relative importance of each
feature variable, indicating the role of each variable in the modeling
process. Measuring the relative importance of each factor is crucial
to understand the modeling process. RF can be utilized to assess the
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relative importance of each feature variable (Yin et al., 2021), as can
CART. In this paper, the relative importance of factors was obtained
according to 100 rounds of RF andCARToutput results, accumulating
the normalized results of factor importance for the modeling in each
round.

2.5 Model performance and accuracy
assessment

The performance of the three models was evaluated through 100
rounds of accuracy evaluation results. In this study, the extraction of
the Salt Lake based on machine learning models is a classification
problem with binary results of the presence and absence of lake pixels.
In classification problems, a confusion matrix, which combines the
actual class of the sample and the model’s predicted class, is obtained
to compute evaluationmetrics such as commission error and omission
error (Liu et al., 2020). In this paper, the Kappa coefficient (KAPPA)
and the overall accuracy (OA), derived from the confusion matrix,
were mainly considered indicators to measure the overall model
performance (Warrens and Pratiwi, 2016; Liu et al., 2020).

3 Results

3.1 Evaluation of the models

According to the accuracy evaluation results in Figure 4, the RF
model had the best outcome in terms of KAPPA and OA, followed
by CART and SVM. The mean KAPPA for the 100-round RF model
was 0.9876, and the mean OA was 0.9939. The higher values of the
two evaluation indicators mean the better accuracy of the model.
As shown in Figure 4, the values of the evaluation indicators of the
three models were all higher than 0.85, indicating that these models

had good performance in water extraction. The distribution of the
two evaluation indicators for the RF model was very concentrated,
which proved that it was very stable in 100 rounds of modeling.
Although the results of the two evaluation indicators showed good
accuracy for the CART model, the distribution of the results was not
concentrated, indicating that it was not as stable as the RF model. The
SVM model had relatively low accuracy and its accuracy distribution
approximated a normal distribution. After the comprehensive
evaluation, the RF model was selected for the extraction of the
Salt Lake.

3.2 Factor contribution analysis

In this paper, the Pearson correlation coefficient was calculated
between the feature variables to check the multicollinearity of the
data (Figure 5). The result shows that there was strong collinearity
between the feature variables (absolute value greater than 0.7). For
example, NDWI and MNDWI, which are widely employed in water
body extraction, had a correlation coefficient value of 0.84, indicating
that these two water indices could be used as substitutes for each
other.

In the factor contribution analysis experiment, if there are strongly
correlated feature variables, any one of themcan be used as an excellent
feature to participate in the construction of the model. Once one
of these correlated feature variables is selected, the mean decrease
impurity is occupied by this variable, resulting in the reduction of the
importance of other feature variables. In order to solve this problem,
we randomly sampled the training dataset to set up the machine
learning models. In addition, we also accumulated the results of the
machine learning models for 100 experiments because the results of
a single experiment cannot indicate whether the experimental results
are reliable. According to the relative importance analysis results in
Figure 6, NDWI was considered the most important feature variable

FIGURE 4
Evaluation metrics regarding the performances of different models.
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FIGURE 5
Pearson’s correlations between feature variables.

FIGURE 6
The relative importance of each feature variable from RF and CART.

in the lake extraction by RF andCARTmodels, while AWEInsh seemed
to be the least important feature variable.

3.3 Spatiotemporal variations of the Salt
Lake

The long-term evolution of the Salt Lake between 1973 and 2021
is shown in Figure 7. During the period 1973–1987, the Salt Lake area
showed an enormous 53% reduction, from 41.09 in 1973 to 19.30 km2

in 1987. Until 1989, the Salt Lake area went back to its previous size.
Between 1989 and 1995, the Salt Lake area declined in a linear fashion,

almost to its area value in 1989. Slow growth in the Salt Lake area
occurred from 1995 to 2010. After the outburst of the Zonag Lake in
September 2011, the Salt Lake area reached 73.32 km2 in November
2011, showing a 57% area increase compared to the 46.54 km2 of the
Salt Lake area inNovember 2010. From2010 to 2019, the Salt Lake area
experienced a dramatic expansion, then a steady increase, and finally
a rapid expansion, and eventually, it reached a maximum area value of
209.43 km2 in 2019, showing an astonishing 350% area increase. The
most recent 3 years (2019–2021) were relatively stable periods with a
slight decline, possibly due to the construction of the artificial drainage
channel.

Temperature and precipitation data from the nearest China
meteorological station (Wudaoliang) to the Salt Lake are shown in
Figure 8. Temperature observations from 1980 to 2017 revealed a
warming rate of 0.05°C/a (p <0.05), with annual average temperatures
almost always higher than the multi-year average temperature since
1998 (Figure 8A). Precipitation also showed an overall increasing
trend (p <0.05), especially after 1996 (Figure 8B). After the collapse
of the Zonag Lake (circa 2011), the Salt Lake, as a tailwater lake, was
heavily recharged by the upstream lakes. Therefore, the response of
the Salt Lake to climate was mainly focused on the period from 1986
to 2010. Overall, the fluctuation of precipitation matched the change
in the Salt Lake area well, compared with the temperature (Figure 9).
For example, high precipitation in 1989 and 2008–2010 was associated
with high lake areas, whereas low precipitation from 1990 to 1995
coincided with small lake areas. Pearson’s correlation analysis was
conducted between the lake area variable and the precipitation variable
from 1986 to 2010. A correlation coefficient value of 0.603 (p <0.01)
indicated a significant correlation between the variables.

Maps of the Salt Lake in 1973 and 2010 were selected as reference
data before and after the Zonag Lake outburst, and the area changes of
Salt Lake in different directions were analyzed based on the geometric
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FIGURE 7
Changes in the Salt Lake area from 1973 to 2021.

FIGURE 8
Climate variations from 1980 to 2017: (A) time series of annual average temperature change and (B) time series of annual precipitation change.

center of these reference maps (Figure 10). From 1973 to 2010,
the Salt Lake area increased from 41.09 km2 to 46.54 km2, and the
main directions of area expansion were the east, south, north, and
northwest, but the area growth did not exceed 1 km2. Between 2010
and 2012, the Salt Lake, affected by the lake overflow, expanded in
all directions by more than 5 km2, of which the main expansion
directionwas the southeast, and the expansion area reached 17.80 km2,
followed by the southwest, west, and south, with an expansion area
of all more than 10 km2. During the period from 2012 to 2019, the
Salt Lake area reached a maximum value of 209.43 km2 and expanded
in all directions, with the main orientations including southeast,

south, and west. In the last 2 years (2019–2021), the area of the Salt
Lake decreased slightly in all directions, with an area of no more
than 1 km2.

3.4 Scenario of water overflow from the Salt
Lake

Theoverflow condition of the Salt Lake is that its boundary crosses
the watershed between the Salt Lake and Qingshui Lake, which can
be simulated through the iteration of the lake water level. The water
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FIGURE 9
Changes in lake area and climate fluctuations from 1986 to 2010: (A) lake area, (B) precipitation and (C) temperature.

FIGURE 10
Changes in different directions of the Salt Lake before (A) and after (B) the outburst of the Zonag Lake.

level corresponding to the inundation area was calculated as the mean
value of the SRTM DEM grids intersecting the lake shoreline. To
minimize the uncertainty of SRTMDEM, three times the Normalized
Median Absolute Deviation (NMAD) was employed to filter out
outliers (Höhle and Höhle, 2009; Leys et al., 2013). Figure 11 shows
the maximum expansion area of the Salt Lake when it meets the
overflow condition.The area and elevation of the overflowed Salt Lake-
simulated were 220.09 km2 and 4,471.42 m, respectively. According to
the lake area time series inFigure 7, the lake area changes from2012 to

2019 were selected to assess the risk of Salt Lake water overflow. In the
case of slow growth in the area of the Salt Lake (from 2012 to 2016), the
water level continued to rise at a vertical rate of 0.84 m/a (0.12 billion
m3/a), and the water level is predicted to reach its watershed overflow
elevation of 4,471.4 m by 2031 (assuming the 0.12 billion m3/a rate
keeps the same). From 2016 to 2019, the water level of the Salt Lake
rose rapidly at a rate of 2.96 m/a (0.54 billion m3/a), and the Salt Lake
is projected to reach its maximumwater capacity in 2020. Fortunately,
the emergency drainage channel between the Salt Lake and Qingshui
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FIGURE 11
The maximum expansion area of the Salt Lake before overflow.

Lake was completed in 2019 (Figure 11) (Lu et al., 2021). Since then,
this artificial channel has been connected with the tributary of the
Yangtze River, resulting in the endorheic-exorheic transition of the Salt
Lake catchment.

4 Discussion

4.1 Comparison between the machine
learning methods

The three applied methods, CART, RF, and SVM, are very popular
machine learning methods in the field of earth sciences (Huang et al.,
2015; Donchyts et al., 2016b; Liu et al., 2020). In this paper, the
results showed that tree-based algorithms, especially the RF model,
outperformed the SVM model in terms of KAPPA and OA, and the
excellent capability of the RF model has been facilitated by other
studies (Huang et al., 2015; Belgiu and Drăguţ, 2016). Compared with
the SVM model, tree-based models (i.e., CART and RF) can directly
output the importance order of feature variables, which can help
researchers explore the relationship between feature variables and
target variables. The difference between SVM and tree-based models
is mainly the basic framework. SVM is developed from statistical
learning theory, with structural risk minimization as its principle
(Chapelle et al., 1999). SVM is appropriate for image classification
with a small number of training samples and a high-dimensional
feature space (Melgani and Bruzzone, 2004). Tree-based algorithms,
one of the most frequently used supervised classification methods
(Rokach and Maimon, 2005; Belgiu and Drăguţ, 2016), have multiple
interior nodes and leaf nodes, representing the feature and target
variables, respectively (Huang et al., 2015).

In this study, both the CART algorithm andRF algorithmhad high
accuracy andoutput the importance ranking of feature variables.There
are two differences between the two algorithms: one is that the results
of the RF algorithmweremore robust, and the other is that the relative
importance results of the RF algorithm were more reasonable without
the bias of feature variables. This is because the RF method is based

on the idea of ensemble learning, integrates multiple decision trees to
construct a model, and has two aspects of randomness. In comparison
to a single decision tree, it can improve prediction accuracy (Ho,
1998). Taking multiple aspects of the model into consideration, RF is
recommended for the extraction of lakes in the Hoh Xil region.

4.2 Implications of the endorheic-exorheic
transition

Since the lake outburst event in 2011, the four lakes (i.e., the
Salt Lake, Haiding Nor, Kusai Lake, and Zonag Lake) have been
hydrologically connected with newly-formed channels (Liu W. et al.,
2019). Although these reorganization events occurred in the endorheic
basins, the results showed that the significant increase in the Salt
Lake water volume could overflow to the adjacent exorheic basin,
seriously threatening the engineering construction. In the worst-case
scenario, the outburst flood from Salt Lake can destroy engineering
infrastructure within 6 hours (Liu et al., 2021). In the end, to reduce
the impact of the potential Salt Lake outburst, the local government
constructed a drainage channel to divert the lake water into the
Qingshui River, which also led to the endorheic-exorheic transition
(Lu et al., 2021).

The construction of the emergency drainage channel can reduce
the potential damage of an outburst flood, and the impact of the
endorheic-exorheic transition requires special attention. The highly
mineralized lake water is continuously discharged into the Qingshui
River, which not only influences the stability of the permafrost
around the water system but also impacts the northernmost source
of the Yangtze River water quality (Liu M. et al., 2019; Liu et al., 2021;
Lu et al., 2021). In addition, studies have shown that the total area
of lakes on the Inner Tibetan Plateau will continue to expand from
2016 to 2035 (Yang et al., 2018; Zhang et al., 2020). Therefore, it is
indispensable tomonitor whether the drainage of the artificial channel
is sufficient to cope with the large amount of water from the Salt Lake.
Further, it is necessary to consider whether there are similar cases in
other basins.
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4.3 Limitations and future works

In this work, three machine learning models were implemented
1,000 times to compare performance using different subsets of the
training dataset. Finally, the best performing random forestmodel was
trained using 70% of the entire training data and applied to the long-
term lake extraction. The current research also has some limitations.
Our study area is located on the QTP, where there is less human
activity. For this reason, the training samples were selected on the
QTP, and themachine learningmodelwas trained using these samples.
Therefore, the results of the relative importance of features may not be
suitable for lakes in urban areas.

TheQTP is distributed in numerous lakes, which are an important
part of the Asian Water Tower (Zhang et al., 2021; Yao et al., 2022).
These lakes are subject to little human intervention and respond
exceptionally quickly to climate change (Zhang et al., 2020). Abnormal
climate events such as El Niño and La Niña significantly impact the
global climate. However, the response of lakes on theQTP to abnormal
climate events is less involved (Lei et al., 2019). In addition, water
system reorganization events are expected to increase by 20 from 2019
to 2030 (Liu et al., 2021), and these accelerated evolutions and impacts
should be continuously monitored and confirmed in future work.
Currently, research on lake area changes on the QTP mainly focuses
on inter-annual changes (Zhang et al., 2020; 2021). With the launch
of remote sensing satellites in the future, the intra-annual variations of
the lake should be studied to understand its response to climate change
better.

5 Conclusion

In this study, we used machine learning models to extract the Salt
Lake area in the Hoh Xil region. Meanwhile, based on the long-term
lake area data, we analyzed its response to meteorological data and
simulated the Salt Lake water overflow scenario. The conclusions are
as follows.

1) This study usedKAPPA andOA to evaluatemodel performance and
found out that RF is the best performing model compared to CART
and SVM.Themean accuracy of KAPPA and OA for the 100-round
RF model were 0.9876 and 0.9939, respectively.

2) Therewas a strong correlation betweenmost water indices.Through
the factor contribution analysis, it was found that NDWI was the
most important feature selected by RF and CART for the area
extraction of the Salt Lake.

3) Before the Zonag Lake outburst, the area change of the Salt Lakewas
consistent with the variation of precipitation, and the correlation
coefficient value reached 0.603. After that, the area of the Salt
Lake expanded at an alarming rate in all orientations, and the
primary expansion directions were southeast, west, southwest, and
south.

4) The area of the overflowed Salt Lake-simulated was 220.09 km2.The
simulation result indicated that the earliest and latest times for the
Salt Lake to overflow were 2020 and 2031, respectively.

The results of this paper improve the understanding of the impact
of water system reorganization on downstream lakes. Continued
research in this region is required due to the endorheic-exorheic

transition in the future. In addition, the intra-annual variation of the
Salt Lake needs to be considered, and the reasons for the variation
need to be quantitatively analyzed. Herein, we suggest that other areas
of the QTP with water system reorganization need to be studied to
gain a better understanding and reduce the disasters caused by lake
outbursts.
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