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Previous studies propose that there is a mantle upwelling that generated the

Cenozoic basalts inChangbaishan. However, thedominant source andmechanism

of the mantle upwelling remains highly debated. Here we apply machine learning

algorithms of Random Forest and Deep Neural Network to train models using

global island arc and ocean island basalts data. The trained models predict that

Changbaishan basalts are highly influenced by slab-derived fluid. More importantly,

the fluid effect decreases with no (87Sr/86Sr)0 and εNd(t) changes between 5Ma and

1Ma, then enhances with increasing εNd(t) and decreasing (87Sr/86Sr)0 after 1 Ma. We

propose that a gap opened at about 5Ma and the hot sub-slab oceanic

asthenosphere rose through the gap after 1 Ma, generating the basalts enriched

in fluid mobile elements and with the addition of depleted mantle component

derived from the sub-slab oceanic asthenosphere.
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Introduction

In Northeast China, the late Cenozoic intraplate volcanic basalts are widely

distributed. The Changbaishan (CBS) volcanic region, about 1300 km west of the

Japan Trench and located on the border between China and North Korea, is the

largest active magmatic center in Northeast China and covers an area of ca.

12,000 km2 (Figure 1B). It mainly consists of CBS, Wangtian’e and Namphothe

volcanoes. The start of volcanic activities in the CBS area occurred approximately in

Miocene period and with several eruptions during the past 2,000 years including one of

the largest recorded eruptions worldwide which occurred in approximately 946 AD and is

called “Millennium Eruption” (Wei et al., 2003; Wei et al., 2013; Liu et al., 2015a). Seismic

tomography images that the Pacific Plate penetrates the mantle at the Japan Trench

(Figure 1A) and stagnates in the mantle transition zone (MTZ; Figure 1C) beneath

Northeast China (Huang and Zhao, 2006; Fukao et al., 2009; Zhao et al., 2009; Obayashi

et al., 2013; Tang et al., 2014).
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Previous studies have proposed that the mantle upwelling is

the cause of the generation of Cenozoic basalts in Northeast

China (Zou et al., 2008; Zhao et al., 2009; Tang et al., 2014; Wang

et al., 2015; Tian et al., 2016). The mantle upwelling ascends to

shallow levels and results in the widely intraplate volcanism in

northeast China. However, the source and mechanism of the

mantle upwelling remains highly debated. From seismological

studies, Zhao et al. (2009), using high-resolution tomography of

the upper mantle under the CBS volcanic area, proposed that

deep dehydration of the stagnant slab leads to the upwelling,

forming the active intraplate volcanoes in Northeast China.

Recently, Tian et al. (2016) applied a receiver-function

method to study the MTZ structure beneath the CBS and

suggested that the CBS volcanoes are fed by the fluid released

from subducting slab. However, Tang et al. (2014) identified an

anomaly in the stagnant Pacific slab using seismic tomography

analysis (Figure 1C). They considered it as a gap in the stagnant

slab through which the mantle upwelling from just below the

660-km discontinuity could pass.

From the geochemical studies, there exist also great

controversies as to whether the mantle upwelling

originates from the top of the stagnant slab or the lower

mantle. For example, Kuritani et al. (2011) attributed the

high Ba/Th ratio and EM1-like (enriched mantle-1: Zindler

and Hart, 1986) signature of the volcanoes around CBS to

the involvement of stagnant slab-derived materials. The low

δ26Mg and high δ66Zn anomaly in eastern China are

suggested to reflect the addition of recycled slab materials

in the mantle sources (Liu et al., 2016a; Li et al., 2017).

Furthermore, the contribution of slab dehydration is

supported by the finding of high-water content for the

source mantle of the basalts (Kuritani et al., 2019; Di

et al., 2020). Recently, Zhao et al. (2019) found that most

Cenozoic basalts in Northeast China are influenced by the

fluid released from the stagnant slab using machine learning

method. However, some studies, such as significant 230Th

excesses in basalts from the CBS (Zou et al., 2008), argue

against melting of the mantle by the addition of fluid.

FIGURE 1
(A) Simplified geological map showing the spatial distribution of tectonic plates in East Asia. Green dashed lines indicate the Wadati-Benioff
zone, showing the depths of subducted Pacific slab (Tang et al., 2014). (B) Distributions of Cenozoic basalts (dark grey patches, the Changbaishan
volcanic filed with red shadow) and deep faults (red lines) in northeastern China after Liu et al. (2001). The dashed line indicates location of the cross-
section for (C). (C) Vertical cross-section of S-wave velocity tomography under northeast Asia, modified from Tang et al. (2014). Green dots are
deep earthquakes from 1973 to 2012. XMOB is the Xing’an Mongolia Orogenic Belt. (B) is an enlarged view of the red box in (A).
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In this study, the geochemical compositions of the CBS

basalts are analyzed in a more comprehensive way,

compared with specific traditional geochemical indicators,

to obtain a more exhaustive understanding of its genesis.

Machine learning algorithms, including Deep Neural

Network (DNN) and Random Forest (RF), which use

major and trace element compositions, are applied to

predict the degree of influence of water in the genesis of

the Cenozoic basalts in CBS volcanoes. RF and DNN

methods can detect patterns in high dimensional data and

make predictions in complex situations (Breiman, 2001;

LeCun et al., 2015). To establish the predicting models,

training data are taken from GEOROC database

(GEOROC, 2015) for global island arc basalts (IAB) and

ocean island basalts (OIB), based on the datasets in Zhao

et al. (2019). The dominant geochemical features of the IAB

and OIB data, extracted by RF and Principal Component

Analysis (PCA), indicate the opposite ways the basalts are

influenced by slab-derived fluid, with IAB enriched in fluid

mobile elements and OIB in fluid immobile elements.

Thence, the trained RF and DNN models are used to

inform how the time series Cenozoic basalts in CBS are

influenced by the slab-derived fluid during their generations.

The predicting results are further compared with the

temporal variations of strontium (Sr) and neodymium

(Nd) isotopes. All these give us information on the source

and mechanism of the mantle upwelling in generating the

Cenozoic CBS basalts.

Methods and data

Machine learning approaches

RF is a forest consisting of many decision trees (Breiman,

2001). A decision tree is a series of nodes, a directional graph that

starts at the base with a single root node and extends to many leaf

nodes that represent the class that the tree can classify. To

generate each node in the tree, the training dataset that

arrives at a node is split into two subsets based on a certain

feature from the dataset. Decisions of the tree are generated until

the tree has reached a maximum depth or the number of data

points at a node has reached a minimum size. The creation of

decisions is made on training dataset. When a new point from the

testing dataset falls on a leaf, following a path of decisions in the

trained tree, it is given the class by majority vote. A random forest

is an ensemble of decision trees given by a bootstrap resampling

of the training dataset. Bootstrap resampling (Breiman et al.,

1999) is used to reduce the variance of a decision tree. The idea is

to create several subsets of data from training dataset chosen

randomly with replacement. To build a node, the set of features is

also chosen randomly. In a classification problem, each tree votes

and the most popular class is chosen as the last result. A simple

description of the random forest training procedure is

summarized in the following: 1) data pre-processing; 2) at the

current node, randomly select a subset of features form the

available features. The number of selected features is usually

much smaller than the total number of available features; 3)

compute the best split point for each tree that partitions the data

into two daughter nodes that are maximally dissimilar to each

other and reduce the number of available features from this node

on; 4) repeat steps 1 to 3 for each tree in the forest, generating the

entire tree structure; 5) vote on the output of each tree in the

forest. Hyper-parameters, including the number of trees as well

as features to consider when looking for the best split and the

minimum number of samples required to split an internal node,

are tuned by grid search based on a 10-fold cross-validation. In a

10-fold cross-validation, the original data is randomly divided

into 10 equal sized subsamples. Of the 10 sub-samples, a single

sub-samples is retained as the validation data for testing the

classification, which is trained by using the union of the

remaining nine subsamples. The cross-validation process is

then repeated 10 times, with each repetition changing the test

subsamples to obtain 10 independent estimates of the accuracy of

the discrimination approaches.

DNN inspired by the way biological neurons process

information is a network structure composed of multiple

processing layers, including one input layer, several hidden

layers, and one output layer (LeCun et al., 2015). The

connections between layers are called “weights.” During the

training of a model, the scaled input data is passed through the

constructed neural network structure and the outputs are

computed. The cross-entropy (Shore and Johnson, 1980)

method is used to compute the difference (error) between

network outputs and real targets. Then, the errors are

propagated from the output end to the input layer and the

weights of the network are adjusted to make sure that the

errors would be reduced in the next iteration. In other words,

the computed outputs become closer to the real ones. The 10-

fold cross-validation is also used to find the optimal DNN

model. In this study, rectified linear units (ReLU) activation

function for the hidden layers and softmax activation function

for output layer are used. In the process of training, we use

adaptive moment estimation (Adam) optimizer (Kingma and

Ba, 2014), which is regarded as robust to the choice of hyper-

parameters (Goodfellow et al., 2016). To prevent neural

networks from overfitting which simply means that the

trained model doesn’t generalize well from training data to

unseen data, early stopping and dropout (Srivastava et al.,

2014) techniques are applied to DNN model. When using

early stopping, we monitor testing loss and training stops

when loss is no longer falling within a few epochs. Dropout is

applied to all hidden layers with the probability of 0.1. The

weights before learning stars are initialized randomly.

PCA is a statistical procedure that is often used when initially

extracting what’s underneath the hood of your data from a high-
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dimensional space by projecting it into a lower-dimensional sub-

space. Important features in the data could be revealed in this

sub-space.

In this study, DNN and RF are used to build classification

models for predicting the CBS basalts. Compared with the

“blackbox” features of DNN, RF model is interpretable and

can give the importance of features during classification, that

is, which elements are critical in discriminating one class from

another. The importance of a feature is measured by the mean

decrease in impurity (MDI), which is the average decrease in

impurity of the data when this feature is dropped. The larger the

decrease, the more important the feature is. MDI calculates each

feature importance as the sum over the number of splits that

include the feature, proportionally to the number of samples it

splits (Louppe et al., 2013). After MDI is calculated, the

importance of individual elements for IAB and OIB can be

computed as follows:

Iij � MDI j( )∗∑Ni
m s i( )mj

Ni

with i ∈{IAB, OIB}, j an element, Ni the number of samples for

one class, and s(i)mj the value of input matrix for one class. PCA

is used for extracting geochemical features of IAB and OIB. A

consistency of the important features extracted from RF and PCA

permits a liaison of the classification with important features. The

important features are analyzed to give the geological process

that dominates the formation of the classified basalts.

RF and DNN models are trained on NVIDIA GeFore GT

730 graphics card using the open source Scikit-learn (Pedregosa

et al., 2011) and Keras (Chollet, 2015) Python module

respectively.

Training and prediction data sets

Here the basalt whole-rock compositional data from

GEOROC geochemical database in February 2019, with a total

FIGURE 2
Geological map showing the locations of IAB (blue circles) and OIB (red circles) samples used during this study. Map created with open source
PyGMT Python module (Uieda et al., 2021).

FIGURE 3
Total alkalis vs. SiO2 diagram (Middlemost, 1994) for
classification of the Cenozoic basalts in CBS volcanoes, which are
from Zhang et al. (2018) and Yu et al. (2018).

Frontiers in Earth Science frontiersin.org04

Zhao et al. 10.3389/feart.2022.1084213

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1084213


of 51,327 island arc and 43,629 ocean island rock samples, are

used to build our DNN and RF models.

Following Zhao et al. (2019), additional data pre-processing

procedures are necessary before building machine learning

models, which is to produce a suitably “clean” dataset. After

data cleaning, a total of 1,966 IAB and 1,798 OIB samples with

complete major elements (SiO2, TiO2, Al2O3, FeO
T, CaO, MgO,

MnO, K2O, Na2O, and P2O5) and selected trace elements (Rb, Sr,

Nb, Ba, La, Ce, Nd, Yb, Ta, Th, and U) are selected. The clean

datasets are the same as Zhao et al. (2019). The locations of the

selected samples are shown in Figure 2.

The Cenozoic basalts in CBS area are extracted from

Zhang et al. (2018) and Yu et al. (2018), originally 385 in

number and 79 after data pre-processing from Zhao et al.

(2019). These samples are from CBS, Wangtian’e and

Namphothe volcanoes and primarily alkaline basalts

(Figure 3). These basalts erupted in three stages based on

radiometric dating results and field observations (Liu et al.,

2015a): pre-shield stage (ca. 23–10 Ma), shield-forming stage

(ca. 5–1 Ma) and post-shield stage (ca. 1–0 Ma). The basalts

with age of 0.001 Ma are youngest among these cleaned

samples. There is currently no proper explanation for the

emergence of an eruption gap between pre-shield stage and

shield-forming stage owing to the few outcrops of pre-shield

basalts (Zhang et al., 2018). It is noteworthy that most samples

are not significantly contaminated by continental crust

(Figure 4). The continental crust is characterized by low

Nb/U ratios; however, these samples have high Nb/U

(30–100), falling primarily into the range of MORBs and

OIBs (Figure 4A). Furthermore, due to the fact that the

continental crust is enriched in Ba relative to Nb (Rudnick

and Gao, 2014), if crustal contamination had occurred, Ba/Nb

ratios would have shown a positive correlation with SiO2,

which was not observed in these samples (Figure 4B). These

samples with Nb/U < 30 or Ba/Nb > 40 may experience crustal

contamination and is excluded from our study. Finally,

69 time series samples are fed into the well-trained

machine learning models to predict the variation of fluid

activity over time.

Data standardization

Standardization of data sets is a common requirement

before the use of machine learning methods. Igneous rocks

have wide variations in trace element concentrations, which

can introduce bias and increase computational expense in the

machine learning training process. In order to correctly and

fully obtain information from high-dimensional geochemical

data, centered log ratio (CLR) transformation (Aitchison,

1986) is used before the application of RF, DNN and PCA.

Given sample S � (x1, x2, ..., xN), where xi is the percentage of
the ith element, the transformed sample can be expressed as

follows:

S∗ � ln
x1
g
, ln

x2
g
, ..., ln

xN
g

( )
where g , the geometric mean of sample, can be calculated as:

g � �����������
x1∗x2∗...∗xNN

√
The transformed compositional datasets are followed by

zero-mean normalization. RF, DNN, and PCA are then applied.

FIGURE 4
(A) Nb/U vs. Nb. (B) Ba/Nb vs. SiO2. In (A), the gray area is Nb/U of mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs) (Hofmann
et al., 1986). Data for the upper continental crust and lower continental crust is from Rudnick and Gao (2014). The arrow in (B) indicates a crustal
contamination trend.
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Results and discussion

Dominant geochemical features of the
island arc basalts and ocean island basalts
data from random forest and principal
component analysis

In Figure 5A, Nb, Ta, TiO2, K2O, Ba and Sr are the most

important classifiers used by the trained RF model to

discriminate IAB and OIB. For IAB, Figure 5B shows

positive loadings of K2O, Ba, and Sr, which are highly

fluid-mobile during subduction, and negative loadings of

Nb, Ta, and TiO2, which are fluid-immobile during

subduction (McCulloch and Gamble, 1991; Pearce and

Peate, 1995). Because our model is a binary classification,

the trend for OIB is the reverse of that for IAB. Obviously, the

dominant geochemical features of IAB and OIB are that IAB is

enriched in highly fluid-mobile elements brought by fluid released

from subducting slab and OIB is enriched in fluid-immobile

elements coming from residue components of the fluid activity.

Amachine learning model trained using IAB andOIB data can thus

tell us how the basalt has been influenced by subduction process and,

in particular, whether it is influenced by the addition of the slab-

derived fluid components.

FIGURE 5
(A,B) Feature importance extracted fromRFmethod after Zhao et al. (2019). (C)Compositional biplot of basalts from the CBS area, island arc and
ocean island according to Zhao et al. (2019). Black lines mean the PC loadings for each element. A relatively large value signifies a large contribution
of the element to the corresponding principal component. PC is principal component.
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Similar results are also observed from PCA. As shown in

Figure 5C, IAB and OIB are well distinguished in the

direction of the second principal component (PC2)

featured by large negative loadings of K2O, Ba, and Sr on

the negative side of PC2 for IAB and large positive loadings of

Nb, Ta, and TiO2 on the positive side of PC2 for OIB.

FIGURE 6
The DNNmodel accuracies and losses on training and testing sets for each epoch in the 10-fold cross-validation procedure. The accuracy and
loss reach an approximate constant for both the training and testing data.
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Therefore, IAB is hereafter labeled as “subduction fluid

enrichment” (SFE) and OIB as “no subduction fluid

enrichment” (NSFE) in the subsequent establishment of

RF and DNN models (Zhao et al., 2019).

In the direction of first principal component (PC1), high

variability of IAB, OIB, and the Cenozoic basalts in CBS is

seen, which might be the results of melting,

crystallization, and fractionation of several minerals such

as olivine, amphibole, and garnet and their complex

combinations (Brandmeier & Wörner, 2016; Zhao et al.,

2019).

Machine learning modeling

The input data are geochemical compositions of 10 oxides

and 11 trace elements of rock samples. The target output is SFE

or NSFE. Both machine learning models perform very well. We

have re-optimized the hyper-parameters on the basis of the

machine learning models of Zhao et al. (2019). For RF model,

a tree number of 22 and a feature number of four when looking

for the best split are used, and the resultant mean validation

accuracy is 94.11%. The DNN model is the same as the model

constructed in the previous study (Zhao et al., 2019). Tenfold

FIGURE 7
(A) The predictions of the RF and DNNmodels for basalts’ SFE index in the Changbaishan. (B,C)Nd and Sr isotopic compositional variations with
time for the Changbaishan basalts of 16–0 Ma ages. The increase of εNd(t) and decrease of (87Sr/86Sr)0 (initial ratio) after 1 Ma indicate amore depleted
mantle component is added to the source of the Changbaishan basalts. SFE, subduction fluid enrichment; CHUR, chondritic unfractionated
reservoir; DM, depleted mantle; BSE, bulk silicate Earth.
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cross validation (Kohavi, 1995) shows that an average accuracy of

98.33% is achieved by the DNN model (Figure 6).

In order to evaluate whether the training datasets, that

are IAB and OIB, are sufficient to obtain machine learning

models with good performance, we trained three additional

machine learning models with different sizes of training

datasets, and the number of samples for label SFE or NSFE is

500, 1,000, and 1,500. We find that the accuracy of RF and

DNN has reached 93.5% and 97.7% when the size of the

training data set is 500, while the accuracy will increase

by less than 0.5% if the sample size continues to

increase. Therefore, the current size of the training

data set (1,966 IAB and 1,798 OIB samples) is

sufficient for machine learning models with excellent

performances.

Predictions and isotopic features of the
cenozoic basalts in changbaishan

A total of 69 basalt samples with ages from 15.1 to 0.001 Ma,

divided into five age groups, are used to predict the influence of

fluid released from the stagnant Pacific slab. After the prediction

is completed, for each age group, we calculate the SFE index

which is defined as follows:

SFE index � SFE percentage − 0.5
0.5

with SFE percentage being the proportion of samples predicted

bymachine learningmodels as SFE for one age group (Zhao et al.,

2019). A positive SFE index indicates addition of slab-derived

fluid-mobile elements is dominant in basalts of one age group

and a negative SFE index indicates the influence of fluid released

from the slab is minor.

As shown in Figure 7A, predictions of the DNN and RFmodels

are highly consistent, which indicates that different machine

learning algorithms, representing different mappings from inputs

to outputs, could decipher the same geochemical characteristics of

the input data and give similar predictions. It is worth noting that the

time-varying fluid activity trends of CBS basalts, predicted by the

machine learning models trained with different sizes of training

datasets, are basically consistent. As for PCA, it is not used to classify

the Cenozoic basalts in CBS, but to extract the dominant

geochemical features of IAB and OIB. As Figure 5C shows that

most basalts in CBS are distributed on the IAB side, which is in

general agreement with machine learning models results shown in

Figure 7A. However, the temporal variation of SFE index from 5 to

1Ma is not seen in the PC2. The divergence may be that only one

dimension (PC2) is used in the PCA classification, which brings

tremendous loss of information from other dimensions compared

with the use of whole information in classifications by the RF and the

DNN. Therefore, the RF and the DNN are preferable in making

classifications.

Figure 7A shows that the CBS basalts have the positive SFE

index and are thus largely influenced by the fluid released from

the stagnant slab in the MTZ as the feature importance of the

RF and PC2 of PCA reveals (Figure 5), which is supported by

traditional seismological and geochemical observations (Zhao

et al., 2009; Kuritani et al., 2011; Choi et al., 2020; Han et al.,

2020; Li et al., 2020). From 5 to 1 Ma, the younger the basalts

were, the weaker the influence of the stagnant slab was. After

1 Ma, the influence of fluid released from stagnant slab

increased, which suggests a process provided additional

slab-derived fluid. The influence of fluid for basalts older

than 10 Ma (pre-shield stage) remained strong with a high

SFE index and the effect of slab-derived fluid basically keep

unchanged before and after the eruption gap (10–5 Ma). For

the young basalts erupted after 1 Ma, the water content of the

primary magma is estimated to be 1.2–1.8 wt% using

thermodynamic analyses and mineral melt inclusions

(Kuritani et al., 2019), which is consistent with the strong

influence of slab-derived fluid determined by machine

learning models. For the other basalts older than 1 Ma, due

to the lack of studies on the water and slab fluid of primary

magmas, the fluid activity that evolved over time could not be

inferred though traditional geochemical methods.

Plots of basalt ages against whole-rock εNd(t) and (87Sr/86Sr)0
(initial ratio) values (Figures 7B,C) show that these values are

basically unchanged for basalts from 16 to 10 Ma and 5 to 1 Ma

(pre-shield and shield-forming stages) with an average

εNd(t) = −7.9 to −12.9 and average (87Sr/86Sr)0 =

0.70504–0.70513. In contrast, basalts formed after 1 Ma have

relatively higher average εNd(t) = −3 and lower average (87Sr/
86Sr)0 = 0.70484, indicating the addition of a relatively depleted

mantle component to the source of the CBS basalts.

One possible process resulting in the addition of slab-

derived fluid is a deep mantle plume heating to the stagnant

slab in the MTZ. However, mantle tomography does not

detect the trace of a deep mantle plume rooted from the

core-mantle boundary (Zhao et al., 2009), which is

supported by low 3He/4He ratios of the CBS hydrothermal

fluids (Zhang et al., 2018) and ultramafic xenoliths (Chen

et al., 2007). Another possible process is the contribution of

oceanic asthenosphere beneath the stagnant Pacific slab.

Globally observed seismic anisotropy has inferred the

existence of asthenosphere flow parallel to the direction of

subducting lithosphere (Long and Silver, 2008; Song and

Kawakatsu, 2012). Numerical modelling and laboratory

experiments suggest that the hot entrained oceanic

asthenosphere could be transported and dragged down by

subducting lithosphere to as deep as the lower mantle (Honda

et al., 2007; Phipps Morgan et al., 2007; Morishige et al., 2010;

Liu and Zhou, 2015). The MTZ beneath Northeast China,

moreover, is particularly hydrous (Kelbert et al., 2009; Guo

and Yoshino, 2013), with as much as ~1 wt% water (Karato,

2011), which could make local melting easier. In addition, the
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presence of hydrated partial melts beneath the stagnant slab

has been confirmed by receiver functions (Liu et al., 2016b;

Wang et al., 2020) and a recent 2D numerical simulation

(Yang and Faccenda, 2020). Furthermore, the presence of a

gap in the stagnant slab beneath the CBS is investigated by

many seismic studies. Liu et al. (2015b) applied receiver

function data to probe the MTZ structure beneath

Northeast China. They found the uplift of the 660 km and

lower velocity anomaly under the CBS area. Tao et al. (2018)

performed a 3-D full waveform inversion using regional

earthquakes data. They observed a thin low-velocity

anomaly extending to the lower mantle inside the stagnant

slab near the CBS, which was also imaged by Lai et al. (2019)

using 2-D triplicated waveform modeling method. Kim et al.

(2021) derived a 3-D S-wave velocity model of the upper

mantle structure beneath East Asia using hundreds of

thousands of relative traveltime residuals and found a low-

velocity anomaly beneath CBS, which extends to the bottom of

the MTZ through a slab gap in the stagnant Pacific slab. These

results are almost identical to the structure detected by Tang

et al. (2014). Very recently, Fan et al. (2021) imaged the MTZ

structures beneath Northeast China using receiver function

with Ps scattering kernel. The results shown that the 660-km

discontinuity beneath the northwest of CBS is elevated by

5–15 km, which could be explained by the upwelling of high

temperature materials. They suggested the upwelling may tear

the stagnant slab. The uplift of 660-km discontinuity was also

imaged by Liu et al. (2015b), Tian et al. (2016), and Zhang

et al. (2016).

When there is a gap in the stagnant slab, the hot sub-

lithospheric mantle melts could rise and provide the source of

heat (Kuritani et al., 2017) to promote the release of fluid from

surrounding sediment and oceanic crust, which gives rise to the

enhancement of slab-derived fluid activity in the CBS basalts of

1–0 Ma ages (Figure 7A).

Regarding the variation of Sr-Nd isotopes, similar trend has been

proposed by Tsung-jui Wu and Wu (2019) to delimit the time of

Izanagi-Pacific ridge subduction. They examined the Sr-Nd isotopic

values data of Cretaceous to Miocene igneous rocks within the

Northeast Asian margin and found the decrease in (87Sr/86Sr)0 and

increase in εNd(t) after 56–46Ma magmatic gap. They concluded that

the asthenosphere beneath subducting slab entrained into the mantle

wedge through the slab window, created by Izanagi-Pacific ridge

subduction, leaded to the relatively depleted isotopic features in

igneous rocks after 46Ma. It is worth noting that the isotope

changes they observed are greater than in this study, which could

be due to the much larger gap caused by ridge subduction, allowing

more depleted asthenosphere to pass. It may be possible that the

depleted mantle component could also come from depleted upper

mantle beneath the continents (Basu et al., 1991; Kuritani et al., 2009).

In this case, the enhancement of fluid activitywould lead to an increase

in contribution of the depleted upper mantle. According to this causal

relationship, the weakening of fluid influence for the CBS basalts of

5–1Ma ages (Figure 7A) should result in a decrease in supplement of

the uppermantle and a corresponding decrease of depleted features in

basalts, which is contradictive to the almost constant Sr-Nd isotope

values observed in Figures 7B,C. Alternatively, the weakened influence

of fluid could be explained by the appearance of a gap within the

stagnant slab. Gradual opening of the gap caused the local absence of

the Pacific slab in the MTZ, which progressively reduced the fluid

effect until the hot oceanic asthenosphere (Licheng et al., 2012; Wang

et al., 2020; Yang and Faccenda, 2020) material rises through the gap

and the influence of slab-derived fluid becomes stronger.

Through the above discussions, we propose a new three-stage

dynamic model in generating the CBS volcanism (Figure 8). The

western Pacific Plate, dragging sub-slab asthenosphere down,

subducted in Japan Trench and became flattened in the MTZ at a

depth of 410–660 km beneath Northeast China at ca. 16 Ma (Liu

et al., 2017; Zhang et al., 2018). The dehydration of the stagnant

slab induced the wet upwelling and generated the basalts above

(Figure 8A). At ca. 5 Ma, a gap within the stagnant slab opened,

which caused partial removal of the slab and hence gradually

FIGURE 8
Schematic diagram illustrating our three-stage model for the
genesis of the CBS volcanoes. (A) From 16 to 5 Ma. The Pacific
Plate penetrates the mantle and stagnates in the mantle transition
zone beneath the CBS volcanic region. Sub-slab
asthenosphere is entrained downward. The buoyant and hydrous
upwelling, induced by the dehydration of the stagnant Western
Pacific slab, feeds the CBS volcanoes. (B) At about 5 Ma, slab
breaking occurred, which caused partial removal of the slab and
hence gradually weakened the influence of fluid. (C) From 1 Ma to
present. A gap was created in the stagnant slab. The hot sub-slab
asthenosphere melts went through the gap and heated the
surrounding sediment and oceanic crust, providing fluid-rich and
depleted mantle influx to the wet upwelling.
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weakened the influence of fluid (Figure 7A and Figure 8B). Until

ca. 1 Ma, the buoyant hot and depleted sub-slab asthenosphere

went through the gap and heated the surrounding sediment and

oceanic crust, providing fluid-rich and depleted mantle influx to

the wet upwelling, and finally generated the post-shield

volcanism (Figure 8C). The existence of the recently formed

gap may have caused the continuous recharge of mantle

trachybasalt magma to crustal magma chamber (Fan et al.,

2006) and triggered the “Millennium Eruption”.

Following the geodynamic model proposed by Tang et al.

(2014), Kuritani et al. (2017) argued that the oceanic

asthenosphere materials beneath the stagnant Pacific slab

just acted as a heat source, which made hydrous MTZ

materials buoyant, but could not be the source for the CBS

basalts because they lack the characteristics of ancient and/or

recent subducted sediment components, which are the

dominant geochemical aspects of the CBS basalts (Kuritani

et al., 2011). Here we consider that sub-slab mantle is more

likely to be part of the source components for the CBS basalts

based on the synergistic changes between fluid activity and Sr-

Nd isotopes.

Zhao and Tian (2013) proposed that large deep earthquakes

(>500 km depth, magnitude >7.0) close to the CBS could release

abundant fluids preserved in the faults within the slab to the overlying

mantle wedge. The deep-earthquake related fluidsmay cause themore

slab-derived fluid and relatively depleted basalts of 1–0Ma ages found

by the present study. According to this idea, the extra depleted

component comes from the upper mantle, which is contrary to

what we discussed above. A gap opening, however, is a more

reasonable explanation for the temporal variation of slab-derived

fluid activity and Sr-Nd isotopes.

The reasons for the slab window formation are yet

uncertain. As discussed previously, it is unlikely that there

is a deep mantle plume beneath the CBS area. Our observation

that the influence of fluid is gradually weakened favors a gap

opening in the stagnant Pacific slab. The trench retreat and

rollback of the subducting slab caused breaking in the place

where fractures or weak zones grew (Li et al., 2016; Lai et al.,

2019). According to our suggested dynamic model, the age of

the slab gap currently observed by tomography is about 5 Ma.

The width of the gap is about 150 km (Tang et al., 2014), which

is obtained from Figure 1C. Then the approximate rate for gap

opening is estimated to be 3 cm/yr, close to the trench retreat

velocity (2–5 cm/yr; Li et al., 2019; Miller et al., 2006) of the

Pacific Plate.

Limitations

Basalts usually experience melt mixing and fractional

crystallization before erupting to the Earth surface, which limits

our ability to directly investigate the composition of source magma.

In this study, rock samples are chosen with a fixed range of SiO2

content (45–52 wt%) to avoid other rock types and reflect better the

geochemical characteristics of the source magma.

Another drawback is the absence of basalts with ages from

10 to 5 Ma. As mentioned above, there is an eruption gap

between the shield-forming stage (ca. 5–1 Ma) and pre-shield

stage (ca. 23–10 Ma). We are therefore unable to collect samples

from this period. More geological research is needed to study the

gap of eruption.

Conclusion

Analyses of RF, PCA, and DNN results of global geochemical

data of IAB and OIB show that the trained RF model could be

applied to predict the degree of the basalt in the CBS area affected

by slab-derived fluid. It is shown that the CBS basalts are highly

influenced by fluid released from the stagnant slab. The effect of

the fluid progressively weakens starting from ca. 5 Ma but begins

to increase at ca. 1 Ma. After 1 Ma, the εNd(t) and (87Sr/86Sr)0
values increase and decrease respectively. Based on these

observations, it is inferred that the generation of the CBS

basalts was controlled by the dehydration of stagnant Pacific

slab and a gap within the stagnant slab opened at ca. 5 Mamaking

the partial removal of the slab and hence gradually weakening the

influence of fluid. After 1 Ma, the hot sub-slab asthenosphere

melts went through the gap and heated the surrounding sediment

and oceanic crust, providing fluid-rich and depleted mantle

components to the CBS basalts. The recently formed gap

might indicate that the CBS volcanoes have a potential risk of

eruption in the future.
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