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Rock image classification is a significant part of geological research. Compared

with traditional image classification methods, rock image classification methods

based on deep learning models have the great advantage in terms of automatic

image features extraction. However, the rock classification accuracies of existing

deep learning models are unsatisfied due to the weak feature extraction ability of

the network model. In this study, a deep residual neural network (ResNet) model

with the transfer learningmethod is proposed to establish the corresponding rock

automatic classification model for seven kinds of rock images.

ResNet34 introduces the residual structure to make it have an excellent effect

in the field of image classification, which extracts high-quality rock image features

and avoids information loss. The transfer learning method abstracts the deep

features from the shallow features, and better express the rock texture features for

classification in the case of fewer rock images. To improve the generalization of

the model, a total of 3,82,536 rock images were generated for training via image

slicing and data augmentation. The network parameters trained on the Texture

Library dataset which contains 47 types of texture images and reflect the

characteristics of rocks are used for transfer learning. This pre-trained weight is

loaded when training the ResNet34 model with the rock dataset. Then the model

parameters are fine-tuned to transfer themodel to the rock classification problem.

The experimental results show that the accuracy of the model without transfer

learning reached 88.1%, while the model using transfer learning achieved an

accuracy of 99.1%. Aiming at geological engineering field investigation, this paper

studies the embedded deployment application of the rock classification network.

The proposed rock classification network model is transplanted to an embedded

platform. By designing a rock classification system, theoff-line rock classification is

realized, which provides a new solution for the rock classification problem in the

geological survey. The deep residual neural network and transfer learningmethod

used in this paper can automatically classify rock features without manually

extracting. These methods reduce the influence of subjective factors and make

the rock classification process more automatic and intelligent.
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1 Introduction

Rock classification is the basis for studying geological

reservoir characteristics and plays an essential role in vast

fields, such as geotechnical engineering, mineralogy, petrology,

rock mechanics, and mineral resource prospecting (Karimpouli

and Tahmasebi, 2019; Guo et al., 2022; Houshmand et al., 2022).

The efficiency of rock classification is closely associated with the

efficiency of geological surveys and therefore needs urgent

attention. Rocks classification can be accomplished via

traditional methods, including remote sensing, electromagnetic

field, geochemistry, hand specimen and thin section analysis (Ru

and Jiong, 2019). These traditional methods are based on human

observation, manual operation and empirical classification. Rock

classification using traditional methods mainly extracts useful

information features from rock images by professionals through

specialized equipment, relying on people’s experience and

equipment sensitivity. These methods are often limited by the

professionalism of experimental equipment and the theoretical

level of researchers, resulting in much time spent, low efficiency

and many other problems.

Rock classification using traditional machine learning

methods usually need to manually design feature extraction

methods and input rock features into the classifier for

training, to realize rock classification. Singh et al. (2010) used

a multilayer perceptron to extract 27 features from basalt rock

slice images and achieved the classification of 140 rock sample

slice images. Gonçalves and Leta (2010) proposed a neuro-fuzzy

hierarchical classification method based on binary space division

for macroscopic rock structure classification, and the final

classification accuracy reached 73%. Młynarczuk et al. (2013)

used the nearest neighbor algorithm and k-nearest neighbor

algorithm to realize the classification of 9 different types of

rocks. Sharif et al. (2015) proposed an autonomous rock

classification system based on Bayesian image analysis for

planetary geological exploration. The rock sample surface was

described by 13 Haralick texture parameters and the information

was automatically catalogued into a 5-bin data structure, then the

Bayesian probability was calculated and the recognition result

was output. Patel and Chatterjee (2016) realized the classification

of limestone by extracting color, shape and texture features from

limestone images and inputting them into a probabilistic neural

network. Wang and Sun (2021) proposed a rock classification

method using geometric features of rock particles instead of local

structural features, which effectively solved the problem of fuzzy

boundaries.

With the development of artificial intelligence, machine

learning and deep learning are widely used in various image

classification problems. Since traditional machine learning need

to manually extract rock features from a huge training dataset,

the training work is difficult and rather laborious. Using deep

learning methods to construct automatic rock classification

models has become a new way for rock classification (Fan

et al., 2020; Falivene et al., 2022). Cheng et al. (2017)

proposed an automatic rock grain size classification method

based on the convolutional neural network. The convolutional

neural network was trained with 4,800 samples from the Ordos

Basin, which contains three categories, and the classification of

rock slice samples under the microscope was realized. But its

image data are thin sections of rock casts taken under a polarizing

microscope, and the production of the data set is relatively

complex and not easy to obtain. Based on the Inception-v3

network model, Zhang et al. (2018) used transfer learning to

establish a classification model of rock images, which could

identify and classify three types of rocks with obvious

characteristics: granite, breccia and phyllite, and the accuracy

of test data reached more than 85%. Bai et al. (2018) built a deep

learning model for rock recognition based on the convolutional

neural network and trained it on 1,000 rock pictures collected on

the network or taken in real life, achieving a recognition accuracy

of 63%. Bai et al. (2019) also used the VGG network model to

establish a rock slice image recognition model to classify rock

slice images of six common rocks such as granite and dolomite,

and the recognition accuracy reached 82%. Imamverdiyev and

Sukhostat, 2019 proposed a new 1D-CNN model trained on

multiple optimization algorithms, which is suitable for the

lithofacies classification of complex landforms. Shuteng and

YongZhang (2018) designed a targeted U-net convolutional

neural network model to automatically extract deep feature

information of minerals under the mineral phase microscope

and realize under-mirror ore mineral intelligent recognition and

classification. Feng et al. (2019) established a rock recognition

model based on the AlexNet twin convolutional neural network

for fresh rock sections. Its advantage lies in the comprehensive

consideration of global image information and local texture

information of rocks, but its disadvantages are the large

model and the lack of high classification accuracy. Hu et al.

(2020) trained a lithology recognition model with an accuracy of

90% by applying image data in big geological data and based on

deep learning. Zeng et al. (2021) used a two-layer fully connected

neural network to increase the dimension of the scalar Mohs

hardness, and used EfficientNet-b4 to extract the feature of the

ore image, then fused the results of the two layers and finally sent

them into the fully connected layer to complete the classification

of 36 different types of ores. Liang et al. (2021) first used a ViT

network structure that evolved from transformers to classify

seven different types of ores. Koeshidayatullah et al. (2022)

proposed a novel FaciesViT model based on the transformer

framework for automatic core facies classification, which is much

better than CNN and hybrid CNN-ViT models, and does not

require preprocessing and feature extraction. In addition to rock

images of natural scenes, many scholars also use microscopic

rock images and spectral images for rock classification. Iglesias

et al. (2019) used ResNet18 to classify the polarized light

microscopic images of five ores, including amphibole, quartz,

garnet, biotite, and olivine. The final model accuracy reached
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89%. Xiao et al. (2021) first used the visible infrared reflectance

spectrometer to obtain the spectral image of the ore, and then

input it into the custom dilated convolutional neural network for

training, and realized the classification of five kinds of ore such as

hematite and magnetite.

Although the previous models have realized rock

classification based on deep learning, the used models have

redundancy and poor generalization. They can achieve low

classification accuracy and do not consider the actual

deployment and application of the model for geological

exploration scenarios. To address these problems, a rock

image classification method based on the pre-trained residual

neural network (ResNet) by the way of transfer learning is

proposed. ResNet can avoid feature loss of the convolution

layer during information transmission, and can learn new

features based on input features with better performance. In

this study, ResNet is used to extract the deep feature information

of rock images in order to classify all kinds of rocks. Transfer

learning can reduce training time and consumption cost in the

case of insufficient datasets, and achieve the goal of faster and

better classification effect on small datasets. The texture feature is

an important distinguishing point of all kinds of rocks. The

Texture Library dataset is used to pre-train ResNet34 so that the

model can extract texture features of rock images more quickly

and effectively. The experimental results indicate that the model

has high classification accuracy and good generalization ability.

Finally, considering the application of geological surveys and

construction sites, a rock classification system was developed.

The rock classification model was deployed on the embedded

device to achieve high accuracy of offline rock classification.

2 Materials

The rock dataset is provided by Guangdong TipDM

Intelligent Technology Co., Ltd and includes the information

for 315 rock images. The rock samples were obtained by taking

pictures of rock debris and drill core samples under the white

light from an industrial camera at the mud logging site. The rock

dataset consists of 7 categories of rock images: black coal, gray

black mudstone, gray argillaceous siltstone, gray fine sandstone,

light gray fine sandstone, dark gray silty mudstone and dark gray

mudstone. The number of rock images varies by type and each

image has dimensions of 4,096 × 3,000 pixels. Different types of

rocks have slight differences in morphological characteristics.

Sandstone is very small and contains a lot of sand grains.

Mudstone is mostly lamellar and easily broken into fragments.

The specific number is shown in Figure 1 and the corresponding

characteristics of the seven rocks are shown in Table 1.

Datasets in deep learning are usually divided into the training

set, validation set and test set, and different data subsets have

different functions in model training. The training set is used to

input data into the model to obtain results, then compare with the

data labels to calculate the loss function, and finally update the

parameters of the model through backpropagation to improve the

performance of feature extraction and classification, so the training

set accounts for the largest amount of data. The validation set is used

to improve the training efficiency of the model. If the various

hyperparameters are set or the model design is not reasonable when

the model is under training, the model can respond to the accuracy

of the validation set through the output, and then stop the training

and make improvements in time. After the model is trained, the

performance of the model can be evaluated using the test set.

Similarly, the rock image dataset is randomly partitioned into the

training set, validation set, and test set. If the ratio of the training set

and validation set is too large, the model may overlearn and the

model training time will grow, increasing the burden of model

training, but a small ratiomay also lead tomodel undertraining. The

proportion of training, validation, and testing images in each label is

set to 80%, 15%, and 5%, respectively. The dataset structure is

shown in Table 2.

3 Methods

In order to fully extract the textural characteristics of

different rocks, a rock image classification method based on

the pre-trained residual neural network generated from transfer

learning is proposed. Figure 2 presents the flowchart of the

methods in this research.

3.1 The architecture of ResNet-34

Deep convolutional neural networks have made

remarkable achievements in image classification, object

detection, semantic segmentation and other fields. With the

advancement of technology, more and more deep neural

network models with better effects are constantly emerging

FIGURE 1
The specific numbers of different rock images.
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(Luo and Wang, 2021). However, it is found that not the

deeper the number of network layers, the better the model

effect. The increase in network depth not only does not make

the accuracy achieved by the traditional network higher, but

also produces problems such as gradient disappearance,

gradient explosion, and degradation.

Residual neural networks (i.e., ResNet) enable feature

information from the input or learned in the shallow layers of

TABLE 1 The characteristics of seven types of rocks.

Figure Category Color Characteristic

Black coal Black Lumpy, Granular

Dark gray mudstone Gray black Argillaceous structure, Massive structure

Dark gray silty mudstone Dark gray Silty and muddy structure, Bedding structure

Gray black mudstone Dark gray Cryptocrystalline structure, Massive structure

Grey argillaceous siltstone Gray Silty structure, Massive structure

Grey fine sandstone Gray Fine grain structure, Massive structure

Light gray fine sandstone Light gray Fine sand structure, Massive structure

TABLE 2 Details of the rock dataset.

Dataset Number (Initial) Number
(After image slicing)

Number (After data
augmentation)

Training 253 27,324 3,82,536

Validation 47 47 47

Test 15 15 15

Total 315 27,386 3,82,598
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the network to flow into the deeper layers by employing shortcut

connections (He et al., 2016a). As the depth of the network

increases, ResNet ensures the validity of gradient information by

shortcut connections to prevent gradient disappearance and

performance degradation caused by too deep layers of the

network. Residual neural networks have achieved impressive

results in image classification competitions such as ImageNet

(He et al., 2016b) and MS COCO (Dai et al., 2016). In this study,

ResNet is used to extract deep feature information from rock

images to avoid the feature loss of the convolutional layer caused

by gradient disappearance and gradient explosion in the process

of information transmission.

ResNet consists of multiple residual blocks. The residual

block not only has sequential convolutional layers, but also

skips some convolutional layers through shortcut

connections alongside the convolutional layers, and passes

the data from the input residual block directly to the output,

which is added with the result of the operation through the

convolutional layer. Each residual structural unit can be

defined as follows:

H x( ) � F x( ) + x (1)

Where x is the input data, F(x) is the mapping function of the

identity residuals and H(x) is the mapped solution function.

FIGURE 2
Flowchart of the methods.
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The residual block is shown in Figure 3. Shortcut connection

skips two layers of 3 × 3 convolutional layer connected to the

output. The output of the main line through the convolution

operation is added to the input through the shortcut. Then the

result is output through the ReLU activation function (Nair and

Hinton, 2010).

Figure 4 shows the ResNet architecture with 34 layers (i.e.

ResNet34). The rock image input to resnet34 is first passed

through a 7 × 7 convolutional layer and a 3 × 3 max pooling

layer (both with a stride of 2), and then fed into 16 residual

blocks. All of these residual blocks have a total of 32 layers.

Finally, the network ends with an average pooling layer, a fully

connected layer, and a softmax layer.

3.2 Batch normalization

It is common for deep learning networks to consist of many

layers. As the number of network layers increases, a significant

deviation in data distribution across a layer will exacerbate,

making it harder to optimize the model (Yan et al., 2020).

Batch normalization (BN) can solve this problem well. Using

batch normalization, data is divided into different groups and

parameters are updated accordingly (Xiao et al., 2019). In the

same group, the gradient direction is determined jointly,

reducing randomness as the gradient declines. Furthermore,

since the batch has fewer samples than the entire dataset, the

amount of calculation has been significantly reduced. Batch

normalization can avoid data offset because the batch

normalization layer normalizes the input prior to the

activation function.

In the ResNet34 rock image classification model we used,

the BN is added before the ReLU activation function and after

the convolutional layer. With the BN algorithm, parameter

changes resulting from a different data distribution are

minimized and the convergence speed during model

training is accelerated. The formulas of batch normalization

are as follows:

x̂ k( ) � x k( ) − E x k( )[ ]��������
Var x k( )[ ]√ (2)

y k( ) � γ k( )x̂ k( ) + β k( ) (3)

Where, x(k) is the characteristic distribution statistic of the

current layer network. E[x(k)] is the mean value of data in

current layer.
��������
Var[x(k)]√

is the standard variance of data in

current layer. γ(k) and β(k) are the learning parameters of the

model.

FIGURE 3
Examples of residual blockswith shortcut connections for the
residual network (ResNet).

FIGURE 4
Detailed architectures for ResNet34.
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Through Eq. 3, the distribution of eigenvalues will be re-

adjusted to a standard normal distribution and the eigenvalues

are kept within the input-sensitive interval of the activation

function, avoiding the disappearance of the gradient and

speeding up the convergence.

3.3 ReLU activation function

The activation function is used to add nonlinear factors to the

model because linear models are less expressive. In the absence of

activation functions, the input of each layer node in the network

is a linear function of the output of the upper layer, that is, inputs

and outputs are linearly correlated (Liu et al., 2022). After adding

the activation function, it is possible to apply neural networks to

many nonlinear models arbitrarily because they can approach

many nonlinear functions arbitrarily. As a result of the ReLU

activation function, neurons are activated nonlinearly based on

the feature map of the convolution layer output, enabling better

learning by avoiding overfitting (Ran et al., 2019).

For each convolutional layer of ResNet34, the ReLU

activation function is used:

f x( ) � max 0, x( ) � x, x > 0
0, x ≤ 0

{ (4)

Where x is the input data. The ReLU activation function sets the

output of some neurons in the network to zero, makes the

network sparse and reduces the dependence between

parameters, which solves the problem of overfitting. Another

advantage of ReLU is that it is less computationally intensive and

time consuming compared to other activation functions such as

sigmoid, which involve exponential operations.

3.4 Softmax classifier

Softmax classifier is used in the establishment of the rock

classification model. The input rock images can be converted into

the corresponding category possibilities by the softmax classifier

(Pham and Shin, 2020). At the end of ResNet34, the softmax

classification function is added after the fully connected layer of

the network, so that the output of the network is a one-

dimensional vector of size 7, which represents the seven types

of rocks to be classified in this study. The seven values in each

one-dimensional vector reflect the rock class probability to which

the input image belongs, so the sum of the seven values is 100%.

The formula is as follows:

p zi( ) � ezi∑n

j�1 e
zj
, j � 1, 2, 3,/, n (5)

Where, p(zi) is the probability of being identified as the i

category, and n is the number of distinct categories. The

numerator maps input real value to zero to infinity and the

denominator adds up all the results and normalizes them, as

shown in Eq. 5.

3.5 Adaptive moment estimation

Adaptive moment estimation (Adam) is a stochastic

optimization algorithm based on the adaptive estimation of

low-order moments (Hang et al., 2019; Yang et al., 2019). The

algorithm adaptively adjusted the learning rate update

parameters through the first moment estimation and the

second moment estimation of the gradient. In the past, many

conventional deep neural networks use stochastic gradient

descent algorithm (SGD), which iteratively updates the

weights of the neural network until it reaches the global

optimal solution. However, the model using SGD algorithm

has a slow convergence speed in the early stage, and it is

prone to decline in accuracy. The Adam algorithm is

improved on the basis of SGD algorithm. The learning rate

during network training is usually kept constant when using

an optimization algorithm such as SGD, but Adam optimizes the

network by iteratively updating the weights of the neural network

and adaptively adjusting the learning rate as the network is

trained, which makes the network converge faster and learn

better.

In order to adjust the parameters of the rock classification

model more efficiently and make it converge faster during

training, Adam is chosen as the optimization algorithm. The

updating formulas of Adam algorithm are as follows:

θt � θt−1 − α*
m̂t�����
v̂t + ε

√ (6)

gt � ∇L̂ θt( ) (7)
mt � β1*mt−1 + 1 − β1( )*gt (8)
vt � β2*vt−1 + 1 − β2( )*g2t (9)

m̂t � mt

1 − βt1
(10)

v̂t � vt
1 − βt2

(11)

Where, t is the number of times, α is the learning rate, θt is the

update parameter for the solution, ε is a very small constant

which is set to prevent the denominator of Eq. 6 from being zero,

L̂(θt) is the loss function with parameter θt, gt is the gradient of

the partial derivative of the loss function L̂(θt) with respect to θt.

β1 is the exponential decay rate of the first moment estimate. β2 is

the exponential decay rate of the second moment estimate. mt is

the estimate of the first moment of the gradient in momentum

form. vt is the second moment estimate of the gradient in

momentum form. m̂t is the bias correction of mt and v̂t is the

bias correction of vt. By default, α = 0.001, β1 � 0.9, β2 � 0.999,

ε � 10−8.
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3.6 Transfer learning

Training convolutional neural networks usually require very

large labeled datasets to achieve high accuracy. However, it is

often difficult to obtain such data and it takes a lot of time to label

the data. Due to the existence of these difficulties, the transfer

learning method used in many studies to solve the cross-domain

image classification problem has proven very effective. Transfer

learning considers the correlation between different tasks, so that

the knowledge obtained in the previous task can be directly

applied to the new task through small transformation or even

without any modification. Transfer learning is conducive to the

construction of the mathematical model of the target task and

reduces the dependence on the target task dataset (Gao et al.,

2021). At present, the more complete convolutional neural

networks such as VGG, AlexNet, GoogLeNet and so on are

pre-trained on the public image dataset of computer vision

(Dabrowski and Michalik, 2017; Ali et al., 2020).

Since the model needs multiple rounds of iteration in the

training process, and the number of rock pictures in this study is

small, it will lead to the overfitting problem and low classification

accuracy of the model. Consequently, transfer learning is a viable

strategy (Figure 5). Given a labelled source domain DS and

learning task TS, a target domain DT and learning task TT,

transfer learning aims to help improve the learning of the target

predictive function f(·) inDT using the knowledge inDS and TS,

where DS is Texture Library dataset, DT is rock dataset (Pan,

2017).

As shown in Figure 6, transfer learning is used to optimize

the rock image classification. Transfer learning in the rock image

FIGURE 5
Demonstration of transfer learning.

FIGURE 6
Schematic diagram of transfer learning in rock classification.
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classification model includes pre-training and fine-tuning.

Firstly, the ResNet34 model is pre-trained on the Texture

Library dataset, the rock dataset is used to fine-tune the

ResNet34 model afterwards.

The supervised learning architecture is used for pre-training.

Pre-training usually requires a large enough dataset to help the

model learn common features, and the learned features are

parameterized to be ported to similar tasks for reuse (Zhu

et al., 2021; Yi et al., 2022). The Texture Library dataset

which contains 47 texture types total of 78,960 images is

selected as the source domain for pre-training (Figure 7). The

rock dataset and the Texture Library dataset are not identical, but

the images of both have similar texture features, so the two

dataset domains are related. Using the Texture Library dataset as

the input of the pre-trained model for ResNet34, the

characteristics of rocks can be well reflected. Therefore, it is

reasonable to adopt the ResNet34 model pre-trained with the

Texture Library dataset for rock image classification.

For fine-tuning, the parameters trained on the Texture

Library dataset are used as initial values. The parameters of

each layer of the network are frozen except for the last fully

connected layer, and then input rock dataset and retrain the last

fully connected layer to complete the fine-tuning.

In this study, the transfer learning method based on
ResNet34 was applied to the rock image classification model.
The ResNet34 pre-training weight parameters obtained by pre-
training on the texture dataset are fine-tuned to speed up the
convergence speed of the rock image classification network
training, and spend less time training to obtain a model that
can classify rock images. Transfer learning is used to simplify the
original image training process, making the model learning more
efficient and flexible.

4 Experiments and results

4.1 Data pre-processing

In the rock dataset used in the experiment, the number of

rock images is too small and the pixel is too large. The number

of samples in each rock category is uneven, which will affect

the recognition accuracy, so the rock training set is

preprocessed.

4.1.1 Image slicing
Image information is composed of the spatial arrangement

of pixels, so the features of an image are mainly represented by

local adjacent pixels (Su et al., 2020). Large-scale images can

represent more image detail information, so that the

differences between images are more obvious. Image

classification should make full use of image detail

information. Therefore, we use the image slicing method to

slice the 253 training sets at first. The original rock images

acquired from the industrial camera contain 4,096 ×

3,000 pixels and are sliced into 9 rows and 12 columns,

meaning that each original image is divided into 108 sub-

images. The size of each sub-image is 322 × 322 pixels. The

original image and its cut part images are shown in Figure 8A.

4.1.2 Data augmentation
rAfter image slicing, the training dataset is expanded to

27,324 images. The dataset used consisted of a relatively small

number of images for training network. The data

augmentation used in this study to expand the dataset were

rotation, horizontal flip, vertical flip, blur, movement,

brightness adjustment and Gaussian noise addition. The

schematic of the data augmentation is shown in Figure 8B.

The total number of training sets reached 382,536 by applying

these transformations which fully expanded the original

training set. The number of training set after pre-

processing is also shown in Table 2.

4.1.2.1 Image resizing

Resizing changes the distance between different pixels in the

image, typically along the x-axis and y-axis, and the matrix

expression for image resizing is as follows:

x′
y′
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � Sx 0 0
0 Sy 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ x
y
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (12)

FIGURE 7
Example images of the Texture Library dataset: (A) Marble, (B) Brick grain, (C) Soil grain, (D) Bean vermicelli.
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Where, (x, y) is the original image and (x′, y′) is the resized

image. Sx and Sy are the scaling factors along the x-axis and

y-axis, respectively. The scaling factors are chosen randomly

from 0.5 to 2.

4.1.2.2 Image rotation

Rotation is the process of rotating an image around a point to

form a new image. The pixel values of the image before and after

rotation remain unchanged. When the selected rotation point is

the coordinate origin, the matrix expression for image rotation is

as follows:

x′
y′
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � cos θ sinθ 0
−sinθ cos θ 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ x
y
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (13)

Where, θ is the rotation angle, The rotation angle is randomly

selected from 0° to 360°.

4.1.2.3 Image movement

The matrix expression of image movement is as follows:

x′
y′
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � 1 0 tx
0 1 ty
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ x
y
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (14)

Where, tx and ty are the amount of translation to translate the

image along the x-axis and y-axis, respectively. The amount of

translation is chosen randomly from 30 to 80 pixels.

4.1.2.4 Image flip

The matrix expression for the horizontal flip is as follows:

x′
y′
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � −1 0 w
0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ x
y
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (15)

The matrix expression for the vertical flip is as follows:

FIGURE 8
Data pre-processing of rock images: (A) Image slicing (B) Data augmentation.
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x′
y′
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � 1 0 0
0 −1 h
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ x
y
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (16)

Where w is the width of the image and h is the height of the

image.

4.1.2.5 Brightness change

The change of image brightness belongs to the pixel

transformation of the image, that is, the linear transformation

is performed on each point of the two-dimensional matrix

represented by the image. The transformation formula is as

follows:

g i, j( ) � α · f i, j( ) + β (17)

Where f(i, j) is the pixel of the original image, g(i, j) is the pixel
of the output image, and i and j denote the pixel located in row i

and column j. α is the gain parameter and β is the bias parameter.

The brightness of the output image g(i, j) is determined by β,

and the contrast of the image is determined by α.

4.1.2.6 Noise addition

Due to the random interference of the external environment

such as light and dust, the acquired rock image will contain noise.

In order to simulate the real environment, Gaussian noise is

added to the image. The probability density function of Gaussian

noise is as follows:

p z( ) � 1���
2π

√
σ
exp − z − μ( )2

2σ2[ ] (18)

Where z is the gray value of the image pixel, μ is the mean value

of the pixel value, and σ is the standard deviation of the pixel

value. In the process of adding noise, a Gaussian noise with a

mean value of 0 and a variance σ2 of 0.01 is selected.

4.2 Evaluation metrics

The primary measures used to evaluate training effectiveness

are classification accuracy and loss value. The classification

accuracy is the percentage of the currently trained images that

are accurately classified. It is formulated by Eq. 19:

Accuary � t
N

(19)

Where, t is the number of samples whose predicted category is

consistent with the actual category. N is the total number of

samples. The effect of the model is measured by calculating the

ratio of the number of samples correctly classified by themodel to

the total number of samples, and the goal is to measure the effect

of the model.

Through the calculation of the loss function, the parameters

of our model are updated. The goal is to reduce the optimization

error, that is, to reduce the empirical risk of the model under the

joint effect of the loss function and the optimization algorithm

(Chen et al., 2021). The cross-entropy is used as the loss function

to evaluate the difference between the predicted value and the

true value (Li et al., 2020). The loss value in this work is calculated

by cross entropy, as follows:

Loss � 1
N

∑
i

Li � − 1
N
∑
i

∑M
c�1
yiclog pic( ) (20)

Where, M is the number of categories. yic is the indicator variable

and takes the value of 0 or 1. If the category is the same as the

category of sample i then it takes 1, and vice versa it takes 0. pic is the

predicted probability that observation sample i belongs to category c.

The function is convex and has good convergence properties when

solved by gradient descent, and the global optimum can be obtained

when solving the derivative. The loss value reflects the learning effect

during the training of the model. The smaller the loss value is, the

better the learning effect is.

4.3 Experiment details

The device information used in the experiment is as follows:

the CPU model is Intel Xeon Silver 4,110 with 16 GB memory,

and the GPU model is GeForce RTX 2080Ti with 11G memory.

Windows10 was used as the operating system and Python 3.6 was

used as the programming language. The deep learning

framework is Pytorch, version 10.1 for CUDA, and version

7.6.5 for CuDNN.

The activation function selects the ReLU function. The

optimizer selects is Adam. The learning rate is set to 0.001. The

number of training epochs is 60 and the batch size is set to 16.

Different degrees of data preprocessing methods were used to

conduct ablation experiments to explore the effectiveness of each

preprocessing method. Resnet34 and three other different neural

networks were trained to explore which worked best. The

Texture Library dataset is selected as the source domain for

transfer learning. The model parameter files are obtained after

training. The other layers of the Resnet34 network are frozen

except for the structural parameters of the fully connected layer.

The pre-trained weights obtained from training on the texture

dataset are loaded when the network is trained with the rock

dataset. The prediction results are compared with the true label in

each step so that the classification accuracy and loss value are

both calculated to upload to the TensorBoard visual training tool.

4.4 Results analysis

4.4.1 The effectiveness of data pre-processing
The original data in this paper has been pre-processed by

image slicing and data augmentation. In order to verify the

Frontiers in Earth Science frontiersin.org11

Chen et al. 10.3389/feart.2022.1079447

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1079447


effectiveness of data pre-processing, we conduct ablation

experiments. The ResNet34 network was used to conduct

four groups of experiments on different training sets: 1) no

data pre-processing is used; 2) using image slicing; 3) using

data augmentation; 4) using image slicing and data

augmentation both on the training set. The highest

TABLE 3 Comparison of training results for different data preprocessing methods.

Method Number of images
in the training
set

The highest accuracy
achieved in 60 epochs
(%)

ResNet34 + Original training set 253 73.8

ResNet34 + IS 27,324 76.2

ResNet34 + DA 3,542 84.4

ResNet34 + IS + DA 3,82,536 88.1

FIGURE 9
The accuracy (A) and the loss (B) values of four different models over different epochs.
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accuracy achieved by each method in 60 epochs is shown in

Table 3.

After different degrees of image pre-processing, the

classification accuracy of the network is improved in different

degrees. Compared with the original training set, the accuracy of

the training set after image slicing and data augmentation is

improved by 14.3%. The result indicates that pre-processing of

small sample data sets can make the network extract more

comprehensive rock features and improve the generalization

ability of the model. And it proves that the data pre-

processing method in this paper can improve the overall

accuracy of the classification network.

4.4.2 The effectiveness of residual networks
Four different network models to apply to rock classification

in order to compare which network has the best effect are trained

respectively. The training is visualized in the Pytorch framework

using the TensorBoard tool.

Figure 9 illustrates the loss and accuracy changes for four

deep learning methods (AlexNet, VGG16, GoogleLeNet, and

ResNet34) as experiment steps increase. It shows that each of

the four convolutional neural networks converges as the training

process of rock image classification proceeds. In addition, it can

be reflected from Figure 9A that the rock accuracy of the four

networks from high to low is ResNet34, VGG16, GoogLeNet, and

FIGURE 10
The accuracy (A) and the loss (B) values of the models over different epochs.
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AlexNet. While the loss values (Figure 9B) are the opposite, from

large to small are AlexNet, GoogLeNet, VGG16, and ResNet34.

The residual neural network has the highest accuracy and the

lowest loss value, which is because the residual network uses

residual structure to solve the model degradation problem of

deep neural network. In conclusion, the ResNet34 network

performs better than other networks in rock image classification.

4.4.3 The effectiveness of transfer learning
In order to explore whether the model using transfer learning

performs better, the rock classification model using transfer

learning method and the model without transfer learning

method are trained respectively. The change of accuracy and

loss value during the training process is shown in Figure 10.

Compared with the training results with and without transfer

learning, the first accuracy and the highest accuracy of the

training epochs and the corresponding loss value are shown

in Table 4. Combined with the graph, it can be observed that the

model training without transfer learning has a low accuracy of

59.0% in the early stage. The highest accuracy reaches 88.1% after

60 epochs and the corresponding loss value is 0.217. In the model

using transfer learning, the accuracy of the first epoch reaches

67.5% and the accuracy fluctuates slightly during the training

process. The highest accuracy reached 99.1% which achieves an

11% improvement compared with the model without transfer

learning, and the corresponding loss value is 0.085.

The accuracy and loss values reflect that the effect of the

network model trained by transfer learning is obviously better

than the original model. The model using transfer learning has

high initial accuracy and high final accuracy. This is because the

pre-training network based on the Texture Library dataset has

learned rich texture spatial structure features and morphological

correlation. The parameters of the pre-training model can be

directly used in the model training, which can save training time

and improve the precision of rock classification.

4.4.4 Reality testing
A total of 15 images covering 7 types of rocks from the testing

dataset were classified by the model which had the weights with

the highest accuracy using transfer learning method. The rock

images to be recognized were fed into the rock prediction

program, and the classification result was given in the form of

names and probabilities. The test result of rock classification is

shown in Figure 11. All 15 images were correctly predicted with

probabilities above 82%, and most of them were even above 95%.

Since the shooting angle and distance of rocks in the survey

site are not fixed, the classification effect of rock images with

different views is tested in this paper. Considering that the

imaging resolution of each camera is not the same in practical

applications, it is also necessary to test the effect of different

resolutions of images on the rock classification results.

To simulate the camera changes at different resolutions, the

image resolution was changed while keeping the view of the

image unchanged. The original images of the test set are all

4,096 × 3,000 pixels. The original 15 test set images were down

sampled multiple times to reduce the image resolution. The

average accuracy of classifying 15 rock images is used as the

evaluation criterion, and the experimental results are shown in

Figure 12A.

It can be seen that the classification accuracy starts to suffer

when the image is below 512 × 375 pixels. This is because the

images of the original training set are processed to 322 ×

322 pixels through image slicing in the previous data

preprocessing, so the network can accurately identify the

input images with a resolution higher than 322 × 322. When

the resolution of an image is lower than 322 × 322 pixels, the

reduction of image features affects the rock classification results.

In order to simulate the change in the distance between the

camera and the rock sample, the view of the image is changed

while keeping the image resolution unchanged. The above

experimental results show that the rock classification model

can accurately classify rocks when the input image is in the

pixels range of 4,096 × 3,000 to 512 × 375. However, the accuracy

starts to decrease after pixels are below 512 × 375. Therefore

512 × 375 pixels are used as the minimum image resolution limit.

After arbitrarily cropping an image with the same proportion as

the original rock image and greater than 512 × 375 pixels, a

random brightness change is added to simulate the field light

change. And it is down sampled to 512 × 375 pixels to control the

image resolution consistency, then input into the classification

network for classification test. A total of 10 tests were performed,

and the test set for each classification was 15 images. The

experimental results are shown in Figure 12B.

The accuracy of rock classification does not change

significantly due to the data pre-processing we have used.

The pre-processing can improve the robustness and

TABLE 4 Comparison of training results with or without transfer learning.

Training results Without transfer learning With transfer learning

The accuracy in the first epoch 59.0% 67.5%

The loss value in the first epoch 1.214 1.037

The accuracy after 60 epochs 88.1% 99.1%

The loss value after 60 epochs 0.217 0.085
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generalization of the model. Therefore, the model can adapt to

the changes of different resolutions, shooting angles and

shooting scenes. It indicates that the model learns more

about rock lithological features with the increase in data

volume. This result also shows that the model has good

robustness and generalization ability.

FIGURE 11
The test result of rock classification.
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4.4.5 Comprehensive analysis
Ablation experiments were conducted to verify the

effectiveness of the data preprocessing done in this paper.

Since the original rock data set is too small, image

segmentation and data augmentation can significantly

improve the accuracy of rock classification. The effectiveness

of residual neural networks is verified by the comparative

experiment of AlexNet, VGG16, GoogLeNet, and ResNet34.

The effectiveness of transfer learning is verified by the

comparative experiment between transfer learning and non-

transfer learning. The practical usability of the rock

classification model was verified by testing 15 images

containing all seven types of rocks. All 15 images were

correctly predicted with probabilities above 82%, and most of

them were even above 95%. By simulating and testing the actual

situation of camera view changes and resolution changes, it is

verified that the model has good robustness, slight scene changes

will not affect the accuracy of rock classification, and the

effectiveness of data preprocessing is also shown. These

experimental results indicate that the model using transfer

learning with the pre-trained residual neural network has

higher classification accuracy and good generalization ability.

5 Deployment and application of rock
classification network

Geological survey work often needs to be carried out on the

construction site or in off-line conditions. Geological

investigators need to carry all kinds of geological exploration

equipment, such as GPS measurement, positioning instruments,

measuring instruments and so on. It is inconvenient to take

equipment with a certain weight and volume such as

workstations, and it is impossible to obtain timely feedback

on rock types through the network to guide the following

investigation. Deploying the rock image classification model

proposed in this paper to the embedded end device can

effectively solve this problem.

In this paper, rock image classification is shifted from

theoretical research to practical applications. The trained rock

classification network model is transplanted to Nvidia Jetson

TX2 embedded platform, the TensorRT inference optimizer is

used to accelerate the model, and the front-end interface that

integrates all aspects of the system is developed, which makes the

system both portable and easy to use, andmeets the requirements

of geological survey field deployment.

5.1 Design of rock classification system

A rock classification system is constructed based on the

designed rock image classification model. The overall

framework is shown in Figure 13A, and the specific functions

of the system are as follows: 1) Get an image of the rock. Images

are acquired in real-time from connected industrial cameras, or

rock images are fetched from local data. Real-time detection and

local data acquisition are introduced to meet the requirements of

the geological survey sites. 2) Rock image preprocessing. The

rock images that need to be input into the classification network

are preprocessed first, the brightness of the rock images that are

too bright or too dark is corrected, and the rock images are

smoothed to remove the sharp noise, reduce the level of detail,

and enhance the recognition effect of the image under different

proportions. The preprocessed rock image is used as the input

image of the subsequent classification network, and improving

the image identifiability is beneficial to improve the accuracy of

rock classification. 3) Rock image classification. The rock

classification network is loaded, and the preprocessed rock

FIGURE 12
The accuracy and the loss the influence of image resolution on the classification results (A) and the influence of the change of image field of
view on the classification results (B).
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images are input for inference to obtain the rock classification

results. If it is necessary to extend the rock category or use a

better-trained rock model, the rock classification model can be

updated by replacing the original model weights with the newly

trained model weights. 4) The obtained rock classification results

are stored or displayed on the visual interface.

5.2 System deployment

The preliminary development of the rock classification

model proposed in this paper is carried out on the PC side, but

the size of the PC side is huge, and it is not suitable for

deployment in the industrial survey site. In contrast,

embedded devices with deep learning computing

capabilities are more in line with the needs of geological

exploration. To consider the practical application, we port

the algorithm from the PC to the embedded platform.

Considering that there is usually no network support in the

actual survey site, this paper adopts the offline deployment

mode. After the model is trained in the PC server in advance, it

is deployed on the embedded device.

This paper implements the deployment process of the rock

classification network on Nvidia Jetson TX2. Nvidia Jetson

TX2 is an embedded AI computing device launched by Nvidia

Corporation. Its GPU adopts Nvidia Pascal architecture, has

8 GB memory and 32 GB storage space, and is equipped with a

variety of standard hardware interfaces. Jetson TX2 is

compact and energy efficient, making it ideal for smart

edge devices such as robots, drones, and smart cameras.

The deep learning network model trained on the PC

usually has a large number of parameters, and it is easy to

cause problems of slow inference speed and poor real-time

performance of the model when deployed on embedded

devices with weak performance. In order to accelerate the

reasoning of the model on embedded devices, the TensorRT

framework developed by Nvidia is used to accelerate the

reasoning. NVIDIA TensorRT is a special optimizer for

neural network inference, which is mostly used in image

classification, object detection and other fields. It uses a

scheme to optimize the trained model, which can provide

low latency and high throughput for deep learning model

inference applications deployed in the production

environment.

The steps for porting the rock classification algorithm are

as follows: First, set up the software development environment

on Jetson TX2 and install the libraries that the application

depends on to run. Since the trained model is generated by the

Pytorch framework and cannot be directly applied to the

TensorRT framework, the Pytorch model is first converted

to the ONNX (OpenNeural Network Exchange) format to

make it suitable for the TensorRT framework. ONNX is a

standard format for representing deep learning models that

can be transferred between different frameworks (Chang et al.,

2020). Many model formats can only be converted to ONNX

to work with the TensorRT framework. Finally, the visual

interface integrating each function was developed.

The user interface design of this paper takes into account that

this system is mainly provided for geological exploration

personnel. From the perspective of practical application, the

code is encapsulated, and the PYQT module in Python is

used for visual interface design. The rocks are classified

through the visual interface, and the classification results are

displayed and saved, which reduces the threshold of use and

facilitates the use of engineers. The main interface is shown in

Figure 13B.

FIGURE 13
The rock classification system: (A) System framework diagram (B) Visual interface.
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6 Conclusion

In this study, a deep residual neural networkmodel with transfer

learning method is proposed to classify rock images quickly and

accurately. The dataset is expanded by image slicing and data

augment, and the Resnet34 is pre-trained by the Texture Library

dataset for transfer learning. The comparative analysis shows that

the model using transfer learning in ResNet34 structure for rock

image classification has an excellent effect, and the classification

accuracy is as high as 99.1%, which achieves an 11% improvement

compared with the model without transfer learning. The excellent

performance of the rock classification model is mainly due to the

introduction of the residual module and the application of transfer

learning. The pre-trained network based on the texture dataset

learns rich texture spatial structure features and morphological

correlation. Finally, a rock classification system is designed and

deployed on embedded devices to meet geological survey tasks. The

system extracts feature by the convolutional neural network without

manual operation, which reduces the influence of subjective factors.

This system has low requirements for rock image acquisition

configuration and environment, which fully demonstrates its

robustness and generalization ability.

Our future study will further increase the number of rock

categories and ensure that the classification accuracy is further

improved when more rock types are added, as the types and

number of rock datasets in this paper are limited due to the

limitations of shooting conditions.
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