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Processing of aquifer test drawdowns to obtain estimates of transmissivity, and

sometimes storativity, is an integral part of hydrogeological site investigations.

Analysis of these data often relies on an assumption of hydraulic property

uniformity. Aquifer properties are often estimated by fitting a Theis curve to

measured drawdowns. Where an aquifer exhibits heterogeneity, quantities that

are forthcoming from such analyses are assumed to represent spatially-

averaged properties. However the nature of the averaging process, and the

area over which averaging takes place are unknown. In this study we derive

spatial averaging functions that link inferred hydraulic properties to real-world

hydraulic properties. These functions employ Fréchet integrals derived by

previous investigators that link observation well drawdowns to aquifer

properties under an assumption of mild aquifer heterogeneity. It is shown

that these hydraulic property spatial averaging functions are complex,

especially at times that immediately follow the commencement of pumping.

Furthermore, they cross hydraulic property boundaries, so that estimates of

storativity can be contaminated by heterogeneities in real-world transmissivity,

and vice versa. Because of its greater averaging area at later times, estimates of

transmissivity are generally more immune to the effects of local hydraulic

property heterogeneity than are those of storativity. They are therefore more

reflective of broadscale real-world hydraulic properties, particularly those that

prevail in areas that are removed from the immediate vicinity of the pumping

and observation wells.

KEYWORDS

pumping tests, resolution matrix, sensitivity coefficient, Fréchet kernel, inversion,
Theis equation, spatial averaging function

1 Introduction

Aquifer tests comprise an essential component of site characterisation studies. A well

is pumped, often at a constant rate, for a certain amount of time. Drawdowns are

measured in the pumped well and possibly in one or a number of observation wells. Local

hydraulic properties are inferred from these drawdowns.
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Interpretation of aquifer test data is generally based on a

number of simplifying assumptions. In the simplest case, the

pumping well is assumed to fully penetrate a confined aquifer.

The aquifer is imagined to be homogeneous; groundwater

flow that is induced by pumping is therefore presumed to

be radial.

Under these circumstances, drawdown can be calculated

using the Theis equation (Theis 1935). Back-calculation of

aquifer transmissivity (T) and storativity (S) can therefore be

achieved by finding values of T and S for which the Theis curve

provides the best fit with observed drawdowns. This can be done

manually, or it can be automated. Where drawdowns are

measured in a number of observation wells, it is

commonplace to subject each set of well-specific drawdowns

to this kind of analysis. While values inferred for T and S may

differ between wells, all of them are reported. Differences

between them are taken as a measure of local hydraulic

property heterogeneity.

The Theis assumption of hydraulic property homogeneity

over the entire drawdown-affected area can rarely be justified.

It is made in order to attain uniqueness of an inverse problem,

and to permit use of a simplified forward model for

computation of drawdown. It is presumed that solution of

this simplified inverse problem yields values of T and S that are

“representative” of the area in which drawdown has been

induced.

A number of authors have inquired into the nature of the

relationship between real and inferred hydraulic properties.

These include Butler (1988), Butler (1990), Oliver (1990),

Oliver (1993), Sánchez-Vila, et al. (1999), Leven and

Dietrich (2006) and Copty et al. (2011). Most of these

studies focussed on the relationship between drawdown in a

pumped or observation well and hydraulic properties that

characterise pumping-affected areas. Linearization of this

relationship enables rapid evaluation of drawdown-to-

parameter sensitivities. It is argued that greater sensitivity

of drawdown to hydraulic properties that prevail in one area

over those that prevail in another area implies that values of T

and S that are inferred from these drawdowns are more

reflective of properties in the former area than those in the

latter area.

In this paper we extend the utility of linear analysis in order

to derive equations that directly relate values for T and S that are

forthcoming from Theis-based analysis of drawdowns to values

of T and S that characterise an aquifer; the former are referred to

as “apparent values” by Sanchez-Vila et al. (2006). The

methodology that we employ can be readily extended to other

aquifer test contexts where forward modelling of pumping-

induced drawdown relies on fewer assumptions than those

that are required by the Theis equation. However, linear

analysis under Theis assumptions is rendered particularly easy

by the availability of analytical formulae for calculation of

drawdown-to-parameter sensitivities.

2 Theory

2.1 Fréchet kernels

Consider a pumping well situated at (−a/2, 0) and an

observation well at (a/2, 0); they are separated by a distance

a. At time zero, extraction of water begins at a rate of q0. The

situation is depicted in Figure 1.

Suppose that the medium which these wells penetrate is

homogeneous, with a pervasive transmissivity of T0 and a

pervasive storativity of S0. Under these circumstances,

drawdown s at the observation well can be calculated using

the Theis equation:

s
a

2
, t( ) � q0

4πT0
E1

S0a2

4T0t
( ) (1)

where E1 is the exponential integral function.

Now suppose that the aquifer test host medium is not

homogeneous, and that transmissivity and storativity are

functions of location x i.e. (x, y). We further suppose that

heterogeneities in transmissivity and storativity can be viewed

as perturbations of background To and So. We denote differences

between actual and background transmissivity and storativity by

T and S. That is:

T x( ) � Ta x( ) − T0 (2a)
S x( ) � Sa x( ) − S0 (2b)

where Ta(x) and Sa(x) are the actual values of transmissivity and

storativity at location x. If T(x) and S(x) are small, then the

drawdown perturbation h(t) at the pumping well arising from

these hydraulic property perturbations can be formulated as a

convolution integral as follows:

h t( ) � ∫
A
T x( )FT x, t( )dx + ∫

A
S x( )FS x, t( )dx (3)

The functions FT(x,t) and FS(x,t) comprise so-called Fréchet

kernels for transmissivity and storativity respectively. Knight and

Kluitenberg (2005) derived the following analytical expressions

for them:

FT x, t( ) � −q0 r2 − a2/4( )
8π2DT2

0r1r2t
K1

r1r2
2Dt

( ) exp −r
2 + a2/4
2Dt

( ) (4a)

FS x, t( ) � − q0
8π2T2

0t
K0

r1r2
2Dt

( ) exp −r
2 + a2/4
2Dt

( ) (4b)

In these equations K0 and K1 are modified Bessel functions of

order 0 and 1, while:

r �









x2 + y2( )√

(5)
and

D � T0

S0
(6)
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r1 and r2 are depicted in Figure 1. Similar equations were derived

by Zha et al. (2020).

The sensitivities of observation well drawdown to domain-

wide transmissivity and storativity are obtained by areal

integration of the respective Fréchet kernels. From Knight and

Kluitenberg:

MT t( ) � ∫∞

−∞
∫∞

−∞
FT x, t( )dx

� − q0
4πT2

0

E1
S0a2

4T0t
( ) − exp −S0a

2

4T0t
( )[ ] (7a)

Ms t( ) � ∫∞

−∞
∫∞

−∞
FS x, t( )dx � − q0

4πS0T0
exp −S0a

2

4T0t
( ) (7b)

In the Supplementary Material we show how Knight and

Kluitenberg’s Fréchet kernels can be extended to accommodate

the Tx and Ty components of directional transmissivity. The

extended kernels are:

FTx x, t( ) � −q0 x + a/2( ) x − a/2( )
8π2DT2

0r1r2t
K1

r1r2
2Dt

( ) exp −r
2 + a2/4
2Dt

( )
(8a)

FTy x, t( ) � − q0y2

8π2DT2
0r1r2t

K1
r1r2
2Dt

( ) exp −r
2 + a2/4
2Dt

( ) (8b)

Note that these sum to FT(x,t). With Tx and Ty treated

separately, Eq. 3 becomes:

h t( ) � ∫
A
Tx x( )FTx x, t( )dx + ∫

A
Ty x( )FTy x, t( )dx

+ ∫
A
S x( )FS x, t( )dx (9)

2.2 Parameter estimation

Suppose that we wish to back-calculate transmissivity and

storativity from drawdowns measured in an observation well.

This comprises an ill-posed inverse problem as it is impossible to

assign unique values of transmissivity and storativity to all

drawdown-affected points within a heterogeneous aquifer. If

uniqueness is sought, it must be attained through regularisation.

In aquifer test analysis, regularisation is usually achieved by

assuming hydraulic property uniformity. In the present case, this

reduces inverse problem complexity to that of estimating just two

parameters, namely those that represent the transmissivity and

storativity of the entire medium. This simplifies the analysis

considerably. Meanwhile, it is hoped that the values of domain-

wide transmissivity and storativity that emerge from this process are

not too different from the “average” transmissivity and storativity of

the porous medium which hosts the pumping test. Shortly, we

examine whether this hope is well-placed.

We continue to assume a linear relationship between drawdown

and aquifer hydraulic properties. This is in accordance with the

FIGURE 1
A pumping and observation well. Also shown is a general point in two-dimensional space. The hydraulic properties at this point are functions of
location (x, y).
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theory on which most parameter estimation methods are based. In

practical parameter estimation, non-linearities in this relationship

are accommodated through iterative updating of sensitivities as

estimated parameter values change.

The matrix-vector equation on which linearized parameter

estimation is based can be written as follows:

h � Mp + ε (10)

In Eq. 10 the h vector contains differences between measured

drawdowns in the observation well and those that are calculated

using the domain-wide background values T0 and S0. Let us suppose

that there are n such drawdown measurements. The vector p

contains adjustments T and S to T0 and S0 (Eqs 2a, 2b). That is:

p � T
S

[ ] (11)

ε (another n-dimensional vector) encapsulates random noise

that is associated with measurements of drawdown. The n ×

2 matrix M can be written as follows:

M �
MT t1( ) MS t1( )
MT t2( ) MS t2( )

. .
MT tn( ) MS tn( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (12)

where MT(ti) and MS(ti) are Eqs 7a, 7b calculated at time ti.

The least squares solution to the inverse problem posed by

Eq. 10 [see, for example, Draper and Smith (1998)] is:

p- � (MtQM)−1MtQh (13)

whereQ is an observationweightmatrix. IdeallyQ is proportional to

the inverse of the covariancematrix of measurement noise C(ε). The

latter is normally assumed to be diagonal; so too is Q.

The elements of h can be calculated from distributed

transmissivity and storativity using Eq. 3 or Eq. 9. The choice

depends on whether or not we wish to characterise transmissivity

using T alone, or Tx and Ty separately. To reduce complexity of

the following equations, we first consider T on its own.

Equation 3 can be written in vector form as:

h � Fk. (14)

where k is the vector:

k �

T1

.
Tm

S1
.
Sm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

The subscripts that accompany T and S in the k vector of Eq.

15 signify discretisation of x-y space intom elements (wherem is

a large number) for the purpose of numerical integration. In the

present study we employ equal-sized, square cells and apply the

midpoint rule.

To specify the F matrix, we write the integrals in Eq. 3 as

summations:

hi � ∑
A
FT
i,jTj +∑

A
FS
i,jSj (16)

where i denotes the i’th time at which drawdown

measurements were made, and j denotes the j’th cell that is

used for spatial integration. With k defined by Eq. 15, F

becomes:

F �
FT
1,1 FT

1,m FS
1,1 FS

1,m

FT
n,1 FT

n,m FS
n,1 FS

n,m

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦ (17)

We now substitute Eq. 14 into Eq. 13 to obtain:

p- � (MtQM)−1MtFk (18)

FIGURE 2
(A) Drawdown in the observation well. (B) The derivative of drawdown with respect to the natural logs of global T and S.
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This can be re-written as:

p- � R′k (19)

where R′ is defined through this equation.

The matrix R′ has two rows and 2m columns. Each row of

this matrix depicts the manner in which elements of k are

summed (i.e., spatially integrated) in order to calculate the

pertinent element of p. That is, each row of R′ shows how an

estimated, global (or apparent) parameter (T or S) is related

to spatially-distributed, real-world hydraulic properties T

and S. We make this relationship explicit by re-writing R′
as follows:

R′ � RT−T1
′ RT−Tm

′ RT−S1
′ RT−Sm

′

RS−T1
′ RS−Tm

′ RS−S1
′ RS−Sm

′[ ] (20)

It is apparent from Eq. 20 that part of the estimated value of

global T is inherited from real-world values of S, and vice versa.

We refer to this phenomenon as “parameter contamination”

herein. The mapping of real-world, spatially-distributed T and

S to estimated T and estimated S can be visualized by plotting

respective elements of the R′matrix at the locations in space to

which they pertain. Four such maps are implied in the R′

matrix - two for the mapping of real-world T and S to T, and

two for the mapping of real-world T and S to S. To allow easier

identification of maps that are presented in the next section, we

re-write R′ as a composite matrix in which each sub-matrix

pertains to such a map.

R′ � RT−T′ RT−S′

RS−T′ RS−S′[ ] (21)

Each of the submatrices R′X-Y that appear in Eq. 21 has one

row and m columns. In the discussion that follows, we refer to

the contents of these columns as a “spatial averaging

function.”

Where transmissivity is considered to be directional, Eq. 15

becomes:

k �

Tx1

.
Txm

Ty1

.
Tym

S1
.
Sm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)

FIGURE 3
R′T−T for separated wells at five different times.

Frontiers in Earth Science frontiersin.org05

Manewell et al. 10.3389/feart.2022.1079287

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1079287


so that Eq. 21 becomes:

R′ � RT−Tx
′ RT−Ty

′ RT−S′

RS−Tx
′ RS−Ty

′ RS−S′[ ] (23)

2.3 A note on regularisation

The matrix R′ that is defined above bears some relationship

to the so-called “resolution matrix” that plays a prominent role in

the theory of regularised inversion; see, for example, Menke

(2018) and Aster, et al. (2019). However, a true resolution matrix

is square and generally rank-deficient; it relates fine-scale

parameter estimates to fine-scale, real-world hydraulic

properties. The name of our R′ matrix includes a prime in

order to distinguish it from the conventional resolution matrix.

Inversion theory makes it clear that an inevitable

consequence of inverse problem ill-posedness is that the

value that is estimated for a parameter at one particular

location is a spatial integral of parameter values over many

locations, and that this integration process can cross

parameter boundaries where parameters of more than one

type are simultaneously estimated. This is a “cost of

uniqueness” (Moore & Doherty, 2006). It is incurred

regardless of the adopted regularisation strategy.

Regularisation that is based on an assumption of hydraulic

property uniformity cannot evade this cost. Nor is hydraulic

property uniformity necessarily the best regularisation

strategy to use, if “best” is defined as a proclivity to yield

predictions whose error variance is minimized (Doherty,

2015). However, it is generally the most convenient strategy

to use for aquifer test analysis.

It is important to understand that the averaging function that

relates estimated to real-world parameters is an outcome of the

adopted regularisation strategy. It is not a foregone conclusion

that this averaging function is either “clean” or desirable, or yields

hydraulic property estimates that are immediately useful for

other purposes (for example, parameterization of a

groundwater model).

Conceptually, it is possible to design an inversion process

that specifically seeks estimates of hydraulic properties that are

averaged over space in a user-specified manner. However, this

process is somewhat cumbersome. It requires pre-inversion

construction of a matrix that characterizes “structural noise”

incurred by departures of real-world hydraulic properties from

uniformity. This, in turn, requires prior statistical

characterization of hydraulic property heterogeneity. For

details see Cooley (2004) and Cooley and Christensen (2006).

FIGURE 4
R′T−Tx for separated wells at five different times.
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In most cases we have no option but to pose an inverse problem

in a way that is amenable to rapid solution, and then to “take

what we can get” as far as hydraulic property averaging is

concerned.

The theory that is outlined above is linear. It is presented in

terms of departures from uniformity of real-world hydraulic

properties. Each element of R′ can therefore be viewed as a

derivative; as such, it specifies the change in the estimated value

of T or S incurred by a change in real-world T or S at a specified

subsurface location. In actual fact, the value of this derivative is

dependent on the spatially variable values of T and S; however in

practice, the elements of R′ are computed using To and So in

accordance with the above theory. Despite these limitations,

maps based on the submatrices that appear in Eqs 21, 23 can be

loosely viewed as depicting contributions to estimated T and S by

real-world, spatially-distributed T and S. Thus they address the

question of what estimated values of T and S really mean. The

linearity assumption yields an approximate answer to this question

that would be difficult to obtain in any other way.

2.4 A note on the methodology

It can be argued that the introduction of heterogeneity to amodel

domain erodes the applicability of Theis-type aquifer test analysis.

Evidence of its invalidity may be visible in time-correlated misfit

between measured drawdowns and best-fit Theis-evaluated

drawdowns.

Nevertheless, most aquifer tests are undertaken in heterogeneous

media. Furthermore, for many aquifer tests, at least some drawdown

misfit can be attributed to the heterogeneous nature of the medium

in which the test is undertaken. This is mostly ignored in real-world

aquifer test data interpretation. For convenience, misfit is generally

attributed to “measurement noise;” uncertainties in estimated T and

S that are incurred by this misfit are calculated accordingly. (We do

not address these uncertainties in this paper).We note that the above

derivations of spatial averaging functions are not invalidated by

heterogeneity-incurred misfit, for these derivations require no

assumptions pertaining to misfit sources or misfit statistics; they

only require that a least-squares objective function be minimized.

FIGURE 5
R′T−Ty for separated wells at five different times.
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3 An example

3.1 Specifications

We put the above theory to use by examining spatial

averaging functions for two configurations of a pumping well

and an observation well. In both cases, water is pumped at a rate

of 5,000 m3/day from an aquifer whose transmissivity is 100 m2/

day and whose storativity is 0.0001. (As stated above, because of

the linearity assumption on which the above theory is based, the

effects of aquifer heterogeneity on estimated T and S can be

studied without actually introducing heterogeneity to the

synthetic aquifer.) In the first case, the well separation is set

to 100 m. In the second case it is set to 1 m. We refer to these as

the “separated well case” and the “near-coincident well case”

respectively. Non-integrable singularities in some Fréchet kernels

prevent us from placing the pumping and observation wells at the

same place, so we employ a small well separation as a proxy for

coincident wells.

Drawdowns are sampled at a rate of 20 measurements per

decade in time, starting at 0.001 days and finishing at 10 days.

Drawdown measurement error is assumed to be random and

independent, with a standard deviation of 0.05 m. The diagonal

elements of theQmatrix of Eq. 13 are set to the inverse square of

this, namely 400.0. (Note that the results presented below are

invariant with multiplication of all elements of Q by a constant

factor.)

Integration of spatial averaging kernels is undertaken using

the midpoint rule over a uniform grid comprised of 2 m × 2 m

square cells. Integration is required over only one quadrant of the

x-y plane because of symmetry. The integration grid extends for

40 km in the x and y directions.

Note that the symmetry of this problem has another

important implication. All of the results presented below

remain the same if the pumping and observation wells are

interchanged.

In the present study Tx, Ty, T and S are log-transformed.

Hence relationships are sought between the logs of estimated T

and S and the logs of real-world hydraulic properties; Fréchet

integrals appearing in the previous section are modified

accordingly. Log-transformation enhances linearity at the

same time as it accommodates the wide range of values that

these hydraulic properties can adopt. To simplify the following

discussion, we mostly omit any reference to log transformation

when describing spatial averaging functions; however the reader

should keep their log-transformed status in mind.

FIGURE 6
R′T−S for separated wells at five different times.
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Figure 2A shows drawdown plotted against the log (to base

10) of time for the separated and near-coincident well cases.

Figure 2B plots the derivative of drawdown with respect to the

natural log of global T and the natural log of global S for these

same cases. The derivative of drawdown with respect to log T

for separated wells changes from positive to negative after

about 0.006 days (about 8 min). At very early times, an

increase in transmissivity accelerates the propagation of

drawdown from the extraction well to the observation well.

However after that time, an increase in aquifer transmissivity

induces less drawdown at the observation well for a given

amount of flow. No such reversal occurs for the near-

coincident well case.

3.2 Spatially integrated kernels

At any time during an aquifer test, the submatrices appearing

in Eqs 21 and 23 can be computed in the manner described

above. As such, they pertain to aquifer test interpretation that is

based on drawdowns that are sampled up until that time. Each

row of these submatrices comprises an integration kernel. In

accordance with Eq. 19 each element in each row is multiplied by

the corresponding element of k; that is, it is multiplied by T, Tx,

Ty or S pertaining to a point within the aquifer. These values are

then summed as a proxy for spatial integration.

Numerical integration of these kernels on their own yields

the following results at all times.

∫
A
RT−T′ x( )dx � 1.0 (24a)

∫
A
RT−Tx
′ x( )dx � 0.5 (24b)

∫
A
RT−Ty
′ x( )dx � 0.5 (24c)

∫
A
RT−S′ x( )dx � 0.0 (24d)

∫
A
RS−T′ x( )dx � 0.0 (24e)

∫
A
RS−Tx
′ x( )dx � −0.5 (24f )

∫
A
RS−Ty
′ x( )dx � 0.5 (24g)

∫
A
RS−S′ x( )dx � 1.0 (24h)

Collectively, Eqs 24a, 24d, 24e, 24h imply that the inverse

problem is well-posed, for if the aquifer is homogeneous, values

of T and S calculated using Eq. 18 are estimates of the true, global

values of T and S.

FIGURE 7
R′S−S for separated wells at five different times.
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Equations 24b, 24c, 24f, 24g are noteworthy. Suppose that

Tx is multiplied by a factor c and that Ty is divided by this

same factor. (Note that multiplication becomes addition in

the log domain). This introduces horizontal anisotropy to the

aquifer. According to the above equations, the estimated T is

unchanged; it is therefore equal to the geometric mean of Tx

and Ty. In contrast, estimated S is altered because the right

sides of Eqs 24f and 24g have opposite signs; its value is

decreased by a factor of c. However, if the real value of S

throughout the aquifer is then multiplied by c, estimated S

returns to its original value. Use of a variant of the Theis

equation that accommodates aquifer anisotropy

(Papadopulos, 1965) verifies that drawdowns at the

observation well are unchanged under these conditions.

The integrals that are presented in Eqs 24a to 24h can assist in

interpreting the kernel maps that are discussed below. For

example, early-time values of R′T−T for the separated-well case

are significantly negative in some areas. These must be balanced

by areas of R′T−T positivity so that the negative contribution to

the total integral is not only cancelled, but integrates to 1.0. These

positive values may be spread out over large areas, and so may

not be as obvious as intensely negative values when plotted in

space. Similarly, areas of negative R′S–Tmust be balanced by areas

of positive R′S−T so that R′S−T spatially integrates to zero.

3.3 Maps of spatial averaging function for
separated wells

This section provides maps of R′X−Y where X is either T or

S and Y is either T, Tx, Ty or S. Maps are presented for five

different times. In each case, the map pertains to Theis-based

interpretation of observation well drawdowns acquired up

until that time. In all of these figures, red is indicative of

positive values while blue indicates negative values. Shading

is linear; the zero contour is highlighted. When viewing these

plots, keep in mind that it is their spatial integral that

matters, for this is what determines an estimated value of

T or S.

The Supplementary Material presents these same maps, but

with logarithmic shading. This reveals the spatial characteristics

of these functions in low-intensity areas that are distant from the

pumping and observation wells. Because these areas are large,

they make significant contributions to the spatial integrals

though which T and S are calculated.

R′T−T is mapped in Figure 3. Unsurprisingly,

contributions of real T to estimated T expand outward

from the pumping and observation wells with time,

diminishing in magnitude, but covering a broader area. At

larger times, contours of equal R′T−T form ellipses with foci at

FIGURE 8
R′S−T for separated wells at five different times.
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the pumping and observation wells. In contrast, the early-time

pattern is complex, with high values between the wells, and

within lobes that extend beyond the wells. Small negative

cusps lie to the north and south of the line that joins the wells.

These negative cusps diminish in intensity with increasing

time, but never completely disappear.

Figures 4, 5 show that contributions made by real-world

Tx and Ty to Theis-estimated T are more complex than that

made by T alone. (See also the plots in the Supplementary

Material where logarithmic shading is employed.) Local T

anisotropy close to and between the wells can strongly affect

estimated T at very early times. However, contributions

from these areas fade with time as smoother R’T−Tx and

R′T−Ty kernels expand beyond the wells. At large times,

estimated T reflects true Tx that prevails at large

distances along the x axis and true Ty that prevails at

large distances along the y axis. Reciprocally, Ty at large

distances along the x axis and Tx at large distances along the

y axis have little effect on estimated T. That is to say,

estimated T reflects components of directional real-world

T that point towards the wells.

Figure 6 depicts the potential for contamination of estimated

T by real-world S. At early times, real-world S between the

extraction and observation wells can exert a considerable

influence on estimated T. Positive and negative contributions

of S to T are strong, but collectively integrate to zero as outlined

above.

The presence of a significant band of negatively-valued

R′T-S joining the pumping well to the observation well at

early times is easily explained. Low storativity in this area

hastens propagation of drawdown to the observation well; it

therefore “looks like” high local T. This affects estimated T

shortly after the commencement of pumping when the

derivative of drawdown with respect to global S and

global T are both positive; see Figure 2B. At later times,

contributions of real-world S to estimated T become

more diffuse. However an area of anomalous S between

the pumping and observation wells is never quite

“forgotten” by the Theis-based parameter estimation

process.

Figure 7 maps the contribution to estimated S by real-

world S. In contrast to spatial averaging functions that affect

estimated T, areas that contribute to estimated S tend to

remain close to the pumping and observation wells even at

late times. At very early times the pattern is complex; the wells

are joined by a sliver of intensely negative S contribution to S;

this is surrounded by areas of intensely positive contributions

of S to S.

FIGURE 9
R′S−Tx for separated wells at five different times.
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The limited expansion of R′S−S with time (and of other R′S-X
maps shown below) implies that estimates of S forthcoming from

aquifer test analysis pertain to a smaller area than do estimates of

T. Furthermore, this disparity in area grows with the length of the

test. These maps also imply that information pertaining to

aquifer storativity ceases to be acquired after a relatively short

time during a pumping test. This accords with identification by

authors such as Kruseman and de Ridder (1990) of a pseudo-

steady-state phase of drawdown development as time proceeds.

Figures 8–10 suggest a high potential for contamination of

estimated S by between-well T, especially Tx. High values of Tx in

this area can hasten propagation of drawdown from the pumping

well to the observation well, thereby replicating the impact of low

S. This effect is strong, and does not dissipate with time. In

hydrogeological contexts where the natural variability of T is

much greater than that of S, the potential for contamination of

estimated S by between-well anomalies in T may be very high.

The impact of real-world Ty on estimated S is complex.

Like that of T, it persists to late times. The near-well cusps of

positive influence suggest that strategically-located areas of

high Ty can gather water from distant areas that can slow the

growth of drawdown in the observation well. This appears as

high global S where these drawdowns are subjected to Theis

interpretation.

3.4 Maps of spatial averaging function for
near-coincident wells

As stated above, calculations for coincident wells are

complicated by non-integrable singularities in Fréchet kernels.

To avoid this problem, wells are placed 1 m apart. Furthermore,

we do not provide maps of R’S-X for the near-coincident case

because S cannot be estimated unless a dedicated observation

well is employed.

From Figures 11–14 it is apparent that maps of R′T−T and

R′T−S are radially symmetric, while those of R′T−Tx and R′T−Ty are
not. This is because anisotropy is the only thing that distinguishes

one direction from another when the pumping and observation

wells are coincident.

Figure 11 demonstrates that R′T−T expands continuously

with time, and is ubiquitously positive. Its rate of expansion is

not quite as fast as for separated wells. R′T−Tx and R′T−Ty also
maintain positivity over time and space. Their lobate shapes

indicate that estimated T is influenced by Ty that prevails in the

positive and negative y directions from the pumping well and by

Tx that prevails in the positive and negative x directions from this

well. These are the directions from which water flows towards the

pumped well. Because x and y directions are arbitrary for

coincident wells, a more general (but unsurprising) conclusion

FIGURE 10
R′S−Ty for separated wells at five different times.
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follows. It is that estimated T reflects the component of real-

world T that points in the direction of the pumped well.

Figure 14 shows that near-well, real-world S can have a

strong negative influence on estimated T at early times. Its

influence is somewhat subdued at later times, but is never

completely forgotten.

3.5 Radius of investigation

The radius of investigation of an aquifer test is discussed by a

number of the authors that are cited in the introduction to this

paper; see Bresciani et al. (2020) for a review. Different

definitions highlight different aspects of drawdown

propagation, and of responsiveness of drawdown to the

presence of a distant barrier. The subject matter of the present

paper suggests an additional definition, this being based on the

area of aquifer that contributes to Theis-estimated T.

As stated above, for separated wells contours of R′T−T at large
distances from the pumping and observation wells form ellipses

with foci at these wells. These ellipses collapse to circles for

coincident wells. We (somewhat arbitrarily) define the radius of

investigation of an aquifer test as the length of the major semi-

axis of an ellipse that encloses an area that contributes all but 10%

to the estimated value of T. Thus R′T−T within the ellipse

integrates to 0.9. (Note that the lengths of the semi-major and

semi-minor axes of this ellipse are almost equal at large distances

from the wells).

In Figure 15 the radius of investigation is plotted against time

for both separated and near-coincident wells. It is apparent from

this figure that T inferred from drawdowns that are measured in a

separate observation well “feels” more of the surrounding real-

world T than T that is inferred from drawdowns in a pumping

well. Supposedly, this increased area of spatial averaging provides

greater immunity from the effects of near-well anomalies in real-

world S and T. However it renders estimated T more susceptible

to the effects of system boundaries. It is of interest to note that the

difference in radius of influence between the separated and near-

coincident cases grows with time. For the parameters we chose

for this example it is roughly equal to the well separation after

0.5 days, and grows to more than double this after 10 days.

4 Discussion

Work that is documented herein extends previous

investigations into the relationship between aquifer-test-

inferred hydraulic properties and real-world hydraulic

FIGURE 11
R′T−T for near-coincident wells at five different times.
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FIGURE 12
R′T−Tx for near-coincident wells at five different times.

FIGURE 13
R′T−Ty for near-coincident wells at five different times.
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properties. We have formulated spatial averaging functions that

map real-world T, Tx, Ty and S to estimated T and S under the

assumption that the latter are estimated by fitting a Theis curve to

drawdown measurements. The analysis can be readily extended

to accommodate the fitting of other types of curves to raw or

processed drawdowns. These averaging functions are

approximate, for their formulation assumes only small

departures from hydraulic property uniformity. Nevertheless,

the insights that they provide are highly instructive.

Values of T and S that emerge from interpretation of

aquifer test data can be viewed as complex spatial averages of

real-world T and S over an area that expands with time. These

averaging functions cross parameter boundaries. Hence local

anomalies in real-world T can influence the estimated value

of S and vice versa.

The area over which real-world hydraulic properties are

averaged to estimate T is greater than that over which they are

averaged to estimate S. The difference between these two areas

grows with pumping time. Hence aquifer-test-estimated S

FIGURE 14
R′T−S for near-coincident wells at five different times.

FIGURE 15
Radius of semi-major axis of ellipse of influence for separated
and near-coincident wells.
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tends to reflect real-world S in closer proximity to the pumping

and observation wells than estimates of T reflect real-world T.

At the same time, estimates of S are vulnerable to corruption

by near-well anomalies in T. The reverse applies for pumping

tests of short duration; that is, estimates of T can be corrupted

by near-well anomalies in S. Importantly however, as the time

over which drawdown data are acquired increases and the area

over which T is averaged expands, opportunities for

contamination of estimated T by S decrease. During this

period the relationship between drawdown and the log of

time approaches linearity, and direct estimates of T are

available through Cooper-Jacob (1946) analysis of the slope

of the drawdown line. It follows that estimates of S

forthcoming from aquifer test analysis are often less reliable

than those of T, and may be somewhat dependent on the

disposition of T between the pumping and observation wells.

This is not a new conclusion; see, for example, Sanchez-Vila

et al. (1999) and Trinchero et al. (2008).

Intuition may suggest that separation of pumping and

observation wells yields insights into between-well T. Analyses

that are presented herein show that this applies for only a very

short time. Thereafter, significant contributions to interpreted T

are made by material that is beyond both of the extraction and

measurement wells. The longer an aquifer test proceeds, the less

does the separation of the wells, or the material between them

matter, and the more does the zone of expanding contribution of

real T to inferred T expand into an area that surrounds both of

these wells.

At no time during an aquifer test does estimated T reflect

real-world Tx more than real-world Ty regardless of the offset

direction of the observation well with respect to the pumping

well. However, the manner in which distributed Tx and Ty are

spatially averaged is very different. At very early times,

estimated T is positively influenced by Tx along the line

that joins the wells. However, it is also negatively

influenced by both Tx and Ty to the north and south of this

line. As time goes on, estimated T is much more reflective of

the component of real-world T that points towards the

midpoint of the wells than it is of the component of T in

any other direction.

Once a certain amount of time has elapsed, the radius of

investigation of a separated-well aquifer test becomes greater

than that of a coincident-well aquifer test. The ratio of the two

investigation radii continues to grow thereafter. The greater

averaging area for separated wells protects estimated T from

contamination by anomalies in near-well T and S. However, it

renders it more vulnerable to the effects of hydrogeological

boundaries.

We close the discussion by noting that this paper does not

address uncertainties of estimated T and S. It would not be a

difficult matter to derive expressions for these uncertainties

using the theory presented above. However this would require

statistical characterisation of the spatial heterogeneity of

subsurface T and S, including the scale of this

heterogeneity. This is beyond the scope of the present

paper. Furthermore, it can be argued that characterisation

of the uncertainties of the complex spatial averages of T and S

that are depicted herein may be of limited use to managers of a

groundwater system. Of greater use are the uncertainties of

arithmetic or geometric averages of system properties over

user-specified areas, for example, circles or ellipses that

circumscribe the pumping test wells, or the cells of a

groundwater model grid that spans the area affected by

pumping-induced drawdowns. These too can be calculated

through a simple extension of the theory provided herein; this

will be addressed in future work.

5 Conclusion

The relationships between aquifer-test-inferred

transmissivity and storativity and those that prevail in a

heterogeneous real world are complex, and sometimes non-

intuitive, particularly at early pumping times.

Insights into these relationships provided by the present

study can inform the design of an aquifer test. A matter of

particular interest at some sites may be whether observation wells

should be specially drilled so that pumping-induced drawdowns

can be measured at one or a number of distances and directions

from the pumped well. The incentive for such a designmay be the

gathering of information on near-well hydraulic property

heterogeneity.

Results presented herein suggest that if insights into

near-well hydraulic property heterogeneity are sought,

then there is no need to pump for a long time, for this

information emerges early in an aquifer test. They also

suggest that considerable sophistication is required in

interpreting multi-well drawdown data if this information

is to be retrieved. This sophistication extends well beyond

Theis-based analysis of drawdown in individual wells; the

complex averaging functions that link real-world hydraulic

properties to Theis-estimated T and S hide more than they

reveal.

An issue of considerable importance is how estimates of

transmissivity made through historical interpretation of aquifer

test data should be used in parameterisation of a groundwater

model. Before construction of a groundwater model, the

outcomes of previous hydrogeological investigations that have

been undertaken within its domain are generally reviewed. They

often reveal that many aquifer tests have been conducted in the

study area, some involving a single well, and some involving one

or multiple observation wells. In most cases, drawdowns have

been interpreted using Theis of Jacob-Cooper analysis.

The present study suggests that estimates of local

transmissivity and storativity (particularly the latter) obtained

in this way should be treated with caution. The spatial averaging
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of local hydraulic properties that is implied in these estimates

may preclude their direct transferral to proximal cells of a

groundwater model. At the same time, these estimates should

not be ignored. An advantage of using linear analysis to establish

the relationship between estimated and real-world hydraulic

properties, is that an extension of this analysis can provide

estimates of error variance between hydraulic properties

averaged over model cells and those obtained through aquifer

test interpretation. Probabilistic parameterisation of proximal

groundwater model cells can then follow. This is the subject of an

ensuing paper.
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