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Ensemble forecast plays a vital role in numerical weather prediction. Hence,

effectively extracting useful information from ensemble members to improve

precipitation forecasting skills has always been an important issue. Using the

ensemble forecast data on precipitation from the ECMWF-GEPS (Global

Ensemble Prediction System), we propose a stepwise correction method,

based on segmented hierarchical clustering (SHC), for forecast of daily

precipitation. This method employs a segmented correction scheme,

thereby generating more probabilistic forecast information and improving

forecasts. Validations of the SHC method have been performed by

comparison with two other methods, namely the ensemble-mean (EM)

method and the direct hierarchical clustering (HC) method. Our results

showed that deterministic forecast via SHC improved the ability to forecast

heavy precipitation in short- and medium-range forecast timeframes.

Therefore, SHC performed better than either EM or HC by effectively

extending lead time to impending severe rainfall by 2–3 days relative to the

other twomethods. SHC also demonstrated better performance than the other

methods through continuous forecast verification in summer 2021, and even

had better effects in the forecast of multiple heavy-precipitation cases,

including the Zhengzhou extreme rainfall on 20 July 2021. Overall, the SHC

method has great potential for improving ensemble rainfall forecasts in the

current operational system.
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1 Introduction

Ensemble forecast has long played an indispensable role in

numerical weather prediction. Compared with deterministic

forecast, ensemble forecast provides a feasible way to

complement a single deterministic forecast with an estimate of

the probability density function of forecast states (Li and Chen,

2002; Buizza et al., 2005; Zhu, 2005). Currently, the conventional

methods of precipitation ensemble forecast include mainly

ensemble quantitative precipitation forecast (QPF), frequency-

matching method (FMM), multiple statistics fusion technology,

rank histogram recalibration, and the probabilistic quantitative

precipitation forecast (PQPF) correction technique based on

logistic regression (Zhu and Toth, 2005; Stensrud and

Yussouf, 2007).

In addition to calculating the ensemble mean (EM) and

probability forecast, clustering analysis can be used to classify

ensemble members and interpret related multi-group

information. Ensemble members with high similarity can be

classified into one category to maximize the distance between

different categories and minimize the distance within the same

category (Yang et al., 2001). There was some progress in

ensemble clustering research in the 1990s. For example, the

Kohonen self-organizing artificial neural network, the tubing

algorithm, and the Ward algorithm were applied in ensemble

forecasts for further classification and interpretation (Ecker et al.,

1996; Molteni et al., 1996; Atger, 1999). Based on a given

ensemble clustering in a specific time window, Ferstl et al.

(2016) studied when and where forecast trajectories start to

diverge and can be indicated. Wang et al. (2019) showed that

the clustered ensemble forecasts using the farthest distance as a

matrix could improve precipitation area and intensity forecasts.

Based on the Global Ensemble Prediction System in the China

Meteorological Administration (CMA-GEPS), Luo et al. (2021)

introduced a dynamic discriminant approach into the traditional

Ward clustering analysis and found that the major categories of

atmospheric circulation have higher deterministic skills than EM.

Apart from these, the EM method only considers the average of

ensemble members at each spatial point and ignores the

continuity of adjacent spatial points; therefore, machine

learning can retain information that has been ignored by EM.

Currently, the accuracy of numerical weather forecast of

heavy precipitation is not high enough. Forecast skill

decreases rapidly with increased forecast lead time and rainfall

peaks are often underestimated (Chen, 2006; Shen et al., 2017;

Cassola et al., 2015; Nuissier et al., 2012). The frequency

matching method (FMM), a common segmented correction

tool constructed using observed and historical forecast data,

can improve deterministic forecasts of heavy precipitation

(Zhu and Luo, 2015).

Furthermore, the stepwise correction method based on

statistical regression and projection schemes can effectively

improve numerical forecasts (Wang et al., 2020). In addition,

Cressman’s stepwise correction (Cressman, 1959) and moving-

biweight correction methods have been used to improve the

quality of site-based temperature forecast (Xue et al., 2019).

Wang et al. (2019) used the stepwise circular-positioning

method to improve identification of southwest vortices based

on synoptic charts and grid data. Johnson et al. (2011) used a

non-traditional object-based threat score (OTS) to quantify the

dissimilarity of precipitation forecasts and found that the object-

oriented hierarchical-cluster-analysis algorithm performs much

better than the traditional hierarchical-cluster-analysis

algorithm.

In summary, segmentation correction, stepwise correction,

and cluster analysis have their respective application values in

correcting precipitation forecasts. Therefore, in this study, we

combined all these correction methods by introducing the

Isomap algorithm (a machine learning method) and

developed a new stepwise correction method based on

segmented hierarchical clustering (SHC). We then validated

the results of forecast of heavy rainfall. The remainder of this

article is organized as follows. In section 2, we describe the data

and methods. In section 3, we evaluate the performance of the

SHC method on forecast of summer rainfall. In section 4, we

further analyze and verify the performance of this method in

cases of extreme rainfall. Finally, we include a summary and

discussion in section 5.

2 Data and methods

2.1 Datasets

2.1.1 Observational data
The observation data used in our study were from the

0.05°×0.05° grid dataset of daily average precipitation provided

by the National Meteorological Information Center of the China

Meteorological Administration. The data were interpolated by

the thin disk spline method and the three-dimensional geospatial

information, and they were derived from two datasets. One is the

homogenized precipitation dataset of China’s national surface

meteorological stations developed by the National

Meteorological Information Center, and the other is a

0.5°×0.5° digital elevation model of China’s land mass

produced by resampling from GTOPO30 data (a global digital

elevation model with a horizontal grid spacing of 30 arc seconds).

The horizon range was (70°E–136°E, 0°N–55°N), and the

locations of grid points were consistent with those of the

following European Centre for Medium-Range Weather

Forecasts-Global Ensemble Prediction System (ECMWF-

GEPS) model.

2.1.2 ECMWF-GEPS real-time forecasts
The forecast data from ECMWF-GEPS are the daily

precipitation ensemble predictions with the initial forecast
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time at 12:00 UTC (Universal Time Coordinated). With a

horizon resolution of 0.5°×0.5°, it consists of 51 ensemble

members, i.e., 50 disturbance forecast members and 1 control

forecast member (Mullen and Buizza, 2002). In this study, to fully

predict the daily precipitation in JJA (from June to August;

summertime), we selected the period from May to August in

2019–2021 as the forecast period and selected the China region

(70°E–136°E, 0°N–55°N) as the forecast area. The forecast lead

time was from 1 to 10 days.

2.2 Forecasting methods

2.2.1 Hierarchical clustering
The purpose of clustering is to classify similar samples into

one group and dissimilar samples into different groups. The

sample distance within a group should be as small as possible,

while the sample distance between groups should be as large as

possible. Referring to the scheme of hierarchical clustering

(Johnson, 1967), for a given N samples (or objects) and

corresponding N×N distance matrices, the samples are divided

into n groups. When the criterion between groups is the sum of

squared deviations (or covariance), this clustering method

degenerates into Ward clustering. In this study, the complete

linkage criterion was used to find the most dissimilar samples

(i.e., the farthest distance) from the two groups in the cluster.

This part corresponds to the HC process in Figure 1.

2.2.2 Inversion correction method based on the
Isomap-mode

In the ensemble forecast, EM is defined as the average value

of all the ensemble members at each grid point (or each station),

which has been generally used as the most useful deterministic

forecast result. However, it only considers the average of the

ensemble members at each spatial point and ignores the

continuity of adjacent spatial points and the skewness among

all ensemble members. Hence, the Isomap algorithm in manifold

learning and the mode (or majority number) were used in this

study to improve the continuity of spatial points and decrease the

skewness of members.

In machine learning, the manifold learning methods mainly

focus on non-linear mapping and assume that, in a low

dimensional space, data lie on a densely sampled manifold to

be unrolled (Sedlmair et al., 2012). Among them, the Isomap

algorithm (Tenenbaum, 1997; Balasubramanian and Schwartz,

2002) is non-linear (global), unsupervised, and manifold-based.

The mode denotes the point of central tendency in the

statistical distribution, and it is rarely affected by the ensemble

extreme value (Hu et al., 2017). Therefore, the central tendency of

mapping point(s) on the Isomap low-dimensional field can be

obtained via the theoretical mode equation as follows:

Mode � Mean − 3 × Mean −Md( ) (1)
where Md is the median of samples. Based on the skewness of

samples, the theoretical mode reflects the central tendency of the

ensemble members.

The inverse distance weighting (IDW) method is used to

inverse the mapping field of central tendency, which is the

Isomap-mode field (IM) and defined as follows:

IM � ∑m

1
Wm × Fm( )/∑m

1
Wm( ) (2)

Wm � 1/d2
m (3)

where m represents the mth ensemble member; W and F are the

weights and fields of ensemble members, respectively; d denotes

the Euclidean distance between the low-dimensional point of

each member and the central tendency of all members. This part

corresponds to the Isomap-mode process in Figure 1.

2.2.3 Stepwise correction based on segmented
hierarchical clustering

In the clustering scheme, the data can be normalized to the

unit range [0, 1] to have the same order of magnitude, which can

improve the rationality of clustering and reduce the disturbance

of extreme values.

FIGURE 1
Flow chart of the SHC method.
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Moreover, a subspace clustering method can be used to carry

out data segmentation, and stepwise clustering can be used to obtain

a more accurate result (Zhang et al., 2004; Zhou et al., 2006). Hence,

in this study, daily precipitation was divided into 6 subspaces (0–0.1,

0.1–10, 10–25, 25–50, 50–100, and above 100; unit: mm)

corresponding to the precipitation categories: below light rain,

light rain, moderate rain, heavy rain, rainstorm, and heavy

rainstorm, respectively.

In the subspace of [Th min, Th max), for an arbitrary point in

the precipitation Field(x), the segmented-transformed function

Tfun(x) is as follows:

Tfun x( ) � Bin Field x( )( ), Th max < 100
Ori Field x( )( ),Th max ≥ 100

{ (4)

where Bin() is the binarization function. For the subspace of

[Th min, Th max), the upper limit of the threshold interval is used

as a binary segmentation as follows:

Bin x( ) � 1, x≥Th max

0, x<Th max
{ (5)

For the subspace above the magnitude of rainstorm, the

rainstorm characteristics of the original variables can be well-

demonstrated after clustering as follows:

Ori x( ) � x (6)

Meanwhile, for any correction interval threshold of the

subspace [Th min, Th max), the retention formula of

uncorrected spatial point (x) is as follows:

Corr Field x( ) � TrendField x( ),Trend Field x( )≥Th min

0,Trend Field x( )<Thmin
{ (7)

The SHC procedure was as follows. For each ensemble

member, the grades of the daily accumulated precipitation

were transferred to the binarization field via Eqs 5, 6 and to the

Tfun(x) via Eq. 4. Then, the group with the largest proportion

was obtained via HC (with 2 clusters) (Luo et al., 2021).

Trend_Field was calculated by the retained members via

the Isomap-mode (see Inversion correction method based on

the Isomap-mode), and its value was used in Eq. 7. Finally, the

above correction process was repeated, in order, for different

precipitation grades. The parts above correspond to the binary

and corrected processes in Figure 1.

In the SHC method, binary clustering can better

characterize and improve probability forecast information

from ensemble members. Additionally, the relationship

between ensemble members can be represented by the

Isomap method, and the deterministic forecast can be

obtained by extracting sufficient probabilistic information

from ensemble forecasts.

2.2.4 Comparison of parallel tests
To better evaluate the prediction skills of the SHC method, a

set of parallel tests were designed to demonstrate the advantages

of the SHC method. In parallel tests, direct HC with the original

ensemble forecast was adopted. The EM of the group with the

largest proportion in HC was then taken as the final result.

2.3 Validation methods

When evaluating ensemble deterministic forecasts, Threat

Score (TS) and Equitable Threat Score (ETS) are commonly used

indexes to evaluate precipitation forecasts (Mesinger, 2008; Liu

et al., 2021). In this study, they were also adopted to compare the

performance of the EM, HC, and SHC methods. Thresholds of

25 mm, 50 mm, and 100 mm were selected to focus on forecasts

of heavy rainfall.

2.3.1 Threat score
For a given threshold, TS is defined as follows:

TS � NA/ NA +NB +NC( ) (8)

where NA, NB, and NC represent the number of successful

forecasts, missed forecasts, and false forecasts, respectively. TS

ranges from 0 to 1, and the larger TS the better the prediction.

2.3.2 Equitable Threat Score
As an improvement based onTS, ETS penalizes false andmissed

forecasts and better reflects deterministic forecasts. It is expressed as

follows:

ETS � NA − Ra( )/ NA +NB +NC − Ra( ) (9)
Ra � NA +NB( ) · NA +NC( )/ NA +NB +NC +ND( ) (10)

whereND represents the number of times that neither forecast

nor observation reaches the threshold, and Ra is the

mathematical expectation of stochastic forecast (NA) when

the number of false forecasts equals the number of missed

forecasts. Hence, if both results have higher TS and ETS, it

indicates better forecast performance that is not due to false

and missed forecasts.

2.3.3 The increment and growth rate of scores
The advantages and disadvantages of different methods can

be quantitatively determined by the increment and growth rate of

TS or ETS. The latter can also be used to express the effects of

improvement due to use of SHC compared to the EM method.

Expression of increment and growth rate are as follows:

Increment � Score2 − Score1 (11)
Growth Rate � Score2 − Score1( )/Score1 (12)
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3 Evaluation of the SHC method in
forecast of summer rainfall

3.1 Comparisons of precipitation forecast
skills

3.1.1 Evaluation of the forecasts at different lead
times

In general, at the same lead time, both TS and ETS decreased

as the precipitation threshold increased. Hence, the histograms of

TS/ETS are sequentially overlapping in Figure 2. As shown in

Figure 2, both TS and ETS decreased with increased lead time due

to initial signal loss and model errors. At the same lead time,

compared with EM, the HC method had slightly higher scores,

but the TS was smaller at the 25 mm threshold. This indicates

that the HC method brings some limited or negative corrections

to precipitation forecast. In contrast, the SHC method showed

stably improved forecasts with higher TS/ETS relative to EM and

HC for the thresholds of 25 mm, 50 mm, and 100 mm. Therefore,

compared with the HC and EM methods, based on probability

information, the SHC method extracted useful signals from

ensemble forecast members more effectively, resulting in

remarkably improved heavy precipitation forecasts, which are

generally underestimated in ensemble forecasts.

As has been reported, ETS removes the contribution from the

hits by chance in random forecasts, and thus has merit in

offsetting false gain by overestimation in TS (Hung et al.,

2020). In our case, the ETSs of the EM, HC, and SHC

methods were all lower than the TSs, which indicate that all

three methods were overfitting. However, the ETSs (Figure 2B)

suggest the same conclusions as the TSs. These data indicate that

the SHC method is still better than the EM and HC methods and

provides better precipitation forecasts.

The forecast of precipitation above 25 mm is important for

debris-flow forecast. There were obvious differences in the 25-

mm-threshold TS among the EM, HC, and SHC methods

(Table 1). The increments of TS were less than 0 for HC,

reflecting a negative effect and indicating that HC is

unsuitable for correcting forecasts of heavy rainfall. In

contrast, using the stepwise correction and probability-forecast

information, the SHC method had a much higher TS than the

EMmethod at all lead times. More specifically, its corresponding

growth rates increased rapidly with increased forecast lead time.

These results indicate that the SHC method can effectively

capture magnitude information that either EM or HC fails to

capture, thus greatly improving precipitation forecasts,

particularly at longer lead times. Although ensemble forecasts

diverge gradually with increased forecast time, the SHC method

can effectively reintegrate the information of ensemble members

and obtain better deterministic forecasts.

Additionally, the average TS of the EM method was 0.078 at

the 6-day lead time, while that of the SHC reached 0.079 at the

10-day lead time, indicating that the SHC method was able to

provide the same forecast performance 4 days earlier than the

EMmethod. Similar conclusions were reached based on ETS data

(Table 2). The SHC method provided the same skilled forecast at

the 10-day lead time as the EM method at the 7–8-day lead time.

These data demonstrate that the SHC method provides effective

precipitation forecasts earlier.

The forecast of heavy rainstorms (daily precipitation greater

than 100 mm) is one of the most difficult issues in numerical

weather prediction. Its predictability is usually lower than that of

heavy rainfall due to the limitations in the model and the errors of

initial values. As shown in Tables 3, 4, the skill growth rates of HC

were all negative for both TS and ETS, except at the lead time of

3–4 days, which indicates that the correction of HC is unstable.

FIGURE 2
(A) TS and (B) ETS of the different (correction) forecast methods used in prediction of daily precipitation in summer from 2019 to 2021; blue,
orange, and green denote 25 mm, 50 mm, and 100 mm, respectively; EM, HC, and SHC are denoted as colors from shallow to deep.
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TABLE 1 TS, its increment (Diff_HC and Diff_SHC), and its growth rate related to 25 mm precipitation using EM, HC, and SHC to analyze data from summer
2019 to 2021.

Lead days EM HC SHC Diff_HC Rate_HC (%) Diff_SHC Rate_SHC (%)

1 0.202 0.202 0.209 0.000 −0.2 0.007 3.5

2 0.168 0.168 0.179 0.000 −0.1 0.011 6.7

3 0.143 0.142 0.159 0.000 −0.1 0.016 11.3

4 0.121 0.121 0.141 −0.001 −0.5 0.020 16.3

5 0.098 0.098 0.123 −0.001 −0.7 0.024 24.8

6 0.079 0.080 0.113 0.000 0.1 0.034 42.6

7 0.065 0.065 0.100 −0.001 −1.0 0.035 54.1

8 0.052 0.052 0.088 0.000 −0.1 0.036 68.7

9 0.044 0.043 0.081 0.000 −0.7 0.038 85.9

10 0.036 0.035 0.078 0.000 −1.1 0.042 117.5

TABLE 2 Same as Table 1, but for ETS.

Lead days EM HC SHC Diff_HC Rate_HC (%) Diff_SHC Rate_SHC (%)

1 0.178 0.178 0.181 0.000 −0.2 0.002 1.2

2 0.146 0.146 0.150 0.000 −0.2 0.004 3.1

3 0.122 0.122 0.130 0.000 −0.1 0.008 6.5

4 0.102 0.101 0.112 −0.001 −0.5 0.010 9.4

5 0.081 0.080 0.093 −0.001 −0.8 0.012 15.3

6 0.064 0.064 0.084 0.000 0.1 0.020 31.3

7 0.051 0.050 0.071 −0.001 −1.1 0.020 39.4

8 0.039 0.039 0.059 0.000 −0.2 0.020 49.5

9 0.032 0.032 0.052 0.000 −1.0 0.020 61.8

10 0.025 0.025 0.048 0.000 −1.4 0.023 91.3

TABLE 3 Same as Table 1, but for TS related to 100 mm precipitation (order of magnitude: 10−1).

Lead days EM HC SHC Diff_HC Rate_HC (%) Diff_SHC Rate_SHC (%)

1 0.252 0.251 0.344 −0.002 −0.6 0.092 36.3

2 0.126 0.116 0.247 −0.010 −7.6 0.121 96.7

3 0.048 0.057 0.175 0.008 17.4 0.127 263.1

4 0.015 0.021 0.122 0.006 36.7 0.107 712.7

5 0.008 0.005 0.097 −0.003 −34.7 0.090 1193.3

6 0.006 0.003 0.085 −0.002 −38.2 0.080 1450.9

7 0.004 0.003 0.056 −0.002 −36.6 0.052 1270.7
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Therefore, HC is only useful for limited-range weather forecasting

because HC can neither provide better results effectively when

ensemble members are too convergent at initial lead times, nor

extract information from the members with a too large spread in

medium-range weather forecast. In contrast, the SHC method

showed improvement in both TS and ETS at all lead times. The

TS/ETS increments of the SHC method were 10 times larger than

that of the EM method at the 5-day lead time, demonstrating that

the SHC method captured information even during the poor-

performing period of the EM method. To a certain extent, the

SHC method successfully captured rainstorm and heavy rainstorm

information for all lead times, and, remarkably, had improved

forecast performance even for extreme heavy rainstorms.

Furthermore, as with the 25-mm-threshold forecast, the SHC

method also demonstrated the same performance (0.097×10–1) at

the 5-day lead time as the EM method at the 2–3-day lead time.

Again, these data demonstrate that the correction of SHC leads to

effective extraction and utilization of useful information from

ensemble members.

3.1.2 Comprehensive evaluation of real-time
forecasts in 2021

We further evaluated the performance of three methods (EM,

HC, and SHC) in predicting weather for summer 2021. In this

TABLE 4 Same as Table 1, but for ETS related to 100 mm precipitation (order of magnitude: 10−1).

Lead days EM HC SHC Diff_HC Rate_HC (%) Diff_SHC Rate_SHC (%)

1 0.247 0.245 0.331 −0.001 −0.6 0.085 34.4

2 0.122 0.113 0.235 −0.010 −7.9 0.113 92.1

3 0.046 0.054 0.162 0.008 17.6 0.116 252.4

4 0.014 0.019 0.109 0.005 40.0 0.095 706.7

5 0.006 0.004 0.084 −0.003 −41.3 0.078 1234.9

6 0.004 0.002 0.072 −0.002 -47.7 0.068 1543.2

7 0.003 0.002 0.044 −0.002 -48.4 0.041 1312.9

FIGURE 3
Time series of TS and its growth rate related to 25 mm precipitation with lead time of 1(A), 3(B), 5(C), and 7(D) days in summer 2021; green,
orange, and blue lines denote EM, HC, and SHC, respectively, corresponding to the left axis; the grey bars denote the SHC growth rate compared
with EM, corresponding to the right axis.
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sub-section, only TS was used for evaluation because the

increasing rate of ETS may be abnormal when values are

negative.

The daily time series of TS for 25-mm-threshold forecasts

(Figure 3) demonstrates that the TS of the HC method oscillated

around that of the EM method, while the SHC method had the

highest TS series overall, except in a few cases. The TS growth

rate of the SHCmethod increased greatly with forecast lead time,

indicating that the performance of the SHC method is more

stable than that of the EM method (the TS of the EM method

decreased rapidly with increased lead time). The SHC method

corrects the model forecasts by extracting information from

divergent ensemble members at different lead times, which is

more apparent at longer lead times when the spread of the

ensemble becomes larger. The best correction capacity of the

SHC method tended to occur at 3–5-day lead times., and similar

results were found for the 50-mm-threshold TS series (data not

shown).

The TS series of 100-mm-threshold forecasts are shown in

Figure 4. In addition to the conclusions summarized above,

Figure 4 demonstrates the advantages of the SHC method for

heavy rainstorm forecast. At the lead time of 1–3 days, the SHC

method showed a relatively higher TS and was effective, even if

the EM method failed to predict a heavy rainstorm. Especially

with longer than a 5-day lead time, the TS of both the EM andHC

methods became 0, completely unskilled, while the SHC method

still provided skilled precipitation forecasts. In summary, these

data demonstrate that, even for heavy rainstorms, the SHC

method can improve the short-range (1–3 days) forecasts and

even medium-range (4–7 days) forecasts that are not achievable

with the EM and HC methods.

4 Verification and analysis for cases of
extreme rainfall

In this study, we have proposed a new method of SHC to

elevate the skill of severe rainfall forecasting. To illustrate the

advantages of the SHC method, direct application using data

from typical cases of severe weather events was needed. Specific

cases of extreme weather were selected due to status as well-

known instances of severe rainfall with typical features that

occurred over Eastern China during the period of data

availability.

4.1 Forecasts of the Zhengzhou “7.20”
extreme heavy rainstorm event

The rainstorm that occurred from 18–22 July 2021 was the

heaviest rainfall event in Zhengzhou. The daily precipitation at

eight national meteorological stations broke historical records for

extreme weather. During the event, a typhoon near the southern

coast of China and the subtropical high provided sufficient water

FIGURE 4
Time series of TS related to 100mmprecipitationwith lead time of 1 (A), 3 (B), 5 (C), and 7 (D) days in summer 2021; green, orange, and blue lines
denote EM, HC, and SHC, respectively.
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vapor to inland areas (Wei et al., 2022). The heaviest

precipitation occurred from 20–22 July 2021, so we evaluated

forecasting results of the three methods based on data available

for use in forecasting the weather for these days.

As shown by observations of precipitation on 20 July 2021

(Figure 5A), two obvious heavy rainfall areas, with daily rainfall

greater than 250 mm, were centered in Zhengzhou of Henan

Province and in the coastal area near Yangjiang of Guangdong

Province. Over the northwestern Pacific, the rainband was

accompanied by the typhoon. Afterward, the Zhengzhou rainband

gradually moved northward and weakened; the Yangjiang rainband

also weakened and gradually moved westward (Figures 5E, I).

The HC-correction forecasts (Figures 5C, G, K) did result in an

evident improvement compared to the EM forecasts, and the latter

was greatly weakened, with small precipitation amplitude (Figures

5B, F, I). It was difficult to extract information and correct forecasts

using the HC method because the ensemble members were highly

consistent at 1-day lead time (see Tables 1–4). The obvious

differences between the SHC and HC methods for this “7.20”

event were reflected in the magnitude and center location of

maximum precipitation (Figures 5D, H, L). As a deterministic

precipitation forecast in GEPS, EM had obvious damping effects

on the precipitation amplitude, which was chiefly responsible for the

missing forecasts of heavy precipitation and false forecasts of weak

precipitation. Therefore, themaximumprecipitation and its location

was used to quantitatively evaluate the performances of different

methods (Tables 5, 6).

On the first day (20 July, Figures 5A–D), EM gave a

precipitation center more westward than the observation and

could not accurately predict the rainfall area. However, the SHC

method made a substantial correction. The precipitation center was

shifted eastward in the forecast provided by SHC (Figure 5D) and

was more consistent with the observation. Quantitatively, the bias of

precipitation center was greatly reduced using SHC, from 1.26° (EM)

to 0.7° (SHC), which is about 60 km, indicating that the SHC

method can effectively correct the rainfall location, to a certain

extent, at 1-day lead time. On the second day (21 July, Figures

5E–H), the SHC method captured similar information compared

with the EM method, but predicted a slightly increased rainfall

magnitude. On the last day (22 July, Figures 5I–L), the precipitation

distribution pattern was better predicted by the SHC method,

although the indicated center location was more northward than

the observation. Interestingly, from observation, there was an extra

east-west rainband located to the south of the main south-north

rainband, which was also predicted by the SHC corrected forecast

(Table 5).

Based on maximum precipitation forecast using the different

methods (Table 6), EM provided forecasts that were

underestimations relative to observation. The effective

correction of the rainfall forecast by the SHC method reached

60 mm–90 mm, and the corrected forecasts were closer to the

observations. In addition, the maximum precipitation of all

members still did not reach the observed amplitude, limiting

the upper boundary of both the EM and SHC methods.

FIGURE 5
Daily cumulative precipitation predicted by the different methods at 1-day lead time. Observed precipitation from 20–22 July 2021 (A, E, I);
predictions for each day, respectively (B–D, F–H, J–L); the black triangle is the grid point of max precipitation in the subplot.
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4.2 Forecasts of two rainfall cases in 2020

To better verify the SHC method, two additional rainfall

events in 2020 were analyzed. One was the large-scale heavy

rainstorm that occurred in Jiangsu Province on 22 July 2020,

which had an east-west rain belt (Figure 6A). The other was the

heavy rainfall that occurred in North and Northeast China on

12–13 August 2020, which had a north-south rainband and a

southwest-northeast rainband (Figures 6D, G).

As shown in Figures 6A–C, although the area of rainstorm

(50–100 mm) was well-demonstrated by the EM method, the

heavy storm (>100 mm) on 22 July 2020 was barely captured

using EM. In contrast, the SHCmethod provided a better forecast

of rainfall intensity. In the case of the storm on 12 August 2020,

the EM forecast presented a precipitation center at 39°N, but the

magnitude of the rainband was not large enough. The SHC

correction greatly increased the overall magnitude of the

rainband and the area predicted to receive precipitation of

25 to 100 mm corresponded well with observation data

(Figures 6E, F). In addition, another rainband in the south

was better captured by the SHC method.

The SHC method generally increased the predicted

precipitation intensity through utilizing ensemble probability

forecast information, and had remarkably effective corrections

for extreme precipitation; e.g., for the area with precipitation over

100 mm in the 22 July 2020 case and for the area with

precipitation of 25–100 mm in the 12 August 2020 case. For

the forecasts of multiple rainbands, such as in the case on

13 August 2020, the SHC method provided better indication

of different rainbands by increasing rainfall intensity (Figures

6H, I).

Overall, the SHC method presented more detailed

precipitation distributions that were closer to the observations

compared to the EM and HC methods. The improvement in

prediction is due to the Isomap-mode inversion scheme used in

the SHC method, which fully considers the integrity of each

member. For the EM method, an ensemble mean on Eulerian

points misses, to some extent, the spatial continuity of ensemble

forecast members, which is maintained in the Isomap-mode. By

reintegrating the information of members, the SHC method

obtained a corrected deterministic forecast with more

probabilistic forecast characteristics.

5 Summary and discussion

It is a challenge to fully extract ensemble member

information for improving heavy rainfall forecasts. The SHC

method proposed in this study effectively used probabilistic

information from ensemble forecasts and improved

deterministic forecasting skills by using segmented correction

based on hierarchical clustering. To reveal the advantages of SHC

in improving precipitation forecasts, we compared it with the EM

and HC methods.

The SHC method performed better in terms of TS/ETS

scores at the thresholds of 25 mm, 50 mm, and 100 mm based

on the ECMWF-GEPS real-time forecasts in 2019–2021. The

results confirmed the ability of the SHC method to effectively

capture heavy rainfall signals in ensemble forecasts and

quantitatively extract and utilize the useful information

from ensemble members. Furthermore, the SHC method

had better correction in the continuous forecast period and

for multiple cases of heavy rain compared to the other two

methods, indicating good performance by SHC in obtaining

earlier-effective corrected forecasts for extreme rainfall

events.

TABLE 5 Locations of maximum precipitation and their differences in distance when comparing data from SHC (or EM) and observation in subplot (see
Figure 5).

0720 0721 0722

Location Distance (°) Location Distance (°) Location Distance (°)

Obs 34.65°N 35.80°N 36.15°N

113.25°E 114.25°E 114.35°E

EM 34.50°N 1.26 36.50°N 0.74 37.00°N 1.20

112.00°E 114.00°E 113.50°E

SHC 34.00°N 0.70 36.00°N 0.78 37.00°N 0.92

113.00°E 113.50°E 114.00°E

TABLE 6 Maximum precipitation amounts (mm) predicted by the different
methods and obtained via observation in subplot (see Figure 5).

0720 0721 0722

Obs 548.4 424.2 399.6

EM (Max) 113.0 (326.7) 165.4 (345.4) 147.1 (332.3)

SHC 174.2 228.4 238.3
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Moreover, the SHCmethod did not require a training process

with historical data and was based only on the probability

information from ensemble members. Therefore, SHC

correction depended only on the quality of the ensemble

forecast. As a new interdisciplinary method, SHC integrates

segmentation, clustering, and manifold learning in

meteorology and machine learning. Therefore, it is also a

method that can be used to correct the deterministic forecast

from the probabilistic forecast based on the characteristics of

ensemble members.

Theoretically, the ensemble forecast usually uses as many

forecast members as possible to achieve the best description of

the initial field and reduce the influence of observation and

analysis errors on forecasts. However, it is not easy to forecast

weather situations based on information from many members.

Thus, the EM method (smoothing the random disturbance

components of individual members) has become one of the

most useful deterministic forecasts. As reviewed in the

introduction, numerical weather prediction operation centers

worldwide use different methods to cluster the ensemble

forecasts. For deterministic forecast, many studies have used

segmented and stepwise correction methods to improve the

forecast effectiveness. In this study, based on machine

learning, we combined the advantages of the methods

mentioned above and developed the SHC method. The SHC

method can achieve certain forecast correction with

interpretability by providing a deterministic forecast, including

the probability of ensemble forecasts. The parameters of the SHC

method remained relatively simple in this preliminary study on

precipitation forecast. Optimization of other parameters are still

FIGURE 6
Daily cumulative precipitation predicted by the different methods at 1-day lead time. Observed precipitation for 22 July 2020 (A–C) and
12–13 August 2020 (D–I).
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needed to further improve forecasts based on more datasets from

different ensemble forecasting systems. This new SHC method

has been validated through applying it to the ECMWF ensemble

forecast and comparing results with the traditional EM method

that is widely used in operational platforms. Our results

demonstrate that the SHC method has good potential for

operational use due to its hindcast-independent advantages,

and particularly for improvement of operational forecasts of

severe rainfall.
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