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Efficient and automatic landslide detection solutions are beneficial for regional

hazard mitigation. At present, scholars have carried out landslide detection

based on deep learning. However, continuous improvement regarding the

accuracy of landslide detection with better feature extraction of landslides

remain an essential issue, especially small-proportion landslides in the remote

sensing images are difficult to identify up to date. To address this issue, we

propose a detection model, the so-called Dynahead-Yolo which is designed by

combining unifying scale-aware, space-aware, and task-aware attention

mechanisms into the YOLOv3 framework. The proposed method focuses on

the detailed features of landslide images with variable proportions, improving

the ability to decode landslides in complex background environments. We

determine the most efficient cascade order of the three modules and compare

previous detection networks based on randomly generated prediction sets

from the three study areas. Compared with the traditional YOLOv3, the

detection rate of Dynahead-Yolo in small-proportion landslides and complex

background landslides is increased by 13.67% and 14.12%, respectively.
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1 Introduction

Landslide is a common and extremely hazardous natural phenomenon, that poses

serious threats to human lives and cause huge economic losses (Clague et al., 2012; Alam,

2020; Valdés Carrera et al., 2021). After a landslide, it is essential to determine quickly and

accurately the magnitude and distribution area of the landslides for subsequent rescue. It

is also helpful to update the existing landslide database and provide data support for

landslide research (Hungr et al., 2014; Ghorbanzadeh et al., 2019; Guzzetti et al., 2012).

Traditional in-site investigation is a common method of landslide investigation,

requiring surveyors spend plenty of time and efforts during in-site surveys. With the
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booming and recent development of remote sensing technology,

the resolution of remote sensing images has significantly

enhanced, which provides potential to obtain large-proportion

feature information and has been widely used in geological

hazard interpretation (Meena et al., 2022; Liu and Wu, 2016).

Currently, there are four major types of methods for landslide

identification using remote sensing images, i.e., visual

interpretation, pixel-based, object-oriented, and artificial

intelligence methods (Ju et al., 2020; Ju et al., 2022). Visual

interpretation is a conventional method of using remote sensing

images to obtain landslide information (Xu et al., 2014; Petschko

et al., 2016; Fiorucci et al., 2019). It requires experts to

comprehensively utilize image features such as object shape,

texture, and spectrum, and then combine some non-remote

sensing data for analysis and reasoning. This method

consumes a lot of time and energy, and has limitations such

as large errors and low efficiency (Hölbling et al., 2014; Moosavi

et al., 2014;Wang et al., 2017; Zhao et al., 2017; Singh et al., 2021).

Pixel-based methods usually uses binarization algorithm to

determine whether a pixel of the image belong to the

landslide (Li et al., 2014; Han et al., 2019). Recently

development of this kind of methods refers to Han et al.

(2022), in which we proposed a pixel-based landslide

interpretation method and designed a multi-strategy feature

fusion strategy, which combined the terrain slope of the

detection object, the main axis features and the Normalized

Difference Vegetation Index (NDVI) for screening, to reduce

the false detection rate of landslides. However, it is difficult to

distinguish them correctly when there are objects in the image

with spectral characteristics similar to those of landslides. The

object-oriented recognition method segments remote sensing

images by setting certain thresholds based on spectrum,

shape, and texture information (Sandric et al., 2010; Eeckhaut

et al., 2011; Lu et al., 2011; Stumpf and Kerle. 2011). However, the

method is less applicable since the pre-defined feature thresholds

are varying case by case, and therefore need empirical adjusting.

The above remarkable methods attempt detect landslides in

remote sensing images. These methods have promoted the

progress of landslide detection research to varying degrees.

However, inherent limitation should be noticed, such as a

long detection time and low accuracy in the case of the

complex background in remote sensing images. With the

continuous development of artificial intelligence, big data and

other technologies, recent attempts are trying to apply artificial

intelligence (AI)-basedmethods for landslide detection. AI-based

methods can be generally divided into machine learning and

deep learning methods. Many studies have been performed on

the development of machine learning landslide detection

algorithms such as primary logistic regression, support vector

machines, Bayesian methods, and decision trees (Parker, 2013;

Korup and Stolle, 2014; Hu et al., 2019; Piralilou et al., 2019). This

type of methods generally requires manual construction and

selection of features, followed by classification with a classifier,

which complicates the algorithm and limits real-time

applications. The main algorithms of deep learning currently

include Convolutional Neural Networks (CNNs) (Chumerin,

2017), Recurrent Neural Networks (RNNs) (Zaremba et al.,

2014), and Generative Adversarial Networks (GANs)

(Goodfellow et al., 2014). CNN-based methods have excellent

non-linear mapping capabilities and can automatically learn

features of landslide data (Hao et al., 2016; Vargas et al.,

2017), which can quickly and accurately identify landslides.

Ghorbanzadeh et al. (2022a) established a benchmark dataset

by manually annotating landslide images and evaluated the

performance of 11 deep learning models for landslide

boundary detection. Furthermore, they applied the U-Net and

ResU-Net models to landslide detection from free satellite data

for the first time. They train the model using three case study

regions and evaluate the transferability of the model through

different training-test scenarios (Ghorbanzadeh et al., 2021). A

recent development of the U-Net model for landslide detection

could be referred to Fu et al. (2022). Cai et al. (2021) introduced

dense convolutional networks into landslide detection, and

significantly improved the detection ability of the model

through measures such as feature reuse and feature

enhancement. It is challenging to detect landslides in complex

backgrounds based on CNN, but there are some excellent studies

that have achieved such goals. Ju et al. (2020) combined deep

learning and Google Earth data to detect historical landslides in

typical loess regions in China. They established a database of

historical loess landslides and used mask region⁃based

convolutional networks to automatically identify loess

landslides. Yu et al. (2022) realized the detection of loess

landslides in complex backgrounds by improving the You

Only Look Once X (YOLO X) model. Ghorbanzadeh et al.

(2020) proposed the Dempster–Shafer model based on

convolutional neural networks and combined it with the

analysis of terrain factors to reduce the false detection rate of

landslides with complex backgrounds. According to the different

forms of landslide detection results, these CNN-based detection

models are mainly divided into two categories. The first type is

the segmentation model represented by U-Net and ResNet.

These kinds of models classify the foreground and

background based on pixels and predicts the boundaries of

landslides (Jiang et al., 2021; Liu et al., 2022). The second type

is the bounding box detection model represented by YOLO and

Faster R-CNN. The method first divides the input image into

patches of different sizes, and then classifies each sub-image to

distinguish whether the image patch is a landslide (Hou et al.,

2022; Liu et al., 2022). The final predicted results are bounding

boxes of landslides.

Attention mechanism originate from the study of the human

visual system, which can automatically locate useful information

and suppress useless information (Mnih et al., 2014). Dai et al.

(2021) compared the effects of introducing multiple attention

channels, a single attention channel or no attention channel on
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the model detection ability through experiments. The results

show that models that introduce multiple attention channels

perform best for detection. To improve the model detection

ability of complex background landslides, some studies have

introduced an attention mechanism into the model. Ji et al.

(2020) designed a novel 3D attention module to emphasize the

unique features of landslide images. Cheng et al. (2021)

introduced an attention module designed based on the visual

system and incorporated it into the yolov4 model for training,

which improved the attention to landslide features and reduced

background noise. Amankwah et al. (2022) introduced an

attention module into the deep network structure to improve

the ability to suppress background noise. The research results

show that the attention module can significantly improve the

landslide detection performance. The above research shows that

introducing attention mechanism into the model is an effective

way to improve the detection ability.

Although the above studies have employed deep learning

algorithms for landslide detection and achieved satisfactory

results, there are still some limitations. First, the majority of

these models are focusing on the impact of a single attention

mechanism on the detection performance, ignoring the

composite effect of multiple attention mechanisms. Dai et al.

(2021) compared the detection effect of single attention

mechanism and compound attention mechanism, and the

results proved that the compound attention mechanism

achieves better detection performance. Besides, some landslide

detection models mainly focus on large-proportion landslide

images. For landslide images with complex backgrounds and

different proportions in their size, especially small-proportion

landslide images, the resulting false detection rate is high. The

problem with respect to the low detection rate of small-

proportion landslide images can be explained by two main

reasons as below. First, small-proportion landslides occupy

fewer pixels in the image, and the features of landslides are

more likely to be lost during the encoding process, especially after

the pooling process (Wang et al., 2018; Ghorbanzadeh et al.,

2022b). For example, an image with a size of 256 × 256 is down-

sampled to 128 × 128 after a pooling layer, and some pixel

information will be lost. Second, with the deepening of

network layers and increasing receptive field, the image

features of small-proportion landslides are more difficult to

retain than large-proportion images (Luo et al., 2016; Krishna

and Jawahar, 2018; Ajaz et al., 2022). This means that the model

is more sensitive to large-proportion landslides, and it is possible

to miss small-proportion landslides. For landslide detection with

complex backgrounds, false detection often occurs in regions

with spectral characteristics similar to those of landslide regions

(Han et al., 2019; Han et al., 2022).

To address these problems, we propose the Dynahead-Yolo

object detection model based on the attention mechanism. We

choose YOLOv3 as the basic detection framework, which deals

with the landslide detection as a mathematically regression

problem and directly predicts the bounding box coordinates

of the landslide area (Ju et al., 2022; Pang et al., 2022). The

model has three detection branches with different scales, which is

more effective for small proportion landslide detection. Based on

the YOLOv3 detection framework, we redesign the detection

head module. We employ scale-aware, space-aware and task-

aware attentionmodules in the detection head, so that it can learn

rich detailed features and achieve high-precision detection of

landslides with variable proportions and complex background

landslides. We conduct multiple comparison experiments based

on the dataset consisting of three study areas. The experimental

results demonstrate the feasibility and effectiveness of Dynahead-

Yolo in landslide detection.

2 Materials and methods

2.1 Study areas

We select three study areas in this paper, including Ludian

County in Yunnan Province, Bijie City in Guizhou Province

and Beichuan County in Sichuan Province, where earthquakes

and co-seismic landslides are often reported (Chang and

Zhang. 2017; Ji et al., 2020). The three chosen areas have

common characteristics. They are all located in SouthWestern

China, with a large mountainous terrain, high mountains and

sharped valleys, and staggered rivers and ditches. Landslides

occur basically every year in these areas, causing serious

damage to facilities such as human settlements, tunnels,

roads, bridges, farmland and reservoirs, and greatly

disrupting human life (Chen et al., 2016). The occurrence

of landslides is also exacerbated by human production

activities, such as logging, mining and agricultural

production. At present, there are two main methods to

obtain the location and boundaries of landslides in the

study area. The first method is that experts interpret the

landslide based on the images obtained by the drone, and

then conduct on-site surveys to determine the landslide area

and boundary. The second method is that local residents

report to the government, and then the government assigns

personnel to conduct landslide surveys.

2.2 Landslide datasets

In this study, we obtain remote sensing images of landslides

from 91 wemap software and Bijie open-source database (Ji

et al., 2020). These images are combined and pre-processed to

generate the landslide datasets. We manually select a total of

950 valid and clear landslide images from the three study areas,

and the selected images are additionally confirmed by experts.

Part of the data consists of the Bijie open-source dataset (Ji et al.,

2020), which was created for landslide segmentation. Due to the
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low resolution of images, we select approximately 200 images

with a higher resolution. The rest consists of the Ludian and

Beichuan areas obtained by 91 wemap software. All images are

three-channel (RGB) data. We randomly select 200 images as

the test set. Then, we perform data augmentation to improve the

robustness of the model. We randomly select 250 images of

landslides from the remaining images, and perform data

augmentation by geometric transformation and noise

processing. The geometric transformation mainly includes

operations such as rotation, cropping, vertical flipping and

horizontal flipping of landslide pictures. The noise

processing includes adding salt and pepper noise, Gaussian

noise and random noise to pictures. Therefore, the dataset

includes a total of 1,200 images, of which 900 are used for

training, 100 for validation, and 200 for testing. The proposed

landslide detection model is a supervised model, so we annotate

the dataset based on the Labelimg platform with PASCAL

VOC2007 format. The label files mainly record the category

of the object and the coordinates of the upper left and lower

right corners of the label frame. Figure 1 shows a partially

labelled image.

2.3 Model architecture

The schematic architecture of Dynahead-Yolo is shown in

Figure 2. It consists of three parts: a backbone for extracting

features, a neck for feature fusion, and a detection head for object

classification and localization. The three critical components are

described in detail below.

2.3.1 Backbone
Our proposed model is an improved landslide detection

network based on YOLOv3. Its backbone is Darknet-53 which

is similar to that of YOLOv3, and the difference is mainly on the

detection head of the model. The structure of Darknet-53 is

pictured in Figure 2A. It consists of one convolutional layer and

five residual structures, where each residual structure contains a

different number of basic residual blocks. The first and second

residual structures include 1 and 2 basic residual blocks,

respectively. Both the third and fourth residual structures

contain 8 basic residual blocks, and the last residual structure

contains 4 basic residual blocks. When a feature map tensor f is

sent into the basic residual block, 1 × 1 and 3 × 3 convolutional

FIGURE 1
Examples of labelled images.
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layers are utilized for feature extraction to obtain a feature f′.
Then f and f′ are summed by a shortcut to acquire the output of

the residual block. In addition, each residual structure also

includes a 3 × 3 convolutional layer to compress the height

and width of the input features. The convolutional layers

mentioned above are followed by a batch normalization (BN)

layer and a leaky rectified linear unit (Leaky ReLU). In the model

structure diagram, we use a CBL module to represent the

combination of these three layers, as shown in the CBL block

of the legend in Figure 2.

Given an image with height H and width W, through the

backbone network, we can acquire three different sizes of feature

maps at the last three residual structures, denoted as

f1 ∈ RC1×H
8×

W
8 (C1 � 256), f2 ∈ RC2×H

16×
W
16(C2 � 512), and

f3 ∈ RC3×H
32×

W
32(C3 � 1024).

2.3.2 Neck
Themain function of the neck network is to fuse the featuremaps

obtained from the backbone for feature enhancement. The neck

network of Dynahead-Yolo includes the three branches depicted in

Figure 2B. The first branch is to acquire a fusion feature map h3,

which is obtained from f3 through five convolutional layers. The

second branchmerges featuremaps of different sizes. The h3 obtained

from the first branch is first processed by a convolution and an up-

sampling layers, and then concatenate with f2 to obtain h2 through

five convolutional layers. The processing process of the third branch is

similar to that of the second branch. The fusion feature map h2 is

processed by a convolution and an up-sampling layers, and then

concatenate with f1 and through five convolutional layers to obtain

h1. The fusion featuremaps obtained by the three branches are sent to

the head module for object classification and localization. By fusing

features of different scales, the neck module can make full use of the

extracted information and improve the performance of the detection

network.

2.3.3 Detection head
The detection head module is employed to predict the class

and location of objects. In this research, we utilize the dynamic

head module to improve the original head of YOLOv3, as shown

in Figure 2C. The detection head module consists of three

detection branches, each of which includes a convolutional

layer and a dynamic head module. The dynamic head module

(Dai et al., 2021) combines three attention mechanisms: spatial-

aware, scale-aware and task-aware. In our Dynahead-Yolo

model, we explore the effect of the connection order of three

perception modules on the model performance and design the

cascade order that is most useful for landslide image detection, as

depicted in Figure 3. Details of the specific cascade sequence are

provided in the discussion section.

The task-aware block can adapt to detection tasks by activating

the channels of feature maps and improve the detection

performance. The specific process is given an input feature

map x, and it is first passed through an average pooling layer

to reduce the feature dimension. Then, two fully connected layers

FIGURE 2
Schematic architecture of Dynahead-Yolo. (A) The details of backbone for extracting features. (B) The structure of neck for feature fusion. (C)
Overview of detection head for object classification and localization..
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and a normalization layer are employed to map the feature to the

range of −1 to 1. The normalization layer is obtained by scaling

and shifting the sigmoid function and the normalized result xn is

sent into a hyperfunction θ(xn) to generate four learnable

parameters α1, β1, α2 and β2 for subsequent computations.

Finally, an activation function fθ(x) is used to dynamically

activate different channels of the input feature x to obtain the

final output of the task perception block. A more detailed

introduction to the hyperfunction θ(xn) the and activation

function fθ(x) can be found in the literature (Chen et al.,

2020). The spatial-aware attention block is mainly deployed in

the space dimension using deformable convolution to adapt to the

shape and scale variations of objects. A convolutional layer is first

utilized to obtain the offset and mask, which are to be applied for

each position in the convolution kernel. Then, the offset, mask and

input features are sent into the deformable convolution (Dai et al.,

2017) layer to obtain the geometric transformation of the

landslide. The scale-aware bock fuses features of different scales

based on the weights of the input features. The input feature first

goes through an average pooling layer to remove redundant

information and reduce the number of parameters. Then it is

sent into a convolutional layer with a kernel size of 1 and a ReLU

activation layer. The last hard sigmoid activation function layer is

utilized to speed up training. The hard ac activation function can

be regarded as a classifier that approximates the sigmoid with a

linear piecewise function, which is calculated by:

σ z( ) � max 0, min 1,
z + 1
2

( )( ) (1)

The output of the activation function is multiplied by the

corresponding elements of the input map to obtain the final

result of the scale-aware block.

When the fusion features of three sizes obtained by the neck

module are sent to the detection head module, they will go

through two convolution layers and the dynamic head module

for classification and positioning. The first convolutional layer is

followed by an BN layer and a Leaky ReLU layer. Three detection

result maps of different sizes are generated in the detection head

branches, with sizes 52, 26 and 13 respectively. The number of

channels for the three result plots is 18. Each grid region of three

different result maps predicts 3 bounding boxes to generate a

total of (52 × 52 + 26 × 26 + 13 × 13) × 3 � 10 647 bounding

boxes, thus the predictions for every six channels make up a

vector P of each predicted bounding box, and the composition of

the vector P is as follows:

P � tx + ty + tw + th( ) + P0 + P1 (2)

The first to fourth elements represents the coordinate

information of the prediction box. P0 means the confidence

that there is an object in the predicted box, and P1 represents the

probability that the object belongs to landslides. Finally, non-

maximum suppression is performed on the generated prediction

frame to obtain the final prediction result.

2.4 Model evaluation metrics

To evaluate the performance of the model in terms of the

detection accuracy, the precision, recall, F1 score and average

precision (AP) evaluation metrics are employed in our

experiments. The precision represents the size of correct

predictions in the samples predicted to be landslides. The

recall stands for the size of all samples that can be predicted

to be landslides. The precision and recall are calculated as follows:

FIGURE 3
The overall structure of Dynamic Head.
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Precision � TP
TP + FP

(3)

Recall � TP
TP + FN

(4)
where TP is a true positive, FP is a false positive, and FN is a false

positive. The F1 score weights precision and recall, and is a

common target detection index. The F1 score is defined as

follows:

F1 � 2 ×
Precision × Recall
Precision + Recall

(5)

In addition, we also utilize the AP to evaluate the

performance of model. First, we need to sort the detection

results in descending order according to the confidence of the

prediction, and then calculate the precision and recall of the

cumulative for each sample, and finally draw the precision-recall

curve. The AP value is calculated through the area under the

curve. The calculation formula is as follows:

AP � ∑n−1
i�1

ri+1 − ri( )× Pinter (6)

r1, r2, . . . , ri+1 are the values of recall in ascending order, ri+1 − ri
means the deviation between adjacent recall values; Pinter is the

maximum value of the corresponding precision when the recall

rates are ri+1 and ri. In addition, we adopt intersection over union
(IoU) to measure the overlapping area between the detection and

label boxes. The larger the area is, the more credible the detection

box. IoU is defined as follows:

IoU � P ∩ G
P ∪ G

(7)

where p and G represent the prediction box and label box,

respectively. ∩ and ∪ indicate the intersection and union

between two bounding boxes, respectively.

3 Model training and results

3.1 Model training

To evaluate the effectiveness of the proposed model, we

conduct a series of comparative experiments and ablation

experiments. To ensure the same hardware conditions for

each experiment, all object detection networks are trained

based on the same dataset, and all experiments are performed

on a server with an NVIDIA RTX2080Ti, 12 GB of GPU

memory, and a 6× Xeon E5-2678 v3 CPU. The weights of the

model are initialized according to the pretrained model on the

VOC2007 dataset. During training, the max epoch is 200 epochs

for each experiment, including 100 freeze training epochs and

100 non-freeze training epochs. Freeze training means that the

parameters of the backbone feature extraction network will not

be updated during the training process. Non-freezing training

will update all parameters of the model during training. This

training method can improve the training speed and make the

model converge quickly. The Adam optimizer with an initial

learning rate of 3 × 10−4 and decayed weights of 5 × 10−4 is

utilized for model training. The learning rate decays by a fixed

step size of 1, and the decay coefficient is .94.

We plot the loss variation curves for the training set and

validation set, as shown in Figure 4A. The model loss gradually

decreases during the training process, and finally oscillates and

stabilizes, indicating that the model has been fully trained. In

addition, we calculate the mean average Precision (mAP) of the

training weights on the training and validation datasets and plot

the curves, as shown in Figure 4B The mAP of the training and

validation datasets are stable at approximately 97.8% and 83.2%,

respectively, suggesting that the proposed Dynahead-Yolo has an

excellent effect on landslide detection. We select the model

weight of the 185th epoch with the smallest validation loss for

testing, and compare it with other models to verify the feasibility

of the study.

3.2 Results

To illustrate the recognition ability of Dynahead-Yolo for

landslides in complex backgrounds and the detection ability with

variable proportions landslide images, especially for small-

proportion landslides. We randomly generated 200 test images

and count the number of different proportion landslides. The

object detection model extracts features from pixels in the local

area through the sliding window. We could classify landslides

into large, medium and small proportion landslides according to

the proportion of pixels in the image. The proportion of pixels

also represents the percentage of the landslide area to the image

area, when the landslide area accounts for more than 50% of the

total image area, it can be considered as a large-proportion

landslide. If the area ratio is between 10% and 50%, it can be

regarded as a medium-proportion landslide, and when the area

ratio is less than 10%, it can be treated as a small-proportion

landslide. As follows:

α � SL
SI

(8)
α≤ 10% small − proportion landslides
10%< α≤ 50% medium − proportion landslides
α> 50% large − proportion landslides

⎧⎪⎨⎪⎩ (9)

where SL is the area of the landslides; SI represents the area of the

entire image; and α represents the area ratio, which is the

proportion of landslides in the image.

The complexity of the background mainly includes four

aspects: 1) interference from clouds and fog when imaging, 2)

interference from houses near the landslide, 3) interference from

bare sand with similar characteristics to the landslide image, and

4) interference from terraces in mountainous areas. Based on the
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above criteria, we counted the number of landslide images with

complex backgrounds in the test set, for a total of 80 images. We

employed the developed Dynahead-Yolo to detect complex

background landslides images, and compared them with the

prediction results of YOLOv3. Figure 5 shows the ground

truth, detected results of Dynahead-Yolo and YOLOv3. The

blue bounding box is manually annotated label. The green

bounding box is the correctly predicted detection box, which

should ideally overlap with the label, and the red box is the result

of the wrong prediction. YOLOv3 mistakenly detected landslide

adjacent areas, terraced fields, and houses as landslides, as listed

in Figures 5A′–C′. Besides, in Figures 5E′, YOLOv3 cannot detect
landslides when the spectral radiance of the target region is

similar to that of the background region. Overall, the proposed

model can well identify landslide images in such complex

backgrounds and achieve higher detection accuracy.

FIGURE 4
(A) Loss curve during training (B) Model mAP curve.

FIGURE 5
Complex background landslide detection. A–E show the landslide detection results of Dynahead-Yolo with different complex backgrounds.
A9–E9 represent the detection results of YOLO v3 in the corresponding complex background.
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The detection results of landslides with variable proportions

are shown in Figure 6. We compared the results of two different

models in small, medium, and large proportion landslides. The

number above the image indicates the percentage of landslides in

the image, which is the proportion of the area of a detected

landslide compared to the image proportion. In Figures 6A′, J′,
L′, we found that no matter whether the proportion of landslides

is too small or too large, the Dynahead-Yolo can locate the

landslide and achieve accurate bounding box prediction. As

shown in Figures 6C′, D′, the YOLOv3 model may mistake

FIGURE 6
Landslides detection with variable sizes. A–D and A9–D9 show the detection results of Dynahead-Yolo and YOLO v3 for small-proportion
landslides, respectively. E–H and E9–H9 compare the effect of Dynahead-Yolo and YOLO v3 on the medium-proportion landslides. I–L and I9–L9
represent the detection results of Dynahead-Yolo and YOLO v3 for large-proportion landslides, separately.

TABLE 1 Percentage of correct landslides detection with variable
proportions and complex backgrounds.

Dynahead-Yolo YOLOv3

Complex background landslides (%) 82.33 72.10

Small-proportion landslides (%) 86.63 76.21

Medium-proportion landslides (%) 83.33 79.22

Large-proportion landslides (%) 90.00 83.51

Average accuracy (%) 85.57 77.76
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exposed soil for landslide. In addition, it is obvious that the

Dynahead-Yolo can achieve higher IoU between the label and

detected box in Figures 6I, I′. A more detailed comparison of the

distribution of the IoU is provided in the Discussion section.

To further verify the ability to detect landslide images with

complex environments and variable proportions, we counted

the percentage of the correct prediction results of two different

models in different scenarios, as summarized in Table 1.

According to the comparison results, the correct detection

rate of our method for complex background landslides

reaches 82.3%, which is 14.1% higher than that of YOLOv3.

Moreover, our method also improved the detection rate of

small-proportion landslides and large-proportion landslides

by 13.6% and 7.8%, respectively. The results show the

advantages of the Dynahead-Yolo model for landslides with

complex backgrounds and variable proportions of landslide

detection.

4 Discussion

4.1 Model results for different
concatenation sequences

We first investigate the effect of the cascade order for

three attention modules on the model performance. As

shown in Table 2, we evaluate the performance of six

concatenation sequences for landslide detection from fort

aspects: precision, recall, F1 value, and AP value. According

to the comparison results, we find that different

concatenation sequences have a significant impact on the

performance of the model. The detection performance in the

order of task-aware, space-aware and scale-aware is the best,

reaching an AP value of 85.53%. The cascade sequence first

activates different channels according to the detection task,

then enhances the spatial location features of foreground

objects through a spatial-aware attention module, and finally

improves the detection ability of landslide areas with

different proportions through a scale-aware attention

module.

4.2 Comparison of different detection
models

To further demonstrate the performance of Dynahead-Yolo,

we compare the detection results of previous object models such

as Faster R-CNN, Faster R-CNN, YOLOv3, SSD, and Centernet.

All models were trained based on the RTX2080TI GPU with

200 epochs each and tested with the same dataset. Table 3

summarizes the comparison results for the four evaluation

indexes of different models. The faster R-CNN with

resnet50 backbone network has the highest recall value, but its

precision is only 45.56%, which shows that the model has high

false positives in landslide detection. Faster R-CNN is a two-stage

detection model. The first stage is to generate many proposals,

and the second stage adjusts the coordinates of proposals. In the

first step, all areas suspected of landslides will be detected as

proposals, which leads to a high false detection rate. Dynahead-

Yolo directly extracts features from the network and predicts the

location of landslides without generating proposals. The addition

of the compound attention module enhances the ability of the

model to acquire features of different scales and spatial features,

enabling to obtain better detection results. The precision and

recall can evaluate the performance from different perspectives.

We usually employ the F1 score and mAP combining the two

indexes to comprehensively evaluate the effect of the model. The

F1 score and mAP of Dynahead-Yolo are 0.87 and 85.53%,

respectively, which are 0.02 and 6.95% higher than those of

YOLOv3. The results show that the proposed method is more

suitable for the automatic detection of landslide remote sensing

images.

We calculate the IoUs of the detection results for each model

and plotted a violin plot, where the horizontal coordinates are the

individual model and the vertical coordinates are the IoU values,

as pictured in Figure 7. The blue and red areas represent the

number of true positive and false positive samples, respectively.

From Figure 7, it is clear that the IoUs of the correct prediction

results for Dynahead-Yolo are mainly concentrated in the range

of 0.8–0.87, which is obviously higher than that of other models.

The results indicate that the coordinates of detection and

prediction bounding boxes are close to each other.

To illustrate the performance of Dynahead-Yolo for

landslide with variable proportions, we compare it with the

results of other studies. We select three published papers (Ye

et al., 2019; Ju et al., 2022; Li et al., 2022) based on deep learning

methods for landslide detection, and calculate the percentage of

landslides in the detected images shown in each paper. We draw

a box-plot and represent the results of the comparison, as shown

in Figure 8. It can be considered that the paper shows

TABLE 2 Performance of the model with different concatenation
sequences.

Precision (%) Recall (%) F1 AP (%)

πL → πS → πC 86.34 89.30 0.87 83.91

πL → πC → πS 86.34 78.67 0.82 75.25

πS → πL → πC 85.65 84.89 0.85 81.35

πS → πC → πS 87.20 81.78 0.84 79.21

πC → πL → πS 89.40 86.22 0.87 83.92

πC → πS → πL 87.17 87.56 0.87 85.53
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representative landslide images reflecting the detection effect of

the model. Therefore, the drawn box-plot shows that the

Dynahead-YOLO model is more suitable for detecting a

certain proportion of landslides. According to Figure 8, it can

be observed that the models (Ye et al., 2019; Ju et al., 2022) are

more useful for medium-proportion and large-proportion

landslides. The proportion of landslides in Paper (Li et al.,

2022) is mainly distributed in areas greater than 50%, and the

model of the article is more effective for large-proportion

landslides. Dynahead-Yolo has good detection performance

for different proportions of landslides.

4.3 Limitations and future research

In this study, we propose a named Dynahead-Yolo object

detection model for high accuracy detection in complex

environments and landslides with variable proportions. We

discuss the effects of various concatenation sequences for

three attention modules on the detection capability of the

model, and compare them with classical object detection

networks. Nevertheless, there are some problems in this study

due to the limitation of data resources and experimental

equipment. First of all, there are very few public datasets

related to landslides, and it is difficult to obtain effective and

clear landslide data. Therefore, the study only utilizes

1,200 landslide images, and the amount of data is small.

Besides, the labels for training are manually labeled. Although

the labels have been confirmed and evaluated by experts, there

will still be errors, which will affect the accuracy and precision of

the model. In the future research, we will acquire more landslide

data containing various types of remote sensing images

to improve the generalization and detection capability of the

model.

In subsequent studies, we believe that it remains an

important means to improve the performance of the

model by an attention mechanism. We will also try to

combine the Dynamic head with other object detection

models to achieve the purpose of improving detection

capabilities.

TABLE 3 Models performance.

Description Precision (%) Recall (%) F1 mAP (%)

Dynahead-Yolo 87.17 87.56 0.870 85.53

Faster R-CNN (resnet50) 45.56 91.11 0.610 83.06

Faster R-CNN (vgg16) 45.09 85.78 0.590 74.17

YOLOv3 89.60 80.44 0.850 78.58

SSD 81.28 79.11 0.800 71.00

Centernet 88.89 56.89 0.70 54.82

FIGURE 7
IoU distribution of different models.

FIGURE 8
Comparison of landslides detection results with variable
sizes.
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5 Conclusion

In this paper, we proposed a novel Dynahead-Yolo neural

network for the detection of landslides using remote sensing

images. This neural network was specifically designed to address

the poor detection of the small proportion landslides in the

remote sensing images. The combination of the three attention

modules including scale-aware, spatial-aware, and task-aware

enhanced the feature extraction ability and improved the

adaptability to landslide images with different proportions and

complex backgrounds. Landslide images from Bijie city, Ludian

County and Beichuan County were collected to generate datasets

and randomly separated as prediction sets to verify the

performance of the model. Results show that, compared with

the conventional YOLOv3, the accuracy of the proposed

Dynahead-Yolo for complex backgrounds and small-

proportion landslides were improved by 14.19% and 13.67%,

respectively, while the F1 score and AP of the model were 0.87

and 85.53%, respectively. The results indicate an outperforming

ability of the proposed Dynahead-Yolo for detecting small

proportion landslides comparing to the conventional

YOLOv3. However, the performance of the model may be

limited by the number of datasets and the reliability of the

labels. Therefore, increasing the dataset or designing a suitable

model to adapt to small sample landslide detection is the main

work in the future.
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