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Sand-gravel mixtures are special engineering geological materials between

soils and fractured rocks. This study performs a series of bending element tests

to systematically investigate the shear wave velocity (Vs) of the sand-gravel

mixtures, establish an effective evaluation method, and assess the influence of

relative density and effective confining pressure on mixtures with a wide range

of gravel contents. The results showed that the shear wave velocity increases

and then decreases with the increase in gravel content and increases with the

rise in relative density and effective confining pressure. Furthermore, a shear

wave velocity prediction model is proposed in this study based on the

intergranular contact state theory, including the stress parameter (n) and

skeleton void ratio. The stress parameter can be described by a power

function considering the uniformity coefficient. The model serves as a

reference guide for estimating the shear wave velocity of sand-gravel

mixtures with a wide range of gravel contents.
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Introduction

Sand-gravel mixtures are special engineering geological materials between soils and

fractured rocks, and the intergranular contact state of sand-gravel mixtures is the

intermediate state between that of sand and gravel particles (Evans and Zhou, 1995;

Yagiz, 2001; Lin et al., 2004; Hamidi et al., 2009). The sand-gravel mixtures with the

advantages of low compressibility, high shear strength, abundant reserves, and convenient

and economical extraction are widely used in highway roads, Earth and rock dams, soft

ground treatments, artificial island buildings, offshore immersed tunnel mat foundations,

etc., (Hara et al., 2004; Araei et al., 2012; Flora et al., 2012; Chang and Phantachang, 2016).

The shear wave velocity (Vs) and associated small-strain (or maximum) shear modulus

(Gmax) play fundamental roles in soil deformation prediction, seismic liquefaction

potential assessment, site response analyses, and the design of geotechnical structures
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subjected to dynamic or earthquake loadings (Andrus and

Stokoe, 2000; Wang et al., 2012; Chen et al., 2019a).

Simultaneously, the mechanical response of granular materials

during scouring and erosion is an essential property that scholars

have widely studied (Kuhnle et al., 2016; Pandey et al., 2019a;

2019b, 2020; de Leeuw et al., 2019). In this paper, the dynamic

properties of sand-gravel mixtures are investigated from the view

of Vs in laboratory tests aiming to establish a prediction method

as a reference guide for geotechnical engineering.

Rollins et al. (1998) found that for a given void ratio (e) and

effective confining pressure σ0′, Gmax of sand-gravel mixtures

with different gradations increases by 38% as the gravel content

(Gc) increases from 0% to 60% during dynamic triaxial tests.

Chang et al. (2014) showed that the Vs of gap-graded sand-gravel

mixtures increase linearly with increasing Gc for the same

skeleton void ratio by conducting a series of bending element

tests. Menq (2003) found that for a given relative density (Dr),

Gmax of sand-gravel mixtures tended to increase with the rise in

the non-uniformity coefficient (Cu) and average particle size

(d50), with the effect of d50 on Gmax being more significant

than that of the Cu. Menq and Stokoe (2003) found that the

combined effect of Cu and d50 can be represented by the stress

exponent (n), which gradually increases with the rise in Cu, and

that the effect of n on the Gmax of well-graded loose sand-gravel

mixtures is more significant than that of gap-graded dense sand-

gravel mixtures. Liu et al. (2020) performed bending element

tests on pure sands, pure gravels, and sand-gravel mixtures with

different gradations and highlighted that the values of Gmax in

sand-gravel mixtures could not be adequately quantified using e

and σ0′. They also concluded that the Gmax of pure sands and

pure gravels is almost unaffected by d50, instead of increasing

with d50 for well-graded sand-gravel mixtures. During the

subsequent investigation (Liu et al., 2021), they found that Cu

and d50 have significantly opposite effects on the Gmax of the

sand-gravel mixtures, which contradicts the conclusion of Menq

(2003).

Manymethods are available for measuring soilVs, such as the

up-hole method, down-hole method, cross-hole method, indoor

resonance column test, and bending element test method.

(Wichtmann et al., 2015). The bending element test has been

widely used in measuring Vs or Gmax of various soils due to its

simple principle, convenient operation, and non-destructive

detection (Rahman et al., 2014; Yang and Liu, 2016).

This paper performs a series of bender element tests to study

theVs of the sand-gravel mixtures with a wider range ofGc in this

study than that in previous studies. Within the study context, the

effects of gravel content, relative density, and effective confining

pressure are considered. Finally, a Vs prediction model of various

mixed soil materials is proposed based on intergranular contact

state theory. The applicability of the proposed model is validated

using the published data of two types of coarse and fine granular

mixtures.

Bender element test

Test material

The tested sand-gravel mixture was obtained from Nanjing,

China. The gravel grains of the mixture are prismatic. The

mixture’s gravel content (Gc) is 0%, 10%, 20%, 30%, 40%,

50%, 60%, 70%, 80%, 90%, and 100%. The particle size

distribution curves of various sand-gravel mixtures are shown

in Figure 1. The basic properties of the mixtures are listed in

Table 1. The mixtures’ particle size distribution curves and basic

FIGURE 1
Particle size distribution curves of the tested sand-gravel
mixtures.

TABLE 1 Basic properties of the tested sand-gravel mixtures.

Gc (%) Gs emax emin Cu Cc d50 (mm)

0 2.640 0.886 0.440 3.487 1.029 0.400

10 2.639 0.753 0.414 3.923 0.971 0.448

20 2.638 0.690 0.375 4.565 0.899 0.519

30 2.636 0.611 0.325 5.547 0.815 0.642

40 2.636 0.597 0.292 11.331 0.453 0.853

50 2.634 0.560 0.261 29.046 0.212 5.000

60 2.633 0.561 0.269 26.866 0.331 5.612

70 2.632 0.559 0.290 23.607 2.085 6.095

80 2.632 0.589 0.369 17.674 10.509 6.484

90 2.631 0.672 0.472 1.470 0.926 6.804

100 2.630 0.792 0.633 1.414 0.933 7.071

emax and emin Mean maximum and minimum global void ratio, respectively.
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properties were measured according to the ASTM D4254-14,

2006 and ASTM D4254-16, 2006.

As shown in Table 1, the emax and emin of the mixtures both

decrease and then increase with the rise in Gc, which is consistent

with the findings of Evans and Zhou., (1995) and Amini and

Chakravrty, 2004. In addition, the emax and emin reach the

minimum value at Gc equals 50%.

Test apparatus and method

The measurement of shear wave velocity (Vs) and associated

Gmax was implemented using a pair of piezoceramic bender

elements installed in the GCTS HCA-300 dynamic hollow

cylinder-TSH testing system (Chen et al., 2019b). The test

apparatus is shown in Figure 2. The confining and back

pressure were measured using the standard pressure/volume

controller. The axial static and dynamic force was controlled

independently. Moreover, the maximum range of the dynamic

force is 10 kN/5 Hz. The axial force and displacement sensors

were placed at the top of the sample. Back pressure was applied at

the top of the sample, and the excess pore water pressure was

measured its bottom. Hardin and Black (1966), Goudarzy et al.

(2016) detailed the testing principle of the bender element

system.

The Vs is calculated via Eq. 1:

FIGURE 2
Bender element test apparatus.

FIGURE 3
Typical time histories of output signals obtained from the
bender element tests.
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Vs � d

t
(1)

where d is the effective distance of the shear wave propagation,

and t is the time of the shear wave propagation.

The time domain method was used to determine t

considering the simplicity and accuracy. Figure 3 shows the

typical time histories of output signals from bender element

tests, revealing that the received signals are always clear and

efficient.

The cylindrical specimen has a diameter of 100 mm and a

height of 150 mm. The specimen was prepared using a dry

tamping method. This technique was adopted in several

research works to test granular material. On the other hand,

the well-mixed sand and grains were tamped into a cylindrical

specimen creator for four layers in the apparatus using a dry

tamping method. The pre-saturation was conducted after the

specimen preparation. The pre-saturation consists of three steps:

1) permeating the specimen with CO2 for 30 min; 2) flushing

with de-aired water for 60 min; 3) flushing all water lines. After

the pre-saturation, the back pressure saturation was initiated.

Back pressure was gradually applied, and the Skempton B-value

was checked until exceeding 0.95, which guaranteed the

saturation of the tested sample. The saturated sample was

consolidated under an effective target confining pressure until

the strain was stable. After that, the bender element was

conducted.

A series of bender element tests was conducted to study theVs of

the sand-gravel mixtures. The influence of relative density (Dr),

effective confining pressure (σ0′), and Gc were considered. The Dr

of the mixtures was taken as 30%, 45%, and 70%. Additionally, the

σ0′ of the mixtures was taken as 50, 100, 200, 300, and 400 kPa, and

the Gc of the mixture was selected as 0%, 10%, 20%, 30%, 40%, 50%,

60%, 70%, 80%, 90%, and 100%.

FIGURE 4
Relationship between the normalized effective confining pressure and Vs of the sand-gravel mixtures: (A) Dr = 30% (B) Dr = 45% (C) Dr = 70%.
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Test results and analysis

Vs analysis for sand-gravel mixtures

The relationship between the normalized effective confining

pressure σ0′/Pa and Vs of the sand-gravel mixtures is shown in

Figure 4, where the atmospheric pressure (Pa) is approximately

equal to 100 kPa. It can be seen that for a given Gc and Dr, the

mixtures’ vs. increases with the rise in σ0′/Pa. The reason may be

that the greater the pressure, the greater the contact force

between the particles, and the more the granular materials

converge to a whole, which leads to easier shear wave

propagation and increased propagation speed. Moreover, the

Vs increases with the increase in Dr when the Gc and σ0′/Pa are

given. The relationship between the Vs and σ0′/Pa can be

described by Eq. 2:

Vs � A σ0
′/Pa( )n (2)

where A is the shear wave velocity value of the mixture when the

σ0′ is 100 kPa, and n is the best-fit coefficient, which reflects the

influence of σ0′ on the Vs.

The relationship between the fit coefficient n and coefficients

of uniformity (Cu) for the mixtures is shown in Figure 5. It can be

seen that the n increases with the increase in Cu. The relationship

between the n and Cu can be described by Eq. 3:

n � MCN
u (3)

where M and N are the best-fit coefficients, which for the sand-

gravel mixture of this test are defined asM is 0.24, and N is 0.04.

The goodness of fit (R2) for this equation is 0.95.

The relationship between the normalized shear wave velocity,

Vs/(σ0′/Pa)n , and Gc of the sand-gravel mixtures is depicted in

Figure 6. It can be seen that the Vs/(σ0′/Pa)n increases and then

decreases with the increase in Gc. The Vs/(σ0′/Pa)n reaches its

peak when the Gc is 50%, meaning that the threshold gravel

content value (Gcth) of the sand-gravel mixtures is 50%. The

reason is that part of the force chain in sand particles is replaced

by that of sand-gravel and gravel grains as the Gc increases. The

contact area of the mixture grains increases, the Vs/(σ0′/Pa)n
increases first. However, the sand particles fill the void of the

gravel grains, and the force chain of sand particles is invalid when

FIGURE 5
Relationship between the fit coefficient n and coefficient of
uniformity.

FIGURE 6
Relationship between the normalized shear wave velocity
and the Gc of the mixtures.

FIGURE 7
Relationship between the normalized shear wave velocity
and e of the mixtures.
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the increase in Gc exceeds the Gcth. As a result, the Vs/(σ0′/Pa)n
decreases.

The relationship between the Vs/(σ0′/Pa)n and e of the sand-

gravel mixtures is shown in Figure 7. Generally, the Vs/(σ0′/Pa)n
decreases with the rise in e. The relationship between the

Vs/(σ0′/Pa)n and e can be described using a power function

when the Gc is given. However, the relationship between the

Vs/(σ0′/Pa)n and e described by a power function varies with

respect to Gc. Accordingly, the e is not a reasonable parameter to

describe the dense state of the sand-gravel mixtures.

Vs prediction method for sand-gravel
mixtures

Sand-gravel mixture is composed of coarse gravel grain

and fine sand particles, which is a fine-coarse grained

mixture. Microstructural changes can affect the macro

mechanical properties (Bai et al., 2019; Bai et al., 2021; Bai

et al., 2022). The sand-gravel mixture’s force skeleton

depends on the sand and gravel content, and the part that

fills the void is invalid for the force skeleton. The force

skeleton is composed of coarse gravel grain when the Gc is

larger than Gcth. However, the force skeleton is composed of

fine sand particles when the Gc is smaller than Gcth. The

skeleton void ratio (esk) is defined as the volumetric ratio

between the voids formed in the sand-gravel mixture skeleton

and the volume of particles that make up the skeleton (Chang

et al., 2014). This is used to describe the dense state of the

fine-coarse-grained mixture. Thevanayagam (2007a, 2007b)

proposed a binary intergranular contact theory of the fine-

coarse-grained mixture and believed the particle contact state

is divided into two types. The intergranular contact state of

the sand-gravel mixture is shown in Figure 8.

The esk is calculated using Eqs 4, 5 when the intergranular

contact state of the sand-gravel mixtures is in contact states 1 and

2, respectively. Rd is the average grain size ratio, which is the ratio

of d50-g and d50-s. The d50-g is the average size of the gravel, and

d50-s is the average size of the sand. b is the sand’s influence index,

which ranges from 0 to 1. The sand particle is invalid for the force

skeleton of the sand-gravel mixture when b is 0. Furthermore, the

sand particles can be used in the force skeleton when b is 1. m is

the gravel’s influence index that ranges from 0 to 1. The b and m

can be determined using a back-fitting analysis (Thevanayagam,

, ).

esk � e + 1 − b( ) · 1 − Gc( )
1 − 1 − b( ) · 1 − Gc( ) (4)

esk � e

1 − Gc + Gc/Rm
d

(5)

The relationship between theVs/(σ0′/Pa)n and esk of the sand-
gravel mixtures is shown in Figure 9. It can be seen that the

Vs/(σ0′/Pa)n decreases with the increase in esk. The relationship

between the Vs/(σ0′/Pa)n and esk can be fitted by two curves using

Eq. 6, and the Gcth is the critical value. The mechanical behavior

of the sand-gravel mixtures under the same esk is similar to that of

pure gravel (Gc = 100%) when the Gc is larger than Gcth.

Moreover, the mechanical behavior of the sand-gravel

mixtures under the same esk is similar to that of pure sand

(Gc = 0) when the Gc is smaller than Gcth. As a result, the

relationship between the Vs/(σ0′/Pa)n and esk fitted by two curves

using Eq. 6 is reasonable.

FIGURE 8
Intergranular contact states of the mixtures.

FIGURE 9
Relationship between the normalized shear wave velocity
and esk of the mixtures.
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Vs � A2
σ0′

Pa
( )

M×CN
u

(6)

where A2 and B2 are the best-fit parameters determined as A2 is

210.29, B2 is -0.41 when the Gc is smaller than Gcth, and A2 is

216.48, and B2 is -0.53 when the Gc is larger than Gcth.

Applicability validation of Vs prediction
method

A series of bending element tests were conducted by Choo

and Burns (2015) and Oka et al. (2018) to investigate the effects

of fine granular content (FC) on Vs of coarse and fine granular

mixtures. In this section, test data published in the previous

literature were used to further verify the applicability of Eq. 6 for

two types of coarse and fine granular mixtures. The Vs versus esk
curves for two types of coarse and fine granular mixtures are

shown in Figure 10. It can be clearly observed that esk can

normalize Vs, indicating that it is reasonable for esk to Vs of

coarse and fine granular mixtures.

Conclusion

In this paper, a series of bending element tests are conducted to

investigate the shear wave velocity Vs of the sand-gravel mixtures.

Sand as the base soil and different contents of gravel are considered in

the testing program. Moreover, bending element tests are performed

at three relative densities of 30%, 45%, and 70% under an effective

confining pressure of 50, 100, 200, 300, and 400 kPa.

Results of the tests illustrate that for a givenDr and σ0′, theVs

increases and then decreases with the rise in Gc. Moreover, the Vs

increases with the increase in Dr and σ0′ under the same Gc. The

relationship between the Vs and σ0′ can be described using an

exponential function. The fitting parameter n increases with the

increase in Cu, and the relationship between n and Cu can be

described using a power function.

The e is not a reasonable parameter to describe the dense

state of the sand-gravel mixtures. A new Vs prediction model is

proposed based on intergranular contact state theory, including

the skeleton void ratio esk. The Vs/(σ0′/Pa)n decreases with the

increase in esk, and the relationship between the Vs/(σ0′/Pa)n and
esk can be described using a power function. The applicability of

the proposed model is validated using published data regarding

two types of coarse and fine granular mixtures.
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