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With the increasing demand for engineering construction in the seasonal frozen

area and the background of the Belt and Road Initiative, the frozen soil

constitutive model should be studied in depth. At present, the constitutive

prediction model of frozen silty clay has many problems, such as complex

formula, single model application and poor prediction ability. Random forest

optimal model hyperparameter input was very difficult. Particle Swarm

Optimization (PSO) was used to optimize the parameters of the number of

neurons, dropout and batch_size in the Long-term and Short-Term Memory

network (LSTM) structure. The optimization results were 61, 0.09 and

95 respectively. The results showed that the strength tended to be stable

after 6,9,6,9 and 9 freeze-thaw cycles under initial moisture content = 25,

22.5, 20, 17.5, and 15%, respectively. After 18 freeze-thaw cycles, the strength

decreased by 2.66%, 11.85%, 18.83%, 16.79, and 29.02%, respectively. The

predicted values of frozen soil binary medium model (BM), random forest

model (RF) and PSO-LSTM model were compared with the measured values

under different working conditions, and good accuracy was obtained. The R2 of

the PSO-LSTM model test set was trained to more than 98%, and RMSE, MAE

and MAPE were also trained to the lowest under the same working conditions.

The influencing factors of deviator stress of frozen silty clay were given in order

from strong to weak: initial moisture content>strain>confining
pressure>number of freeze-thaw cycles. The LSTM optimal combination

input parameters were searched by PSO, and the parameter adjustment

speed of the model for the data learning process of frozen silty clay was

greatly increased, which was conducive to the promotion of other soil

constitutive prediction models. A new constitutive prediction model of

frozen silty clay was developed using PSO-LSTM algorithm. 15 working

conditions had been verified, and the optimal model had high accuracy in

the constitutive prediction of frozen silty clay, which provided a good reference

for the application of frozen soil engineering in cold regions.
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1 Introduction

The world’s cold regions can be divided by air temperature,

snow thickness and frozen soil depth. The distribution area of

global frozen soil accounts for about 24% of the total land.

Seasonal and intermittent frozen soil regions account for

50.6% and 6.6% of the land area in the Northern Hemisphere,

respectively (Zhang et al., 2003), indicating that more than half of

the land in the Northern Hemisphere experiences a freeze-thaw

cycle every year (Li et al., 2021). The freezing damage of soil

around building foundation, road foundation and pipeline is

controlled by soil mechanical properties under freezing state.

Frozen silty clay is widely distributed in cold regions of the

Northern Hemisphere. In order to study the engineering

properties of soil in cold regions, it is of great significance to

study the constitutive relationship of frozen silty clay.

Constitutive model is the key to analyze the stress-strain

relationship of frozen soil, and also the basis for studying the

stability of landslide (Huang et al., 2020; Li et al., 2022).

Soil elastic-plastic definite solution needs to be solved

simultaneously with equilibrium differential equation, geometric

equation, deformation coordination equation and known

boundary. The constitutive model, as the deformation

coordination equation, is an important theoretical basis for

analyzing the soil stress-strain relationship. So far the most

studied soil constitutive models can be divided into: elastic-plastic

constitutive model (Zhang and Liu, 2019; Lai et al., 2010;Wang et al.,

2020; Zhang et al., 2020; Zhang et al., 2020; Wang et al., 2021; Yu

et al., 2022), nonlinear constitutive model (Yang et al., 2013; Jin et al.,

2016; Loria et al., 2017), critical state constitutive model (Wu et al.,

1996; Yao et al., 2004; Yang et al., 2010; Yin et al., 2010; Jin et al., 2016;

Lai et al., 2016; Jin et al., 2017; Sun et al., 2020), hypoplastic

constitutive model (Lai et al., 2014; Mašín, 2015; Chang et al.,

2019) and the micromechanical constitutive model (Yin et al.,

2010; Yin et al., 2014; Xiong et al., 2017; Qu et al., 2021; Qu

et al., 2021; Wang et al., 2021). However, there are some

problems in the above soil constitutive model: 1) the stress-strain

relationship between frozen soil and thawed soil is proposed based on

certain assumptions (Zhang et al., 2022; Yin et al., 2010). 2) Frozen

soil and thawed soil models are generally only applicable to one soil

type (Zhang et al., 2021). 3) The mathematical formula of stress and

strain of frozen soil and thawed soil comes from data fitting, but the

model prediction effect is not good (Yin et al., 2011). 4) With the

increase of fitting parameters (Yin and Jin, 2021), the constitutive

formula of frozen soil becomes increasingly complex.

The stiffness of frozen soil is between soft soil and rock, so a

binary medium model can be used to describe the freeze-thaw-

compression failure mechanism and stress evolution of frozen

silty clay. In terms of the research on the frozen soil binary

medium model and freeze-thaw damage mechanism, few articles

have done relevant analysis. Zhang et al. (2019) verified the data

obtained from the triaxial test of frozen soil through

homogenization theory and binary medium theory.

In recent years, frozen soil constitutive theory has been being

studied by some methods, such as experimental research,

theoretical derivation, formula fitting, numerical simulation of

particle flow, and data-driven deep learning. Numerous ML

algorithms have been used to study thawing and frozen soil

constitutive, such as Evolutionary Polynomial Regression (EPR)

(Nassr et al., 2018), Support Vector Machine (SVM) (Zhao et al.,

2014; Kohestani and Hassanlourad, 2016), Back Propagation

Neural Network (BPNN) (Shahin and Indraratna, 2006; Johari

et al., 2011; Rashidian and Hassanlourad, 2014; Stefanos and

Gyan, 2015; Lin et al., 2019), radial basis function (RBF) neural

network (Peng et al., 2008), recurrent neural network (RNN)

(Zhu et al., 1998; Romo et al., 2001), long short-term memory

(LSTM) neural network (Zhang et al., 2019; Zhang et al., 2020).

Problems such as gradient explosion or gradient disappearance

can be better avoided by LSTM neural network. However, the

selection of the optimal model input parameter combination is

still an urgent problem to be studied. However, for different

frozen silty clay datasets, the optimal neuron numbers, dropout

probability and batch_size combination corresponding to the

minimum stress loss function should be different. Aiming at the

problems of difficult parameter adjustment and poor fitting

accuracy, a method based on long short-term memory neural

network (LSTM) and particle swarm optimization (PSO) is

proposed to predict the stress-strain evolution law of frozen

silty clay.

The structure of this paper is as follows. In the first part of the

experimental study, the stress-strain evolution process of frozen

silty clay is qualitatively analyzed by mechanism. In the second

part, the binary medium frozen silty clay constitutive model

based on the simplification of freeze-thaw damage parameters is

studied, and the fitted mathematical formula provides a reference

for engineering design. The third part, frozen silty clay

constitutive prediction model principle is introduced. In the

fourth part, the relationship between the RF model, the frozen

soil binary medium model and the PSO-LSTM model and the

generalization value of the optimal model are discussed, and the

mechanism of the influence of the three factors on the strength of

frozen silty clay is deeply analyzed. Finally, this paper

summarizes and puts forward the future work plan.

2 Materials

2.1 Test overview

The test instrument adopts the frozen soil dynamic and static

triaxial tester FST-250 designed by Xi’an Lichuang Material

Testing Technology Co., Ltd. (see Figure 1). The instrument

adopts displacement control mode and is mainly composed of

triaxial pressure system, XT5718ULT-E2000 cooling water

circulating device, data acquisition system, cooling system of

testing machine, etc. The temperature control range is
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FIGURE 1
(A). Experimental device diagram. (B). Experimental device physical diagram.

TABLE 1 Basic physical properties of natural silty clay.

Porosity
n(%)

Saturation
Sr(%)

Mass density
ρ(g/cm3)

Liquid limit
ωL(%)

Plastic limit
ωp(%)

Plasticity index
IP(%)

40.60 93.60 2.00 31.70 18.0 13.70

Dry density
ρd(g/cm3)

Void ratio
e(%)

Cohesion
Cq(kPa)

Internal friction angle
φq(°)

Compressibility factor
α(1/MPa)

Compressive modulus
Es(MPa)

1.62 0.69 37.00 12.70 0.33 5.26

Maximum soil moisture content (%) Average value of soil water content (%) Minimum soil moisture content (%)

28.30 23.20 20.20
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-70°C~+90°C, the temperature control accuracy is 0.5°C, the

confining pressure range is 0～40MPa, the accuracy is 1%,

and the maximum axial pressure is 250KN.

The microcomputer-controlled electro-hydraulic servo

triaxial testing machine for frozen soil is mainly used for

dynamic and static triaxial tests of conventional soil and

frozen soil. The basic physical properties of the test soil are

shown in Table 1. In order to reduce the heterogeneity and

dispersion of natural silty clay, 1.25 mm sieve is used to screen

out impurities such as plant fiber and gravel of natural silty clay.

The distribution of soil with particle size less than 1.25 mm is

shown in Table 2. Direct shear test is used to measure cohesion

and internal friction angle of soil samples. The liquid limit and

plastic limit in Table 1 are measured by LP-100D digital display

soil liquid and plastic limit tester. The standard consolidation

method is adopted in the consolidation test, and the

compressibility factor and modulus are obtained. The

maximum and minimum values are obtained from

experiments, and the average values are obtained from

calculation. According to the liquid plastic limit and particle

size distribution, the test soil can be classified as silty clay.

2.2 Soil preparation

The dry soil that has passed through 1mm sieve is sprayed and

mixedwith soil according to the initialmoisture content (15%, 17.5%,

20%, 22.5%, and 25%). Then the soil samples are sealed with plastic

wrap for 24 h. The dry density of soil sample is controlled to 1.62 g/

cm3. Soil samples with different water contents are divided into five

layers and compacted into a three-part mold with an inner diameter

of 61.8 mmand a height of 125 mm.After standing for a certain time,

soil samples with different initial moisture contents are demolded.

Then, the soil samples are packaged and labelled with plastic

wrap. Finally, the soil samples are put into the high and low

temperature alternating test chamber TEMP880.

2.3 Freeze-thaw cycles test

The high and low temperature alternating test chamber

TEMP880 designed by Shanghai-Huayi Equipment Co., Ltd. is

used for the freeze-thaw cycle test. The test chamber is set at

-35°C–35°C. The specific temperature time history curve in the

high and low temperature alternating test chamber during the

experiment is shown in Figure 2 below. The soil samples

undergoe 4 h of freezing and 4 h of thawing, that is, a freeze-thaw

cycle is performed every 8 h (Teng et al., 2022). Then, the soil samples

are packaged with a thin latex sleeve, and place in a constant

temperature test chamber with the same design temperature for

24 h after sticking the label. YH-10 aviation hydraulic oil in the

triaxial pressure chamber is used to apply confining pressure and

maintain temperature stability. Next, the soil samples with sufficient

temperature control in the constant temperature test chamber are

placed in the triaxial pressure chamber.When the temperature of the

soil sample and hydraulic oil is coupled to the design temperature, the

design confining pressure is applied for the test.

2.4 Time scaling principle of freeze-thaw
cycle

Because the time scale of soil freezing and thawing process in

seasonally frozen soil area is considerably large, the reduced similarity

ratio is adopted in the test. The similarity criteria based on the

similarity theoretical model are as follows (Guo et al., 2010):

Fo � aL2

Γ (1)

Where L represents the characteristic length, m. Γ represents the

period of surface temperature change, h a represents the

proportional coefficient.

TABLE 2 Particle size distribution of soil.

Particle size/mm >1.25 1–1.25 0.63–1 0.5–0.63 0.25–0.5 0.074–0.25 < 0.074

Mass percent/% 0 0.94 1.75 2.62 4.94 6.39 82.82

FIGURE 2
Temperature variation of soil sample.
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The physical simulation characteristics of frozen silty clay are

consistent with the test process and the actual process. The

experiment lasted 8 h (4 h of freezing and 4 h of thawing),

and the 1-year change process under the action of freezing

and thawing cycles was simulated. The similarity calculation

process is shown in Table 3:

2.5 Shear test

Constant deformation loading is adopted during the test, and

the shear rate is 1 mm·min-1. The test is terminated when the

specimen strain reached 20% or when it failed. At -15°C, Triaxial

tests are carried out on frozen silty clay nuder five freeze-thaw

cycles, five initial moisture contents and three confining

pressures. The change of soil sample stress is monitored in

real time and recorded. After the triaxial test, the frozen soil

sample is convex in the upper part and has expansion

deformation in the radial direction. The frozen silty clay

generally presents an oblique crack failure form (Xu et al.,

2020; Niu et al., 2022; Zhang et al., 2022).

3 Methods

3.1 Long short-term memory neural
network structure and implementation

Long short-term memory neural network (LSTM) was

created primarily to solve the problem of gradient

disappearance and explosion. The biggest difference between

LSTM and traditional neural network is the introduction of

Forget gate, Input gate and Output gate. Another key is the

change in the internal state, which is the core of each activated

neuron and can be seen as a carrier for adding information or

deleting information.

Step 1: Some information is selectively discarded by the forget

gate, and LSTM receives the input of Ct and ht−1. And output a

number between 0 and 1 to the internal state St.

f t( ) � σ WfCC t( ) +Wfhh t−1( ) + bf( ) (2)

Step 2: Some information in the internal state is determined to

be stored. The input gate determines which values are updated,

and then a candidate state S(t) is built by the input node g(t).

i t( ) � σ WiCC t( ) +Wihh t−1( ) + bi( ) (3)
g t( ) � tanh WgCC t( ) +Wghh t−1( ) + bg( ) (4)

The original internal state is updated to S(t) by Eqs 2–4.

S t( ) � g t( ) × i t( ) + S t−1( ) × f t( ) (5)

Step 3: The output information is determined by the output

gate.

o t( ) � σ WoCC t( ) +Wohh t−1( ) + bo( ) (6)

Step 4: Based on the output gate and the new internal state, the

new hidden layer state h(t) is output.

h t( ) � tan hS t( ) × o t( ) (7)
whereW and b represent the weight and bias, respectively, WfC is

the weight of C(t) in the forget gate, and bf is the forget gate bias.

3.2 Introducing dropout to prevent
overfitting

L1 and L2 regularization methods are often used in neural

networks to prevent model overfitting. Some parameters in

the loss function are limited by this method (Jiang et al., 2018;

Huang et al., 2020). Neurons and fully connected layers are

randomly deleted through Dropout technology to form new

samples (Srivastava et al., 2014). The overfitting problem is

effectively solved by this sample replacement effect. At the

same time, the entire network is no longer very sensitive to the

specific weights of neurons. Therefore, the generalization

ability of the model has been greatly improved (Huang

et al., 2020; Chang et al., 2022).

3.3 Particle swarm Optimization(PSO)-
LSTM process

The steps of PSO-LSTM are as follows, and the flow chart is

shown in Figure 3.

1) The dataset is divided into LSTM training set, validation set

and test set.

2) Initialize the PSO algorithm: parameters such as the number

of iterations, inertia weight, learning factor and iteration step

range are initialized. Then, the position and velocity of each

particle are randomly initialized.

TABLE 3 Test time simulation time conversion.

Testing time Actual time

Fo Consistent

L 1/40 m 1 m

Γ 5.476 h 1 year = 8760 h

8 h 1 years
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FIGURE 3
PSO-LSTM process.

FIGURE 4
Optimization process curve (A) Fitness change curve of PSO-LSTM (B) MSE decay curve of PSO-LSTM.
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FIGURE 5
(Continued).
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FIGURE 5
Stress-strain curves of frozen silty clay with different freeze-thaw cycles.
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3) The three-dimensional particle swarm composed of Neurons,

dropout and batch_size is randomly generated.

4) In each iteration, the LSTM training set is used as the training set,

and the PSO optimization set is used as the test set. Therefore, the

LSTM prediction process is simulated and the solution (particle)

with the smallest prediction error in iterations is selected.

5) When the end condition is reached, the historical optimal

solution of the swarm is output. The optimal number of

neurons, dropout probability and batch_size are input to the

next LSTM prediction. Then MSE is used to evaluate the

fitting effect of stress-strain curve of frozen silty clay.,Finally,

the optimized prediction results are obtained.

FIGURE 6
Comparison between the fitting values of the formula and the test results for different confining pressures: (A) FTC=9 (B) FTC=18. Note: Each
working condition corresponds to other evaluation indexes (RMSE, MAE, MSE), which are given in the following comparative analysis of random
forest model, frozen soil binary medium model, and PSO-LSTM model.
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3.4 Optimization process analysis

According to the optimization parameters and constraints set

above, the particle swarm optimization algorithm operation is

performed. The fitness change curve is shown in Figure 4. It can

be seen from Figure 4A that when the iteration exceeds 4 times,

the fitness value quickly reaches the maximum. Therefore, the

optimal solution is selected when the number of iterations

(search steps) is 0–4, and the local optimal solution and the

global optimal solution are output for each cycle. After

20 iterations, the global optimal solution can be obtained:

[Number of neurons in the first layer, dropout, batch_size]=

[61, 0.09, 95]. Therefore, PSO-LSTM structure optimization

combination parameters are obtained and input.

It can be seen from the MSE attenuation curve of PSO-LSTM

model in Figure 4B above that when the sample reaches

7.5 epochs, the MSE value tends to be stable. It shows that

the validation set of the model has reached a good accuracy at this

time. After determining the structural optimal parameters of

PSO-LSTM, the weights and thresholds of each model are

iteratively trained using the training set to obtain the final

model. The test set is used to predict and compare each

model (Chang et al., 2020; Huang et al., 2022).

4 Results

4.1 Test results analysis

75 groups of triaxial tests are conducted on frozen silty clay

with initial moisture content(IMC) of 25%, 22.5%, 20%, 17.5%,

15%, freeze-thaw cycles (FTC) of 0, 3, 6, 9, 18 times and confining

pressure(CP) of 0.1Mpa, 0.2Mpa, 0.3Mpa. It can be seen from

Figure 5 that freeze-thaw cycles and confining pressure do not

change the strain characteristics of frozen silty clay. With the

increase of initial moisture content, there is hysteresis

phenomenon in the failure strain of frozen silty clay.

It can be seen from Figure 5 that when the initial moisture

content is 22.5% and 25%, the deviatoric stress shows three

development stages with the increase of the axial strain: linear

elastic growth stage, elastic-plastic development stage, and strain

hardening stage. In the linear elastic growth stage, the deviatoric

FIGURE 7
Comparison of model calculated values and test results.

TABLE 4 Parameters of binary medium model of frozen silty clay.

Working condition c α Ef/MPa Ei/MPa a b R2

IMC25-FTC0-CP0.1 0.820 0.221 78.107 161.413 0.060 0.189 97.30

IMC25-FTC0-CP0.2 0.316 0.215 59.951 92.462 0.020 0.170 98.93

IMC25-FTC0-CP0.3 0.159 0.946 83.592 95.460 0.031 0.299 98.06

IMC25-FTC3-CP0.1 0.173 0.196 102.161 115.393 0.038 0.652 96.00

IMC25-FTC3-CP0.2 0.230 0.695 15.421 454.901 0.086 0.784 98.52

IMC25-FTC3-CP0.3 0.714 0.275 76.980 220.213 0.171 0.194 99.85

IMC25-FTC6-CP0.1 0.454 0.622 54.635 440.815 0.046 0.434 98.91

IMC25-FTC6-CP0.2 0.454 0.280 11.204 296.752 0.062 0.368 98.51

IMC25-FTC6-CP0.3 0.259 0.694 41.632 199.842 0.092 0.574 99.04

IMC25-FTC9-CP0.1 0.612 0.738 15.004 324.728 0.064 0.326 98.91

IMC25-FTC9-CP0.2 0.767 0.126 13.524 143.883 0.139 0.220 99.79

IMC25-FTC9-CP0.3 0.283 0.367 80.136 348.797 0.044 0.694 97.08

IMC25-FTC18-CP0.1 0.437 0.220 114.175 109.263 0.046 0.319 99.08

IMC25-FTC18-CP0.2 0.403 0.485 60.193 225.220 0.069 0.467 98.92

IMC25-FTC18-CP0.3 0.202 0.005 53.623 323.660 0.045 0.949 97.74
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stress is dominated by cementation elements composed of pore

ice and soil particles. Due to the strain is small, the pore ice does

not crush and melt, and the structure does not have cracks. At

this time, the overall deformation modulus is large, and the

deviatoric stress increases linearly.

In the elastic-plastic stage, due to the large strain at this

time, micro-cracks are generated in the pore ice.

Accompanied by the pressure-melting phenomenon at the

ice crack, part of the cementation element structure is

destroyed and transformed into friction elements. Since the

FIGURE 8
(Continued).
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deformation modulus of friction element is smaller than that

of cementation element, the overall deformation modulus

decreases. The deviatoric stress increases slowly with the

increase of axial strain. During the strain hardening stage,

the number of cementation elements remains stable, and the

friction element, as the main bearing structure, show linear

growth trend with the increase of strain.

It can be seen from Figure 5 that when the initial moisture

content is 15%, 17.5%, and 20%, the frozen silty clay shows strain

softening properties. The pore ice is broken and local shear bands

are formed. The number of cementing elements decreases

rapidly, the number of friction elements increases, and the

integrity of the structural block is destroyed. The soil samples

shows strain softening state. And with the decrease of initial

FIGURE 8
(Continued). Comparative analysis of random forest model and PSO-LSTM model.
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water content, the strain softening phenomenon is more obvious.

And under the same working condition, different confining

pressures do not change the evolution law of deviatoric stress.

4.2 Binary medium constitutive model of
frozen silty clay

The simplified frozen soil binary medium model based on

damage parameters is shown in formula (8). The symbolic

interpretation and derivation process of formula (8) are given

(Zhang et al., 2022).

σ1 − σ3 � 1 − Ei − E

Ei − αEf
( )Eiε1 + Ei − E

Ei − αEf
· ε1
a + bcε1

(8)

Since the research object in this paper is frozen silty clay, the

local strain coefficient c is obtained from the stress-strain curve.

The comparison between the fitted value of the formula and the

actual test value is shown in Figure 6.

It can be seen from Figure 6 that the theoretical values of the

constitutive model of frozen soil binary medium are very close to

the measured values under different parameters. In addition,

there is a high matching degree in the linear elastic stage, elastic-

plastic stage and strain hardening stage of the stress strain curve.

Therefore, it is further verified that the model can better simulate

the curve relationship between stress and axial strain of silty clay

in the low-temperature triaxial test. The process parameters of

the binary medium model fitted by the frozen silty clay test are

shown in Table 4.

4.3 Optimal model selection

In order to compare the calculation accuracy of the model

and select the optimal model, the frozen silty clay binary medium

model, random forest model, PSO-LSTMmodel proposed in this

paper and the frozen soil triaxial test are compared and analyzed.

The stress sharing curve of the cementation element and the

friction element is made by Formula (1), and the specific

comparison is shown in Figure7. The deviatoric stress-strain

curve under IMC25-FTC18-CP0.2 is shown in Figure 7. It can be

seen from Figure 7 and formula (1) that the deviatoric stress

curve of frozen silty clay is formed by superposition of the stress

sharing curve of cementation element and the stress sharing

curve of friction element.

In the linear elastic stage, the evolution trend of deviatoric

stress of frozen silty clay is more consistent with the sharing curve

of cementation element. At this time, the deviatoric stress shared

by the friction elements is less than 0.039 MPa. Therefore, the

pore ice inside the cementation element is not crushed and

melted in the linear elastic stage. The integrity of cementation

element is good, and the cementation element mainly plays the

role of bearing force under low temperature triaxial action.

In the elastic-plastic stage, the stress sharing curve of friction

element shows a linear growth trend, and the stress sharing curve

of cementation element begins to grow slowly. When the strain

exceeds 2.7%, the difference between the stress sharing curve of

cementation element and the total stress curve gradually

increases. In the strain hardening stage, the stress sharing

curve of cementation element tends to be stable. It shows that

cementation element has yielded and stabilized at this time, and

the stress sharing curve of the friction element still maintains

linear growth trend. It shows that pore ice in the cemented

element is crushed and melted under the action of low

FIGURE 9
RF model and PSO-LSTM model evaluation index.

TABLE 5 Evaluation indicators of RF, theoretical calculation, PSO-LSTM model prediction and real data.

Working condition Evaluation index Random forest Theoretical calculation PSO-LSTM

IMC25-FTC18-CP0.2 R2 0.949106467 0.977447898 0.984457543

MSE 0.033933931 0.018273738 0.007834645

RMSE 0.184211648 0.13518039 0.088513529

MAE 0.088911295 0.079922866 0.01778676
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FIGURE 11
Three dimensional changes of freeze-thaw cycles, initial
moisture content and strength under different confining
pressures.

FIGURE 10
Three dimensional changes of confining pressure, initial
moisture content and strength under different freeze-thaw
conditions.

TABLE 6 Evaluation indicators of RF and PSO-LSTM model prediction and real data.

Working condition Evaluation index Random forest PSO-LSTM

IMC25-FTC18-CP0.1 R2 0.946867 0.968041

RMSE 0.200192 0.155260

MAE 0.163855 0.146359

IMC25-FTC18-CP0.3 R2 0.952987 0.981243

RMSE 0.205465 0.129782

MAE 0.161448 0.098298

IMC22.5-FTC18-CP0.1 R2 0.954692 0.982237

RMSE 0.201704 0.126296

MAE 0.161236 0.095130

IMC22.5-FTC18-CP0.3 R2 0.924272 0.995879

RMSE 0.250253 0.058376

MAE 0.198715 0.029505

IMC17.5-FTC18-CP0.1 R2 0.894327 0.911894

RMSE 0.258864 0.221967

MAE 0.255152 0.197750

IMC17.5-FTC18-CP0.2 R2 0.818048 0.912679

RMSE 0.339679 0.235315

MAE 0.317484 0.220280

IMC15-FTC18-CP0.1 R2 0.823516 0.989740

RMSE 0.327556 0.078976

MAE 0.229129 0.060952

IMC15-FTC18-CP0.2 R2 0.884006 0.987295

RMSE 0.234291 0.077541

MAE 0.207725 0.054816
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temperature triaxial. The local shear bands are formed, and the

soil sample presents the failure form of oblique crack. In addition,

it can be seen from Figure 7 that in the range of axial strain of

20%, the stress sharing curve of cementation element is always

larger than stress sharing curve of the friction element. The peak

value of the total stress is also the maximum value of the

superposition of the stress sharing curve of the cementation

element and the friction element.

It can be seen from Figure 7 that the calculated values of the

frozen silty clay binary medium model and PSO-LSTM model

are completely close to the test values. The constitutive relation of

frozen silty clay can be better simulated by PSO-LSTM model.

Because excellent matching degree can be achieved in linear

elastic stage, elastic-plastic stage and strain hardening stage. The

calculated values of the RF model and the test values show a high

consistency in the strain hardening stage, but there is a large

difference between the linear elastic stage and the elastic-plastic

stage, which indicates that the model has a large error and still

needs to be adjusted.

4.4 Model evaluation

Based on the random forest model test set, the stress-strain

relationship of frozen silty clay with different moisture content

after the 18th freeze-thaw cycles is obtained In the constitutive

relation curve obtained by selecting the random forest model, the

working condition with lower R2 is only shown in Figure 8.

Therefore, the worst fitting condition of random forest model is

selected as the test set of PSO-LSTM model. Finally, the

universality and applicability of PSO-LSTM model can be well

verified.

It can be seen from the results in Figure 8 that the strains

corresponding to the maximum deviatoric stress errors of the RF

model are 18.18%, 7.92%, 4.79%, and 15.04% under the initial

moisture contents of 22.5, 20, 17.5, and 15%. The deviatoric

stresses corresponding to the RF model are 6.16, 6.50, 5.76, and

2.07 MPa respectively, and the deviatoric stresses corresponding

to the test are 5.80, 6.10, 5.45, and 2.41MPa respectively. The

errors are 5.8%, 6.1%, 5.38%, and 16.4% respectively. Therefore,

the trend of the random forest model curve is consistent with that

of the test curve, but there is always a large deviation in the whole

evolution process of the partial stress. The evaluation indexes of

the initial training set and test set of the RF model are

significantly different, and the training set is more excellent. It

shows that RF model has over-fitting phenomenon in the

training process, and the unsatisfactory test results are

generated. Therefore, cross-validation is added to avoid

overfitting. In the end, the maximum error of the model is

still 16.4%.

The maximum error of PSO-LSTM model is only 1.56%

under IMC20FTC18CP0.3 working condition. Compared with

RF, the predicted value of the PSO-LSTM model constructed in

FIGURE 13
Influencing factors of soil particle and pore ice force.

FIGURE 12
Three dimensional changes of freeze-thaw cycles, confining
pressure and strength under different initial moisture content.
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this paper fits better with the actual measured value, and the

relative error is smaller and more stable.

As can be seen from Figure 8, the evolution of deviatoric

stress under each condition can be well simulated. The

constitutive relationship predicted by the random forest model

will have fluctuation segments, and it is prone to the problem of

low strain sensitivity. The PSO-LSTM model can well simulate

the evolution trend of deviatoric stress in each working

condition.

Analysis of the data in Table 5 shows that the R2 of the

deviatoric stress prediction data of the frozen silty clay obtained

by the RF model, the binary medium model and the PSO-LSTM

model are all above 94%. Therefore, in the process of iterative

training, the internal test laws of initial moisture content, freeze-

thaw degradation effect and confining pressure are well

excavated, and more reasonable constitutive prediction values

are output. However, compared with the RF model and frozen

soil binary medium model, the R2 obtained by the PSO-LSTM

model reaches 98.44%. At the same time, MSE and MAE are the

lowest, which are 0.0078 and 0.01778 respectively, indicating that

the model prediction effect is the best. The evaluation index of

the initial moisture content of 25 is only shown in Table 5.

Therefore, the evaluation index of the model test set under other

conditions is given in the following Figure 9.

It can be seen from Table 6 that the accuracy of the optimal

model under each working condition is above 90%. It can be seen

from the comparison model that the accuracy of the PSO-LSTM

model in each working condition is higher than that of the RF

model. At the same time, RMSE and MAE errors are lower than

RF model in all conditions, which is enough to show that the

optimal model can well simulate the constitutive relation of

frozen silty clay in all conditions.

The evaluation indicators of the RF and PSO-LSTM models on

the validation set and the test set are relatively consistent, so the

evaluation indicators of the validation set are omitted here. At the

same time, the RF model and the PSO-LSTM model have not been

fitted. In addition, the R2 of PSO-LSTM for frozen silty clay

constitutive prediction in the test set are all greater than 0.99. At

the same time, RMSE, MSE and MAE are the smallest under each

water content working condition, and they are the best in all

networks. The better fitting accuracy and prediction performance

of this model have been fully proved, and it is very accurate for the

constitutive prediction of frozen silty clay. It also provides a new

method for the prediction of frozen silty clay constitutive model.

FIGURE 15
Distribution of feature importance.

FIGURE 14
Structural model of frozen silty clay.
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5 Discussion

5.1 Effect of freeze-thaw cycles, confining
pressure and initial moisture content on
strength of frozen silty clay

As shown in Figure 10, the strength tends to be stable after 6,

9, 6, 9, and 9 freeze-thaw cycles at initial moisture content of 25,

22.5, 20, 17.5, and 15%, respectively. After 18 freeze-thaw cycles,

the shear strength of frozen silty clay decreased by 2.66%, 11.85%,

18.83%, 16.79, and 29.02%, respectively. Under the same

confining pressure, the shear strength of frozen silty clay

decreases first and then tends to be stable with the increase of

freeze-thaw cycles. With the increase of freeze-thaw cycles, the

bearing structure of frozen silty clay changes from initial coarse

particles and pore ice to more deteriorated fine particles and pore

ice. That is, the positions of the pore ice in frozen silty clay are

occupied by more fine particles. On the one hand, the thickness

of pore ice is reduced, and thin pore ice is more likely to expand

cracks under low temperature triaxial stress. On the other hand,

the unfrozen water film on the particle surface shows lubrication

effect. And with the increase of freeze-thaw cycles, the rolling

friction and sliding friction between particles increase more,

which makes the shear strength decrease more obviously.

Under a certain confining pressure, the rolling friction and

sliding friction between particles tend to be stable after 6 and

9 freeze-thaw cycles. So the connection, arrangement and stress

history of the soil particles are changed by the freeze-thaw cycles.

This deterioration effect decreases with the increase of freeze-

thaw cycles and tends to be stable after a certain number of

freeze-thaw cycles (6 or 9 times).

As shown in Figure 11, the deviatoric stress of frozen silty

clay increases with the increase of confining pressure. This is very

consistent with the actual project. And with the increase of the

initial moisture content, the effect of confining pressure on the

strength increase is no longer obvious. This is because in the third

stage, the stress sharing curve of the friction element shows a

linear growth trend. The stress sharing of the cemented element

keeps the yield stable, and with the increase of the confining

pressure, the strength of the cemented element for the yield

stability is also greater. When the optimum moisture content is

reached, the pore ice of cementation element tends to be

saturated. At this time, with the increase of the initial

moisture content, the expansion of the cracks generated by

the thin pore ice is not obvious. Therefore, the influence of

the confining pressure on the yield stability of the cemented

element is gradually reduced.

As shown in Figure 12, the strength of frozen silty clay is the

highest near the initial moisture content of 20%. With the

increase of freeze-thaw times and the decrease of confining

pressure, the strength of frozen silty clay decreases. Therefore,

the most unfavorable working condition is IMC15-FTC18-

CP0.1, and the highest strength working condition is IMC20-

FTC18-CP0.3.

Compared with Figures 10, 11, it is obvious that the strength

difference of frozen silty clay is the largest under different initial

moisture content. That is, the initial moisture content has greater

influence on the strength of frozen silty clay (Cao et al., 2022;

Teng et al., 2022). This is because the effects of freezing and

thawing and confining pressure on the connection and

arrangement of soil particles and the stress history are not as

significant as the initial moisture content. The bearing structures

of soils with different initial moisture contents are quite different.

As a result, the difference of pore ice thickness is large, and the

difference of crack germination and expansionmode is increased.

On the other hand, the difference of rolling friction and sliding

friction between frozen silty clay particles under different initial

moisture content is large, resulting in a large difference in shear

strength.

5.2 Frozen soil structure model

The structural composition of unsaturated frozen soil (Teng

et al., 2022) which influences factors of soil particle and pore ice

force and soil strength change process is shown in Figure 13

below.

The structural model of frozen silty clay can be seen in

Figure 14. According to the concept of the binary mediummodel

(Zhang et al., 2022), cementation element is a stable ice-soil

skeleton composed of clay particles and pore ice. The

deformation modulus of cementation element is large, and it

usually shows better integrity in case of small deformation.

Under triaxial stress or low temperature, the pore ice inside

FIGURE 16
Prediction of unknown working conditions by PSO-LSTM
model.
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the cemented element may be crushed and melted. Even soil

particles can be broken. Local shear bands are gradually formed

under deviatoric stress. At the same time, the cementation

element transforms into the friction element.

There are a large number of cemented elements and

friction elements in the frozen silty clay. And under the

action of triaxial stress and low temperature, cementation

element is gradually transformed into friction element. The

strength characteristic difference of frozen soil is closely

related to the quantity difference between cementation

elements and friction elements.

The cementation element plays a major role in linear elastic

stage, and the stress sharing curve of friction element can be

ignored. In the elastic-plastic stage, the bearing capacity of the

cementation element reaches the yield stability and continuously

transforms into the friction element. During the strain hardening

stage, the stress sharing curve of the cementation element

remains stable, and the stress sharing curve of the friction

element continues to increase linearly.

5.3 Contribution weight analysis of stress-
strain curve of frozen silty clay

Compared with confining pressure and freeze-thaw cycles,

the initial moisture content has the greatest influence on the

evolution trend of deviatoric stress. Therefore, machine learning

method is used to study the importance of features. It provides a

new method for the study of the contribution weight of different

factors to frozen silty clay constitutive curve. The contribution

weight of deviatoric stress is shown in Figure 15.

The contribution weight of the four factors to the

deviatoric stress can be seen from the importance map of

random forest characteristics. According to the above

experimental study, the trend of the stress-strain

relationship curve will be changed by the different initial

moisture content. The state of frozen silty clay before the

failure will be determined by the initial moisture content, and

the position of peak strain will also be changed. With the

increase of initial moisture content, the failure stage changes

from strain softening to strain stabilization, and then to strain

hardening. At the same time, the failure stress will also lag.

This also verifies the strong connection between the moisture

water content and the stress evolution law.

In a certain range (IMC = 25, 22.5, 20, 17.5, 15%, FTC = 0, 3,

6, 9, 18 times, CP = 0.1, 0.2, 0.3 MPa), the influence factors of

frozen silty clay stress from strong to weak are: initial moisture

content > strain > confining pressure > freeze-thaw cycles. The

contribution of confining pressure to the stress evolution law is

small, which is because the freezing depth of the seasonal frozen

area is less than 2 m. Therefore, the gradient and range of the

confining pressure setting in this paper are small, so the

contribution weight is small.

5.4 Comparison and promotion of frozen
silty clay binary constitutive model, RF
model and PSO-LSTM model

Although the binary constitutive model of frozen silty clay

has obtained a good prediction effect. And the reference formula

is provided, which is beneficial to the application in practical

engineering. However, there are some shortcomings in the

model. For example, the binary constitutive model of frozen

silty clay in this paper is only suitable for the fitting of the

constitutive relationship under the condition of IMC=25%, but it

can not achieve a good fitting effect for the IMC=22.5%, 20%,

17.5%, and 15%. Therefore, the formula fitting model still needs

to find the constitutive formula of similar curve law. The formula

fitting software 1STOPT can also be used to perform a random

search of constitutive relations. But some parameters in the

formula cannot be explained mathematically and physically.

Therefore, in-depth research and promotion are limited.

Based on the shortcoming that the above model is applicable

to a single working condition, the RF model is established in this

paper. The RFmodel can be applied to all initial moisture content

conditions, but the model prediction accuracy is not satisfactory.

The PSO-LSTM model is established in this paper to solve

the problems of the above models. There are many advantages,

such as high prediction accuracy, wide application range, and no

need to propose based on certain assumptions. The LSTM

optimal combination input parameters are searched by PSO,

and the parameter adjustment speed of the model for the data

learning process of other soil types is greatly increased, which is

conducive to popularization. Therefore, it is only necessary to

carry out frozen soil triaxial tests of different soil types in various

regions. PSO-LSTM model has extremely high accuracy in

constitutive prediction, which can provide reference for frozen

soil engineering application in cold regions.

Moreover, the deep learning algorithm has a strong fitting

ability for multiple operating conditions and multiple factors.

The data driven deep learning method will have an excellent

fitting effect for more dimensional sample data. For other soil

types, the triaxial test data are imported, and the high-precision

constitutive relation curve can be obtained by modifying the

training set.

In the Code for Design of Soil and Foundation of Building in

Frozen Soil Region, the characteristic value fa of foundation

bearing capacity is selected based on temperature and soil type.

Only four types of frozen soil with ground bearing capacity

characteristic values at -3°C~-0.5°C are given in the specification.

However, it is not suitable for saline frozen soil and frozen peat

soil, and a large number of experiments need to be carried out to

revise the specification. Therefore, the optimal model proposed

in this paper has important generalization significance.

That is, a more comprehensive reference table of

characteristic values of frozen soil bearing capacity is given by

carrying out different working conditions tests on soils in various
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regions. The working conditions that have not been tested

(IMC=16, 19, 21, 24%, FTC=12, 15 times, CP=0.05, 0.15, 0.25,

0.35Mpa) are predicted by the PSO-LSTMmodel to demonstrate

the advantages of the model. As shown in Figure 16, the predicted

strength law is consistent with the actual situation. It provides a

new method for the constitutive study of frozen soil engineering

in cold regions, and provides a favorable reference for the

strength of remolded soil in seasonal frozen regions.

Therefore, it is of great significance to carry out the model

study in this paper.

Random forest and PSO-LSTM can provide a new method

for frozen soil constitutive research. The constitutive model of

frozen soil is developed based on mathematical skills, which can

deeply learn the data of frozen soil triaxial test. Machine learning

model has strong nonlinear mapping ability, and is not limited by

frozen soil constitutive formula In the process of deep mining of

multi-dimensional large sample data, there is usually a better

fitting effect. Therefore, machine learning shows extremely high

accuracy and wide applicability in frozen soil constitutive model

prediction. It can be used to modify the characteristic value fa of

foundation bearing capacity of the Code for Design of Soil and

Foundation of Building in Frozen Soil Region.

6 Conclusion

The study of constitutive model is of great significance to the

construction of frozen soil engineering. In this paper, 75 sets of

experiments are carried out, and a comparative study of the

constitutive models of frozen silty clay is carried out. The

following conclusions are drawn:

1) Under the same confining pressure, the shear strength of

frozen silty clay decreases first and then tends to be stable with

the increase of freeze-thaw cycles. The strength tends to be

stable after 6, 9, 6, 9, and 9 times freeze-thaw cycles at initial

moisture content of 25, 22.5, 20, 17.5, and 15%, respectively.

After 18 freeze-thaw cycles, the shear strength of frozen silty

clay decreased by 2.66%, 11.85%, 18.83%, 16.79, and 29.02%,

respectively.

2) Compared with RF model and frozen soil binary medium

model, the R2 obtained by the PSO-LSTM model reaches

98.44%. At the same time, MSE and MAE are the lowest,

which are 0.0078 and 0.01778 respectively, indicating that the

model prediction effect is the best. In the process of iterative

training, the internal test laws of initial moisture content,

freeze-thaw degradation effect and confining pressure are well

excavated, and more reasonable constitutive prediction values

are output.

3) In a certain range (IMC = 25, 22.5, 20, 17.5, 15%, FTC = 0,

3, 6, 9, 18 times, CP = 0.1, 0.2, 0.3 MPa), the influence

factors of frozen silty clay stress from strong to weak are:

initial moisture content > strain > confining pressure >
freeze-thaw cycles. Tongming et al., 2021, Yuanming

et al., 2010.
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