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Solutions of the secondary (transverse) circulation equation for an

axisymmetric, gradient balanced vortex are used to better understand the

distribution of subsidence in the eye of a tropical cyclone. This secondary

circulation equation is derived using both the physical radius coordinate r and

the potential radius coordinate R. In the R-coordinate version, baroclinic effects

are implicit in the coordinate transformation and are recovered in the final step

of transforming the solution for the streamfunction Ψ back from R-space to r-

space. Two types of elliptic problems for Ψ are formulated: 1) the full secondary

circulation problem, which is formulated on 0 ≤ R <∞, with the diabatic forcing

due to eyewall convection appearing on the right-hand side of the elliptic

equation; 2) the restricted secondary circulation problem, which is formulated

on 0 ≤ R ≤ Rew, where the constant Rew is the potential radius of the inside edge

of the eyewall, with no diabatic forcing but with the streamfunction specified

along R = Rew. The restricted secondary circulation problem can be solved

semi-analytically for the case of vertically sheared, Rankine vortex cores. The

solutions identify the conditions under which large values of radial and vertical

advection of θ are located in the lower troposphere at the outer edge of the eye,

thereby producing a warm-ring thermal structure.
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1 Introduction

The concept of hub clouds and eye moats comes from aircraft observations made by

Simpson and Starrett (1955). Figure 1 is adapted from their schematic diagram of

Hurricane Edna (9–10 September 1954). Of particular interest is the hub cloud near

the circulation center and the clear moat at the edge of the eye. In later years, intense

storms like Edna have been found that also possess a warm-ring thermal structure in the

lower troposphere—where the temperature surrounding the center of a tropical cyclone is

greater than the center, which is in contrast to a warm-core thermal structure where

temperature decreases radially outward from the center. A good example is Hurricane

Isabel on 13 September 2003, when it had tangential winds in excess of 70 m s−1. Figure 2
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shows NOAAWP-3D aircraft data for this storm. The two panels

show tangential wind (black curves), temperature (red curves),

and dewpoint temperature (blue curves) for a 2.1 km altitude

radial leg (lower panel) and a 3.7 km altitude radial leg (upper

panel). A warm-ring thermal structure occurs at both levels, with

the warmest and driest air at 25 km radius, which is at the outer

edge of the eye. In temperature, the warm ring is approximately

4.2°C warmer than the vortex center at 3.7 km and 5.0°C warmer

than the vortex center at 2.1 km. As can be seen from the

dewpoint depressions, the warm-ring region near 25 km

radius is associated with dry, subsiding air at the outer edge

of the eye. Enhanced subsidence at the outer edge of the eye tends

to produce an eye-moat. Note that the center of the eye is

saturated at z = 2.1 km but is not saturated at z = 3.7 km,

which is consistent with the top of the hub cloud being located at

z ≈ 3 km. The tangential wind profiles reveal a vorticity structure

more complicated than the simple structure that will be assumed

in Section 3. This is evident from the kinks that occur near r ≈
20 km for z = 2.1 km and near r ≈ 27 km for z = 3.7 km. In other

words, Isabel had a somewhat “hollow” vorticity structure

compared to the radially uniform structure that is assumed in

Section 3.

The photograph shown here as Figure 3 was taken from the

WP-3D aircraft near the edge of the eye, looking towards the hub

cloud at the center of the eye. The top of the hub cloud is near

3 km altitude, so the radial leg in the upper panel of Figure 2 is

just above the top of the hub cloud, while the radial leg in the

lower panel is just below the top of the hub cloud, as is evident in

the dewpoint depressions. Since the first internal mode Rossby

length in the eye of Isabel at this time is on the order of 10–15 km,

the eye diameter (~ 60 km) is approximately 5 Rossby lengths,

allowing for the rare opportunity to view balanced dynamical

FIGURE 1
Schematic diagram of the eye of Hurricane Edna,
9–10 September 1954, as adapted from Simpson and Starrett
(1955). At this time, Hurricane Edna had a steep corrugated eyewall
on its north side and a sloping (≈ 45°) eyewall on its south
side. Such variations in eyewall slope are often interpreted as an
effect of environmental vertical shear (see Hazelton and Hart,
2013; Hazelton et al., 2015; and the recent review by Rogers, 2021).
The stratocumulus “hub cloud” near the circulation center and the
moat near the edge of the eye indicate that in strong hurricanes
the subsidence is not uniform across the eye, but rather is
concentrated near the edge of the eye. Enhanced subsidence in
the lower troposphere near the edge of the eye leads to a lower-
tropospheric warm-ring thermal structure, as shown in Figure 2 for
Hurricane Isabel (2003). A photograph of Isabel’s hub cloud is
shown in Figure 3, which indicates that the hub clouds in Isabel and
Edna were of approximately the same height, although Isabel’s eye
diameter was somewhat larger than that of Edna.

FIGURE 2
Radial profiles of NOAA WP-3D aircraft data for Hurricane
Isabel on 13 September 2003. The panel (B) is for the z = 2.1 km
flight leg (1922 to 1931 UTC) and the panel (A) for the z = 3.7 km
flight leg (1948 to 1956 UTC). Black curves are for tangential
wind, red curves for temperature, and blue curves for dewpoint
temperature. Adapted from Schubert et al. (2007).
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structure over several Rossby lengths in a single photograph. For

comprehensive discussions of Hurricane Isabel, see Montgomery

et al. (2006), Aberson et al. (2006), Bell and Montgomery (2008),

Nolan et al. (2009b,a), and Stern et al. (2016). The eye-moat and

mesovortex structure of Hurricane Isabel on 12 September

2003 is discussed by Kossin and Schubert (2004) and Rozoff

et al. (2006).

Another common feature of intense tropical cyclones is the

“stadium effect,” caused by the outward slope of the eyewall. An

example of this effect, taken from the CloudSat data archive, is

shown in Figure 4. This vertical cross-section was obtained when

CloudSat’s 94 GHz Cloud Profiling Radar made a fortuitous pass

directly over the eye of Typhoon Choi-Wan on 15 September

2009. In the top panel of Figure 4, the vertical scale is stretched to

highlight the vertical structure of the radar reflectivity. In the

bottom panel, only the region inside a radius of 50 km is shown,

so the aspect ratio is one-to-one, which clearly reveals the

approximate 45° baroclinic tilt of the eyewall updraft. The

incorporation of such baroclinic tilt is an important aspect of

the theoretical analysis presented here in Sections 2 and 3.

An interesting feature of nonhydrostatic, full-physics, tropical

cyclone models is that they can produce intense storms with a

temperature field that has a warm-core structure at upper levels, but

a warm-ring structure at lower levels. The first example of this was

presented by Yamasaki (1983), whose Figure 10A is reproduced here

as Figure 5. The upper tropospheric warm-core anomaly is 17°C and

is centered at a height of 14 km. A warm-ring thermal structure is

found between heights of 2 and 8 km, and at a radius of

approximately 7–8 km. Much of the present paper is devoted to

a balanced dynamical interpretation of the production of such an

overall thermal structure.

For the study of eye subsidence, one can envision using (at least)

four different sets of independent variables in space: radius and log-

pressure, (r, z); potential radius and log-pressure, (R, Z); radius and

potential temperature, (r, θ); or potential radius and potential

temperature, (R, Θ). Note that Z = z and Θ = θ, but the upper

case symbolsZ andΘ are used because (z/zZ)≠ (z/zz) and (z/zΘ)≠
(z/zθ). Concerning the use of (R, Θ)-coordinates, since the flow in

the eye is inviscid and adiabatic, both R and Θ are Lagrangian

coordinates, which means that a given parcel in the eye stays on its

original R-surface and its original Θ-surface. In other words, when

the mathematical analysis is performed in (R, Θ)-space, there is no
need for a transverse circulation equation, and the dynamics is more

easily understood in the framework of PV and its invertibility

principle, as discussed in a theoretical context by Schubert and

Alworth (1987), Möller and Smith (1994), and Schubert (2018), and

in an observational context byMartinez et al. (2019). This is in sharp

contrast to the use of (r, z)-coordinates, where neither r nor z is a

Lagrangian coordinate. In this paper, we have analyzed the

transverse circulation problem in (R, Z)-coordinates, a setting in

which one coordinate is Lagrangian and the other is not. There is a

duality between the use of (R, Z)-coordinates and the use of (r, θ)-

coordinates, since in the (r, θ)-formulation, one coordinate is

Lagrangian (recall that _θ � 0 in the eye) and the other is not.

FIGURE 3
Photograph of the eye of Hurricane Isabel on 13 September 2003. The 3 km tall hub cloud at the center of the eye is surrounded by a moat of
clear air or shallow stratocumulus. Beyond the hub cloud and on the opposite side of the eye (at a distance of ~ 60 km) lies eyewall convection
extending up to 12–14 km. Photo courtesy of Sim Aberson.
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Thus, the essential results obtained in Section 3 using the (R, Z)-

formulation could also be obtained using the (r, θ)-formulation.

However, some details involved in the two formulations are

different. For example, in the (r, θ)-formulation, a convenient

vertically sheared Rankine core has solid-body rotation on each

isentropic surface rather than on each isobaric surface. Also, in the

elliptic problem (Eq. 16), the outer boundary is the coordinate

surface R = Rew, while in the (r, θ)-formulation a sloping eyewall

outer boundary would not be an r-surface, thereby producing an

additional difficulty in the solution of the elliptic problem. Thus,

while the difficulties of including baroclinic effects in the (r, z)-

formulation can be overcome by using either the (R, Z)-formulation

or the (r, θ)-formulation, the analysis presented in this paper is

indicative of our slight preference for the (R, Z)-formulation.

The paper is organized as follows. Section 2 first presents the

balanced vortex equations in the (r, z)-formulation, and then

transforms to the (R, Z)-formulation. For certain baroclinic

vortices, the (R, Z) formulation of the transverse circulation

equation can be solved semi-analytically using a vertical

transform approach (Section 3). These semi-analytical

solutions are used to generalize the barotropic vortex results

of Schubert et al. (2007) and to better understand the role of

baroclinicity in the distribution of subsidence in the eye of an

intense tropical cyclone.

2 Gradient balance theory

For simplicity, the analysis presented here considers an

axisymmetric, balanced flow in the inviscid fluid that lies

above the frictional boundary layer. To simplify the primitive

equation model to a balanced vortex model, we assume that the

azimuthal flow remains in a gradient balanced state, i.e., we

discard the exact radial equation of motion and replace it with the

gradient balance condition given below as the first entry in Eq. 1.

A sufficient condition for the validity of this assumption is that

the diabatic forcing effects have slow enough time scales that

significant, azimuthal mean inertia-gravity waves are not excited.

We shall describe this inviscid flow using the log-pressure vertical

coordinate z = H ln(p0/p), where H = RdT0/g is the constant scale

height, p0 and T0 are constant reference values of pressure and

temperature, Rd is the gas constant for dry air, and g is the

FIGURE 4
At 0353 UTC on 15 September 2009, CloudSat’s 94 GHz Cloud Profiling Radar passed directly over Typhoon Choi-Wan. This figure shows a
north-south vertical cross-section of radar reflectivity for the 65 ms−1 storm (north is to the right) when it was located approximately 450 kmnorth of
Guam. In the panel (A), the horizontal scale is compressed to exaggerate the vertical structure. In the panel (B), only the region inside a radius of
50 km is shown (which excludes the secondary eyewall), but the aspect ratio is one-to-one, thus showing the sloping eyewall (or “stadium
effect”) as would be seen by an observer on a research aircraft. Reflectivity values less than − 20 dBZ have been removed for clarity. This figure has
been adapted from Schubert and McNoldy (2010) and is based on radar data made available through the NASA CloudSat Project.
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acceleration of gravity. Under the balance condition, the

governing equations are

f + v

r
( )v � zϕ

zr
,

zv

zt
+ w

zv

zz
+ f + z rv( )

r zr
( )u � 0,

zϕ

zz
� g

T0
T,

z ru( )
r zr

+ z ρw( )
ρ zz

� 0,

zT

zt
+ u

zT

zr
+ w

zT

zz
+ κT

H
( ) � Q

cp
,

(1)

where κ = Rd/cp, cp is the specific heat at constant pressure, f the

constant Coriolis parameter, ρ(z) = ρ0e
−z/H the pseudo-density in

the log-pressure coordinate, ρ0 = p0/(RdT0) the constant reference

density, ϕ the geopotential, u the radial velocity component, v the

azimuthal velocity component, w the log-pressure vertical

velocity, and Q the diabatic heating. The potential vorticity

(PV) equation, derived from Eq. 1, is

DP

Dt
� 1
ρ

−zv
zz

z _θ

zr
+ f + z rv( )

r zr
( ) z _θ

zz
[ ], (2)

where D/Dt = (z/zt) + u(z/zr) + w(z/zz) is the material derivative,

P � 1
ρ

−zv
zz

zθ

zr
+ f + z rv( )

r zr
( ) zθ

zz
[ ] � fR

ρr

z R, θ( )
z r, z( ) (3)

is the potential vorticity, θ � T(p0/p)κ � Teκz/H is the potential

temperature, cp _θ/θ � Q/T, and the potential radius R is defined

in terms of the absolute angular momentum by 1
2fR

2 � rv +
1
2fr

2.

Using the mass conservation principle, we define a

streamfunction ψ such that

ρu � −zψ
zz

and ρw � z rψ( )
r zr

. (4)

For convenience, we shall refer to ψ as the “streamfunction,”

although it is worth noting that it is actually rψ, rather than ψ, that is

the “streamfunction” for the transverse mass flux. This flexibility

with the factor r proves convenient for the analytical solutions

presented in Section 3. Using the gradient balance relation in the

tangential wind equation, and using the hydrostatic relation in the

thermodynamic equation, we can write

zϕt

zr
− ρBw + ρCu � 0,

zϕt

zz
+ ρAw − ρBu � gQ

cpT0
,

(5)

where ϕt = (zϕ/zt) is the geopotential tendency, and where the

static stability A, the baroclinicity B, and the inertial stability C

are given by

ρA � g

T0

zT

zz
+ κT

H
( ),

ρB � − f + 2v
r

( ) zv

zz
� − g

T0

zT

zr
,

ρC � f + 2v
r

( ) f + z rv( )
r zr

( ).
(6)

Eliminating ϕt between the two equations in Eq. 5, then

expressing u and w in terms of ψ via Eq. 4, and requiring that w =

0 at the top and bottom boundaries, we obtain the following

transverse circulation problem (Eliassen, 1951).

Secondary Circulation Problem on the Full r, z( ) −Domain :
z

zr
A
z rψ( )
r zr

+ B
zψ

zz
( ) + z

zz
B
z rψ( )
r zr

+ C
zψ

zz
( ) � g

cpT0

zQ

zr

for 0≤ r<∞ and 0≤ z≤ zT with

ψ 0, z( ) � ψ r, 0( ) � ψ r, zT( ) � 0,
rψ r, z( ) → 0 as r → ∞ .

{ (7)

Note that AC − B2 � gT−1
0 ρ−10 e(1−κ)z/H(f + 2v/r)P, so that

this problem is elliptic if (f + 2v/r)P > 0, which is typically

the case for the tropical cyclone core region studied in this

paper.

FIGURE 5
Vertical cross-section of the temperature anomaly (°C) from
the nonhydrostatic, full-physics model simulation of an intense
tropical cyclone by Yamasaki (1983). A warm-core thermal
structure (17°C anomaly) is found at heights near 14 km, while
a warm-ring thermal structure is found near r ≈ 7–8 km between
heights of 2 and 8 km. As shown in Eq. 35 the warm-ring thermal
structure is associated with absolute angular momentum surfaces
that are tilted in opposite directions on the two sides of the warm
ring. The upper troposphere/lower stratosphere cold anomaly
produced by this model is similar to that observed by Johnson and
Kriete (1982) for tropical mesoscale systems using radiosonde data
(their Figure 3) and by Rivoire et al. (2016) using COSMIC GPS radio
occultation data. Adapted from Figure 10A of Yamasaki (1983).
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According to Eq. 7, subsidence in the hurricane eye at

a particular time is forced by the (zQ/zr) term and is shaped

by the three spatially varying coefficients A, B, C at that

time. Analytical progress in understanding eye subsidence

can more easily be made if we obtain a transformed

version of Eq. 7 that contains only two spatially varying

coefficients and does not contain any second order mixed

derivative terms. The balanced vortex model and the

associated transverse circulation equation take simple

forms when the original independent variables (r, z, t)

are replaced by the new independent variables (R, Z, τ),

where Z = z and τ = t but z/zZ and z/zτ imply fixed potential

radius R. This transformation (Schubert and Hack, 1983)

makes use of

z

zr
,
z

zz
,
z

zt
( ) � zR

zr

z

zR
,
zR

zz

z

zR
+ z

zZ
,
zR

zt

z

zR
+ z

zτ
( ), (8)

from which it follows that

D

Dt
� z

zt
+ u

z

zr
+ w

z

zz
� z

zτ
+ w

z

zZ
. (9)

Defining U, V, W, and Φ by

U � r

R
u + w

f

zV

zZ
,

V � r

R
v,

W � f

f + ζ
( )w,

Φ � ϕ + 1
2
v2,

(10)

where ζ = r−1z(rv)/zr is the relative vorticity, the governing

equations (Eq. 1) transform to (see Appendix A for further details)

f̂V � zΦ
zR

,

zV

zτ
+ fU � 0,

zΦ
zZ

� g

T0
T,

z RU( )
R zR

+ z ρW( )
ρ zZ

� 0,

zT

zτ
+ T0

g
N2W � Q

cp
, (11)

FIGURE 6
The solid blue curve is the θ profile in the core of Hurricane Hilda, as described by Hawkins and Rubsam (1968). The dashed blue curve is the
quadratic approximation θc(z) given by Eq. 18. For reference, the annual mean and hurricane season mean profiles for the West Indies (Jordan, 1958)
and the mean profiles for the Marshall Islands and GATE (Fulton and Schubert, 1985) are shown by the other colored curves. The maximum warm-
core anomaly in θ occurs at 300 hPa and is approximately 21 K. The horizontal line at z = 16 km denotes the upper boundary used in the
calculations presented in Section 3.
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where the effective inertial frequency f̂ and the effective

buoyancy frequency N are defined by

f̂
2 � f + 2v

r
( )2

� f2R
4

r4
� f4 f − 2V

R
( )−2

,

N2 � f + ζ

f
( ) g

T0

zT

zZ
+ κT

H
( )

� e−κZ/H
f + ζ

f
( ) g

T0

zθ

zZ
� e−κZ/H

gρP

T0f
.

(12)

It follows that r and R are related by r � (f/f̂)1/2R and that rv =

RV. Note that the system in Eq. 11 is formally simpler than the

system in Eq. 1, even though no additional approximations have

been introduced. Also note that the effective buoyancy

frequency N can differ greatly from the usual buoyancy

frequency in the cyclone core, but they are essentially the

same in far-field regions where |ζ| ≪ f and the angular

momentum surfaces are nearly vertical, so that (zT/zZ) ≈
(zT/zz) and (zθ/zZ) ≈ (zθ/zz).

Using the fourth entry in Eq. 11, we define the

streamfunction Ψ such that

ρU � −zΨ
zZ

and ρW � z RΨ( )
R zR

. (13)

From Eqs. 4 and 13, and the transformation relations in Eq. 8, it

can be shown that RΨ and rψ differ only by a constant, which,

without loss of generality, we can take to be zero, so that RΨ = rψ.

Using the gradient balance relation in the tangential wind

equation, and using the hydrostatic relation in the

thermodynamic equation, we can write

zΦτ

zR
+ f̂

2
U � 0 and

zΦτ

zZ
+N2W � gQ

cpT0
, (14)

where Φτ = (zΦ/zτ) = (zϕ/zt) is the “geopotential tendency.”

EliminatingΦτ between these two equations, and then expressing

U and W in terms of Ψ via Eq. 13, we obtain the following

transverse circulation problem.

Secondary Circulation Problem on the Full R,Z( ) −Domain :

z

zR
N2eZ/H

z RΨ( )
R zR

( ) + z

zZ
f̂
2
eZ/H

zΨ
zZ

( ) � gρ0
cpT0

zQ

zR

for 0≤R<∞ and 0≤Z≤ZT with

Ψ 0, Z( ) � Ψ R, 0( ) � Ψ R,ZT( ) � 0,
RΨ R, Z( ) → 0 as R → ∞ .

{ (15)

The boundary conditions on Ψ come from the requirement that the

log-pressure vertical velocity vanishes at the bottom and top

boundaries, that the radial component of the secondary

circulation vanishes at R = 0, and that the secondary circulation

goes to zero as R→∞. To summarize, the secondary circulation in

FIGURE 7
Structure of the Rankine vortex core, as described by Eq. 17, for both the barotropic case (A) where f̂0 � f̂T � 64 f and the baroclinic (vertically
sheared) case (B)where f̂0 � 144 f and f̂T � 36 f . The three sets of contours (black, blue, and red) are for v(r, z),R(r, z) and θ(r, z) in the eye region, which
is bounded by an eyewall at R = Rew = 240 km. The physical radius for the eyewall, given by rew(z) � [f/f̂(z)]1/2Rew, has a constant value of 30 km in
the barotropic case but slopes outward between r = 20 km and r = 40 km in the baroclinic case. In panel (A), the black contours for v(r, z) run
from5 to 45 ms−1 in increments of 5 ms−1, the blue contours forR(r, z) run from 15 to 240 km in increments of 15 km,while the red contours for θ(r, z)
run from 305 K to 365 K in increments of 5 K. In panel (B), the black contours for v(r, z) run from 5 to 70 ms−1 in increments of 5 ms−1, the blue
contours for R(r, z) run from 15 to 240 km in increments of 15 km, while the red contours for θ(r, z) run from 295 K to 365 K in increments of 5 K.
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the entire region is obtained by solving the elliptic problem in Eq. 15

for specified N(R, Z), f̂(R,Z), and Q(R, Z). Note that Eq. 15 is

formally simpler than Eq. 7 since it does not contain baroclinic,

second order cross derivative terms. Baroclinic effects are implicit in

Eq. 15 and are recovered when the solution Ψ(R, Z) is transformed

back to the physical space form ψ(r, z) using ψ = (R/r)Ψ.
We can understand several aspects of eye subsidence by

solution of a restricted version of the full elliptic problem in Eq.
15. In this simplified problem, we restrict our attention to the eye
region 0 ≤ R ≤ Rew, where the eyewall potential radius Rew

(i.e., the inner edge of the eyewall) is assumed to be a constant. In
the eye region, we assume that Q = 0, so that the elliptic problem
in Eq. 15 simplifies as follows.

Secondary Circulation Problem on the Restricted R,Z( ) −Domain :

z

zR
N2eZ/H

z RΨ( )
R zR

( ) + z

zZ
f̂
2
eZ/H

zΨ
zZ

( ) � 0

for 0≤R≤Rew and 0≤Z≤ZT with

Ψ 0, Z( ) � Ψ R, 0( ) � Ψ R, ZT( ) � 0,
Ψ Rew , Z( ) � Ψew Z( ).{ (16)

To summarize, the secondary circulation in the eye is

obtained by solving the homogeneous, elliptic problem in Eq.

16 with specified N(R, Z), f̂(R, Z), and Ψew(Z). Note that all the

dynamics in the region Rew < R < ∞, described explicitly in Eq.

15, has been replaced in Eq. 16 by the specification of Ψ(R, Z) at
R = Rew. Because the elliptic problem in Eq. 16 is homogeneous,

the solution Ψ(R, Z) has no local maxima or minima in the

interior of the restricted domain (i.e., in the eye). For the

problems considered here, we have chosen Ψew(Z) ≤ 0, so that

Ψ(R, Z) attains its minimum value on the outer boundary R = Rew

and its maximum value of zero on the other three boundaries, R =

0 and Z = 0, ZT, where ZT = zT represents the tropopause. By

concentrating attention on the restricted problem (Eq. 16), the

goal is to understand how the spatial structure of eye subsidence

is shaped by N(R, Z), f̂(R,Z), and Ψew(Z). A semi-analytical

solution of a simplified version of Eq. 16 is given in Section 3,

using vertical transform methods. An alternative approach, not

explored here, is to study solutions of the geopotential tendency

equation (see Appendix B).

3 Subsidence in a vertically sheared,
Rankine vortex core

3.1 The specified vortex

We now solve Eq. 16 semi-analytically for particular

choices of the coefficients f̂(R, Z) and N(R, Z). For the

example given here, the vortex core is assumed to have

TABLE 1 Numerical results for the barotropic case (top table) and the baroclinic case (bottom table). The first column lists the vertical mode index ℓ,
while the second column lists the corresponding values of the Rossby length μ−1

ℓ
, which are determined from the eigenvalues of the

Sturm–Liouville problem in Eq. 23. Note that the crude approximation μ−1
ℓ

≈ μ−1
1 /ℓ, which can be derived for the special case where N2 and f̂ are

constants, works better for the barotropic case, for which f̂(z) is a constant. The five corresponding eigenfunctions are shown in the left and right
panels of Figure 8. For the choice Rew = 240 km, the third column lists values of μℓRew, which can be interpreted as the number of Rossby lengths
(in R-space) between the vortex center R = 0 and the inner edge of the eyewall R = Rew. The fourth column lists values of I0(μℓRew), which can be
interpreted as the factor by which (for given ℓ) the subsidence at the center is reduced from that at the edge of the eye. The large value of I0(μℓRew)
for ℓ ≥ 2 indicate the importance of the higher vertical modes in producing a lower-tropospheric warm-ring structure. Columns 5 and 6 tabulate
the projection of Ψew(Z) onto the first five vertical modes, as computed from Eq. 29.

(A) Barotropic Case: f̂0 � f̂T � 64f and Rew = 240 km

ℓ μ−1
ℓ

(km) μℓRew I0(μℓRew) Aℓ for Zm/ZT = 0.25 Aℓ for Zm/ZT = 0.5

1 133.15 1.80 1.99 −1,005.32 −1,129.26

2 66.78 3.59 7.98 −250.87 304.33

3 44.46 5.40 38.96 −20.77 −81.47

4 33.30 7.21 204.10 −28.60 39.88

5 26.62 9.01 1,108.54 −4.07 −17.82

(B) Baroclinic Case: f̂0 � 144f, f̂T � 36f, and Rew = 240 km

ℓ μ−1
ℓ

(km) μℓRew I0(μℓRew) Aℓ for Zm/ZT = 0.25 Aℓ for Zm/ZT = 0.5

1 122.53 1.96 2.22 −765.54 −899.72

2 58.44 4.11 12.40 −419.44 −28.88

3 38.54 6.23 82.79 −109.89 14.81

4 28.78 8.34 587.22 −53.50 −7.15

5 22.98 10.45 4,298.18 −23.14 3.72
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constant angular velocity (i.e., solid body rotation) on each

isobaric surface, but with the angular velocity varying in the

vertical. In terms of v(r, z) and θ(r, z), the specified vortex for

0 ≤ r ≤ rew(z) and 0 ≤ z ≤ zT is given by

v r, z( ) � 1
2

f̂ z( ) − f( )r,
f̂ z( ) � f̂T + f̂0 − f̂T( ) e−κz/H − e−κzT/H

1 − e−κzT/H
( ),

θ r, z( ) � θc z( ) − f̂0 − f̂T( )f̂ z( )r2
4cp 1 − e−κzT/H( ) ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(17)

where, for this vertically sheared Rankine core, the effective

inertial frequency f̂(z) is also the absolute vorticity in the

eye, the constants f̂0 and f̂T are the specified values of f̂(z)
at z = 0 and z = zT respectively, and rew(z) � [f/f̂(z)]1/2Rew,

with the constant Rew denoting the potential radius of the inner

edge of the eyewall. The specified function θc(z) is the potential

temperature at the vortex center, which is simply taken as a

quadratic function of z varying from 300 K at z = 0 to 370 K at

z = zT = 16 km, i.e.,

θc z( ) � 300K + z

zT
70K + 52 K 1 − z

zT
( )[ ]. (18)

This profile, shown by the dashed blue line in Figure 6, has been

constructed to approximate the θ-profile for the center of

Hurricane Hilda, as described by Hawkins and Rubsam

(1968) and shown by the solid blue curve in Figure 6. For

reference, the mean profiles for the West Indies, as given by

Jordan (1958), and the mean profiles for the Marshall Islands and

GATE, as given by Fulton and Schubert (1985), are shown by the

other colored curves, thereby illustrating the warming of the core

of Hilda relative to a far-field environment. In addition to this

profile, we have chosen the following parameters for our analyses

of both the barotropic and baroclinic cases: Rd = 287 J kg−1 K−1,

T0 = 300 K, p0 = 1000 hPa, g = 9.81 m s−2, H = RdT0/g = 8,777 m,

f = 5 × 10–5 s−1, and zT = 16 km.

As is easily confirmed, the v(r, z) and θ(r, z) fields

given in Eq. 17 satisfy the thermal wind relation

f̂(zv/zz) � (g/T0)(zθ/zr)e−κz/H. The choice f̂0 � f̂T

corresponds to a barotropic vortex, which is the case

studied by Schubert et al. (2007). The vortex specified in

Eq. 17 is plotted in the left panel of Figure 7 for the barotropic

case f̂0 � f̂T � 64f and Rew = 240 km, so that rew(z) = 30 km

and v(rew(z), z) = 47.3 m s−1. For barotropic cases such as the

one shown in Figure 7A, the isolines of v and R are vertical,

while the isentropes are parallel to the isobars. The right

panel of Figure 7 is for the baroclinic case f̂0 � 144f,

f̂T � 36f, and Rew = 240 km, so that 1
2fRew � 6 m s−1,

rew(0) = 20 km, rew(zT) = 40 km, v(rew(0), 0) = 71.5 m s−1,

and v(rew(zT), zT) = 35 m s−1. Note that this baroclinic vortex is

warm-core at all levels, with the highest values of θ on any isobaric

surface occurring at r = 0 and with outward-tilting R-surfaces. The

maximumvalues of v(r, z) occur on theRew = 240 km surface, which

is consistent with the observation (Stern and Nolan, 2009) that, for

the majority of storms, the radius of maximum wind is closely

approximated by an R-surface.

Written in terms of V(R, Z) and θ(R, Z), the specified vortex

in Eq. 17 for 0 ≤ R ≤ Rew and 0 ≤ Z ≤ ZT is given by

V R,Z( ) � 1
2
f

f̂ Z( ) − f

f̂ Z( )( )R,
f̂ Z( ) � f̂T + f̂0 − f̂T( ) e−κZ/H − e−κZT/H

1 − e−κZT/H( ),
θ R,Z( ) � θc Z( ) − f̂0 − f̂T( )fR2

4cp 1 − e−κZT/H( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(19)

As is also easily confirmed, the V(R, Z) and θ(R, Z) fields

given in Eq. 19 satisfy the thermal wind relation

(f̂2
/f)(zV/zZ) � (g/T0)(zθ/zR)e−κZ/H. A crucial property of

this vertically sheared Rankine-like vortex core is that the θ(R, Z)

field, given by the last line in Eq. 19, is the sum of a function of Z

and a function of R. Using the last line of Eq. 19, we find that N2

and P take the simplified forms

N2 z( ) � e−κz/H
f̂ z( )
f

g

T0

dθc z( )
dz

,

P z( ) � 1
ρ z( ) f̂ z( )dθc z( )

dz
,

(20)

so that both N2 and P are functions of z only for the vertically

sheared Rankine core. This allows the solution of Eq. 16 to be

written in separable form, i.e., it allows for the analytical

solution of Eq. 16 using the vertical normal mode transform

method discussed below. The shape of the secondary circulation

in the eye depends on the outward tilt of the R = Rew absolute

angular momentum surface and on the ratio of the two variable

coefficients in Eq. 16. It is convenient to multiply this ratio by

the constant scale height H to obtain the local Rossby length

[N(Z)/f̂(Z)]H ~ [f̂(Z)]−1/2, so that in the typical situation for

which f̂ decreases with height, the local Rossby length is

smallest in the lower troposphere. This leads to the

expectation that the compensating subsidence in the eye

occurs closer to the eyewall in the lower troposphere than in

the upper troposphere. An alternative interpretation of the

dynamics involves the definition of Rossby length via vertical

mode rather than locally. This alternative interpretation is given

in the discussion of the results shown in Table 1.

3.2 Solution via the vertical transform
method

For the vertically sheared Rankine vortex core, the restricted

problem given in Eq. 16 simplifies considerably because N and f̂

are functions of Z only. Then, the elliptic partial differential

equation reduces to
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z2Ψ
zR2

+ zΨ
R zR

− Ψ
R2

+ e−Z/H

N2

z

zZ
f̂
2
eZ/H

zΨ
zZ

( ) � 0. (21)

We now solve Eq. 21 using the vertical transform method. The

vertical transform pair is

Ψ R, Z( ) � ∑∞
ℓ�1

Ψℓ R( )Zℓ Z( ),

Ψℓ R( ) � 1

N2
0H

∫ZT

0

Ψ R,Z( )Zℓ Z( )N2 Z( ) eZ/H dZ,

(22)

where the kernel Zℓ(Z) of the transform is defined to be the

solution of

e−Z/H

N2

d

dZ
f̂
2
eZ/H

dZℓ

dZ
( ) + μ2

ℓ
Zℓ � 0

with Zℓ 0( ) � Zℓ ZT( ) � 0, (23)

which is a second order differential problem of the

Sturm–Liouville type (e.g., Arfken and Weber, 2005,

Chapter 10). In this method of solution, the

streamfunction Ψ(R, Z) is represented as an infinite

series of eigenfunctions Zℓ(Z) with corresponding

eigenvalues μℓ. The constant surface value of the effective

buoyancy frequency, denoted by N0, has been introduced

into the weight function [N2(Z)/N2
0][eZ/H/H] so that, if

Zℓ(Z) is normalized in such a way that it is

dimensionless, then Ψ(R, Z) and Ψℓ(R) will have the

same units. The orthonormality of the vertical structure

functions Zℓ(Z) is discussed in Appendix C, as is the

derivation of the second entry in Eq. 22 using this

orthonormality relation.

To take the vertical transform of Eq. 21, first multiply

it by Zℓ(Z) [N2(Z)/N2
0] [eZ/H/H] and integrate over Z to

obtain

z2Ψℓ

zR2 + zΨℓ

R zR
− Ψℓ

R2

+ 1

N2
0H

∫ZT

0

Zℓ

z

zZ
f̂
2
eZ/H

zΨ
zZ

( ) dZ � 0.
(24)

Integrating by parts twice, making use of the top and bottom

boundary conditions on Ψ(R, Z) and Zℓ(Z), we obtain
z2Ψℓ

zR2 + zΨℓ

R zR
− Ψℓ

R2

+ 1

N2
0H

∫ZT

0

Ψ d

dZ
f̂
2
eZ/H

dZℓ

dZ
( ) dZ � 0.

(25)

Making use of Eq. 23, the horizontal structure equation (Eq. 25)

becomes

R2d
2Ψℓ

dR2 + R
dΨℓ

dR
− μ2

ℓ
R2 + 1( )Ψℓ � 0

for 0≤R≤Rew with Ψℓ 0( ) � 0.

(26)

The solution of Eq. 26 is a linear combination of the order

one modified Bessel functions I1(μℓR) and K1(μℓR). Because

K1(μℓR) is singular at R = 0, only the I1(μℓR) solution is

FIGURE 8
Barotropic (A) and baroclinic (B) vertical structure functions Zℓ(Z) for ℓ = 1, 2, 3, 4, 5. These are the eigenfunctions of the Sturm–Liouville
problem in Eq. 23, satisfying the orthonormality relation in Eq. 40. The associated eigenvalues are given in the top (barotropic) and bottom
(baroclinic) halves of Table 1.
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accepted in the region 0 ≤ R < Rew. Thus, the solution of the

horizontal structure problem (Eq. 26) is

Ψℓ R( ) � Aℓ

I1 μ
ℓ
R( )

I1 μ
ℓ
Rew( ), (27)

where the Aℓ are constants. Using Eq. 27 in the top entry of Eq.

22, the final solution for the streamfunction becomes

Ψ R, Z( ) � ∑∞
ℓ�1

Aℓ

I1 μ
ℓ
R( )

I1 μ
ℓ
Rew( ) Zℓ Z( )

for 0≤R≤Rew and 0≤Z≤ZT,

(28)

where the coefficients Aℓ are computed from the specified

function Ψew(Z) via

Aℓ � 1
N2

0H
∫ZT

0
Ψew Z( )Zℓ Z( )N2 Z( ) eZ/H dZ. (29)

The solution given in Eq. 28 is valid for vortices with the

vertical profiles of f̂(Z) and N(Z) given by Eqs. 17 and 19.

With these vertical profiles, the first five eigenvalues of the

vertical structure problem (Eq. 23) are given in the top part of

Table 1 for the barotropic case, and the bottom part of Table 1

for the baroclinic case. The corresponding five eigenfunctions

Zℓ(Z) are shown in the left (barotropic) and right (baroclinic)

panels of Figure 8. Note that we have solved the vertical

structure problem (Eq. 23) using the Mathematica package

NDEigensystem, which returns the eigenvalues and

eigenfunctions of a user-defined linear operator, along with

user-defined boundary conditions. This Mathematica package

returns eigenfunctions with a default normalization, so we

have renormalized the Mathematica output to satisfy the

normalization given in Eq. 40 in Appendix C. There is

general similarity in the appearance of the vertical structure

functions for the barotropic and baroclinic cases. However, the

inclusion of vertical dependence of f̂ in the Sturm–Liouville

problem in Eq. 23 does lead to vertical shifts (~ 1 km) in the

nodes and to changes in the upper tropospheric amplitudes of

the Zℓ(Z) functions.
Using Eq. 28, along with the derivative relation d [RI1(μℓR)]/dR =

μℓRI0(μℓR), it can be shown that the formula for ρW(R, Z) is

ρW R,Z( ) � ∑∞
ℓ�1

Aℓ

μ
ℓ
I0 μ

ℓ
R( )

I1 μ
ℓ
Rew( ) Zℓ Z( )

for 0≤R≤Rew and 0≤Z≤ZT,

(30)

and the formula for ρw(r, z) is

ρw r, z( ) � f̂ z( )
f

( )∑∞
ℓ�1

Aℓ

μ
ℓ
I0 μ

ℓ
f̂ z( )/f[ ]1/2

r( )
I1 μ

ℓ
f̂ z( )/f[ ]1/2

rew z( )( )
Zℓ z( )

for 0≤ r≤ rew z( ) and 0≤ z≤ zT. (31)
Note that the vertical mass flux ρw is related to the vertical p-

velocity by ρw = −(1/g)ω and that w(r, z) can have a quite

different vertical dependence than W(R, Z), for example due to

the leading f̂(z)/f factor, which can have large values in the

lower troposphere.

We now specifyΨew(Z) in such a way that it vanishes at Z = 0,

ZT and has only one local minimum for 0 < Z < ZT. The

specification of Ψew(Z) constrains the problem in an

important way. To see this, note that

2π∫rew z( )

0
ρwr dr �2π∫Rew

0
ρWRdR

�2π∫Rew

0

z RΨ( )
zR

dR � 2πRewΨew Z( ),
(32)

which shows that the specification of 2πRewΨew(Z) is equivalent

to specification of the vertical distribution of the horizontally

integrated vertical mass flux in the eye. However, the details of

the spatial distribution of vertical motion in the eye comes from

the elliptic equation, whose solution yields Eqs. 30 and 31. In

order to make the height of the minimum value of Ψew(Z)

adjustable, we have chosen the form

FIGURE 9
The specified function Ψew(Z)/Ψew(Zm), as given by Eq. 33, for
Zm = 0.5 ZT = 8 km and Zm = 0.25 ZT = 4 km. In all the results
presented here we have chosen the normalization factor Ψew(Zm)
such that 2πRewΨew(Zm) = −1.8 × 109 kg s−1. According to
Eq. 32, the vertical distribution of the horizontally integrated
downward mass flux in the eye is given by 2πRewΨew(Z).
Specification of the constant Rew also specifies rew(z) since
rew(z) � [f/f̂(z)]1/2Rew. Determination of the detailed spatial
distribution of the downward mass flux ρw(r, z) = z[rψ(r, z)]/rzr
requires solution of the homogeneous, restricted elliptic problem
given in Eq. 16 for Ψ(R, Z), from which ψ(r, z) is obtained via ψ(r, z) =
(R/r)Ψ(R, Z).
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Ψew Z( ) � Ψew Zm( ) exp π Zm − Z( )/ZT

tan πZm/ZT( )( ) sin πZ/ZT( )
sin πZm/ZT( ), (33)

where the specified parameter Zm is the height of the minimum

value of Ψew(Z). In all the results presented here, the

normalization factor Ψew(Zm) has been chosen such that

2πRewΨew(Zm) = −1.8 × 109 kg s−1. Plots of Ψew(Z)/Ψew(Zm)

for the two choices Zm = 0.5 ZT = 8 km (a middle-

tropospheric forcing case) and Zm = 0.25 ZT = 4 km (a lower-

tropospheric forcing case) are shown in Figure 9. The

normalization factor chosen here results in

horizontally averaged eye subsidence rates, defined by
�w(z) � [2/r2ew(z)]∫rew(z)

0
w(r, z) r dr, of approximately

1–2 m s−1, which is consistent with the aircraft observations

reported by Jorgensen (1984). The projection of these two

Ψew(Z) profiles onto the first five vertical modes, as computed

from Eq. 29, is shown in Table 1.

Figure 10 shows isolines of rψ(r, z) for the middle-

tropospheric eyewall forcing case Zm = 8 km (upper two

panels) and for the lower-tropospheric eyewall forcing case

Zm = 4 km (lower two panels). These isolines of rψ have been

computed from Eqs. 28 and 29 using the relation rψ = RΨ. The
sum over ℓ in Eq. 28 has been truncated at ℓ = 20. Also shown in

Figure 10 are isolines of θ(r, z); these isolines are identical to those

shown in Figure 7. Alternative views of the adiabatic temperature

changes in the eye are provided by (zθ/zt), the tendency at fixed

FIGURE 10
Isolines of the solution rψ(r, z) (navy blue contours) and of θ(r, z) (red contours) for the barotropic case (A,B) and for the baroclinic case (C,D), both
shown for the two eyewall forcing cases Zm = 0.5 ZT = 8 km (A,C) and Zm = 0.25 ZT = 4 km (B,D). The specified functions Ψew(Z) for these two eyewall
forcing cases are shown in Figure 9. The isolines of rψ havebeen computed from the solution given in Eq. 28 using the relation rψ=RΨ, with the sumover ℓ
truncated at ℓ = 20. The blue contours for rψ indicate the direction of fluid flow for the secondary circulation within the eye and have a contour
interval of 2.0 × 107 kg s−1. The red contours for θ(r, z) are identical to those shown in Figure 7 and run from 305 K to 365 K for the barotropic case (left
column) and from 295 K to 365 K for the baroclinic case (right column), both in increments of 5 K. In regions where a small area is enclosed by two
neighboring blue lines and two neighboring red lines, the Jacobian z(rψ, θ)/rz(r, z) tends to be large, so that zθ/zt tends to be large, as shown in Figure 11.

Frontiers in Earth Science frontiersin.org12

Schubert et al. 10.3389/feart.2022.1062465

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1062465


radius r, and by (zθ/zτ), the tendency at fixed potential radius R.

Here, we discuss only the tendency (zθ/zt), which is governed by

zθ

zt
� −u zθ

zr
− w

zθ

zz
� −1

ρ

z rψ, θ( )
r z r, z( )

� −1
ρ

z RΨ, θ( )
R z R,Z( )

f + ζ

f
( ). (34)

From the above Jacobian form in (r, z), we conclude that the

formation of lower-tropospheric warm-ring structures, where (zθ/zt)

is large, tends to occur where small areas are produced by the

intersection of θ-isolines and (rψ)-isolines. Figure 11 shows the

corresponding potential temperature tendencies produced by the

secondary circulations shown in Figure 10. The lower-tropospheric

baroclinic caseZm= 4 km, shown in Figure 11D, clearly illustrates the

tendency to produce an upper-tropospheric warm-core and a lower-

tropospheric warm-ring structure. For example, at z ≈ 10 km, the

values of zθ/zt are uniform for 0 < r < 15 km and somewhat smaller

for 15 < r < 28 km. In contrast, at z ≈ 3 km, the values of zθ/zt near

r≈ 21 kmare approximatelyfive times as large as those at r= 0. These

results indicate that a full-tropospheric warm-core structure such as

that shown in Figure 10D could transform into a lower-tropospheric

warm-ring structure very quickly, perhaps in less than an hour.

4 Concluding remarks

Two problems for the secondary circulation in R-space have

been formulated. The first is the full domain elliptic problem (Eq.

15), which requires knowledge of the coefficients f̂(R, Z) and
N(R, Z), and the forcing Q(R, Z) over 0 ≤ R < ∞. The second is

FIGURE 11
The potential temperature tendency zθ/zt for the barotropic case (A,B) and for the baroclinic case (C,D), both shown for the two eyewall forcing
cases Zm = 0.5 ZT = 8 km (A,C) and Zm = 0.25 ZT = 4 km (B,D). The contour interval for zθ/zt is 5.0 K h−1 with positive contours shown in red, the zero
contour level shown in black, and negative contours shown in blue. The −w(zθ/zz) term contributes to positive (zθ/zt) at all radii and all levels, except
in a small region of the upper troposphere in the baroclinic cases. In the two baroclinic cases the − u(zθ/zr) term generally opposes the −w(zθ/
zz) at upper-tropospheric levels (i.e., radial advection of colder air), but enhances the − w(zθ/zz) term at lower-tropospheric levels (i.e., radial
advection of warmer air). This results in a (zθ/zt) field that is more radially uniform in the upper troposphere, but enhanced near the edge of the eye at
lower-tropospheric levels.
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the restricted domain elliptic problem (Eq. 16), which requires

knowledge of the coefficients f̂(R,Z)] and N(R, Z) over 0 ≤ R ≤
Rew and specification of the lateral boundary valuesΨew(Z) at R =

Rew. For the barotropic vortex core and the vertically sheared

Rankine core, the restricted domain elliptic problem has been

solved semi-analytically in Section 3. The results for the middle-

tropospheric forcing barotropic case shown in the upper left

panels of Figure 10 and Figure 11 are closest to the results shown

in the previous study (Schubert et al., 2007), which were based on

full domain, physical space solutions of the transverse circulation

equation with forcing of the first internal mode only. In the

results for the lower-tropospheric forcing barotropic case shown

in the lower left panels of Figure 10 and Figure 11, the minimum

value of Ψew(Z) has been shifted to a lower level, which has the

effect of producing an enhancement of zθ/zt in the lower

troposphere at the edge of the eye. The results for the

vertically sheared (baroclinic) Rankine core, shown in the

right panels of Figure 10 and Figure 11, more realistically

capture the outward tilt of the eyewall and illustrate to a

greater degree the preference for the potential temperature

tendency to be largest in the lower troposphere at the edge of

the eye in baroclinic vortices for which the minimum value of the

eyewall streamfunction Ψew(Z) occurs below middle-

tropospheric levels. The right two panels of Figure 11 are

consistent with the concept of a potential temperature

tendency field that is nearly uniform in radius at upper

tropospheric levels but highly biased toward the edge of the

eye at lower tropospheric levels, i.e., consistent with the

development of a warm core at upper levels and a warm ring

at lower levels, as seen in the full-physics simulations of Figure 5.

It is important to note that the model of eye subsidence used

here is highly idealized, i.e., it is axisymmetric, gradient balanced,

inviscid, adiabatic, and for a restricted domain. The adiabatic

idealization results because, in the formulation of the restricted

problem (Eq. 16), it has been assumed thatQ= 0 forR≤Rew. Careful

inspection of the lower panel of Figure 4 indicates that this

assumption might be violated in the upper troposphere near the

edge of the eye, where frozen condensate can be advected inward

and subsequently sublimated, producing a region where Q < 0.

Malkus (1958), Willoughby (1998), and Zhang et al. (2002) have

considered the role that such cooling might play in producing deep,

narrow downdrafts at the edge of the eye. The relative roles of such

diabatic dynamics and the adiabatic dynamics studied here deserve

further study. The idealization of gradient balance filters inertia-

gravity waves, which results in a “slow manifold” view of eye

dynamics. With their mesoscale scanning techniques, the GOES-

R series of geostationary satellites can image a 1000 km × 1000 km

hurricane area with 30 s time resolution. When viewing such rapid-

scan loops of a major hurricane, one is struck by the highly dynamic

nature of the inner core. Some of the high frequency variability of the

inner core is probably due to inertia-gravity wave oscillations that

are not captured by the simplified dynamics of the balanced vortex

model. However, the balanced vortex model does capture the slow-

manifold dynamics upon which we can crudely imagine the higher

frequency inertia-gravity waves are superposed. To improve this

crude view, much work remains to understand how the inner core

PV dynamics can become frequency matched with the inertia-

gravity wave oscillations, so the two types of dynamics can evolve in

a strongly coupled fashion.

In closing, we comment on the possible effects of lower-

tropospheric warm-ring structure on the stadium effect. General

experience with solutions of the Eliassen transverse circulation

equation supports the notion that baroclinic effects play an

important role in determining the outward tilt of the eyewall, as

seen for example in the CloudSat observations of Figure 4. We have

studied the secondary circulation in the eye when the vortex has a

warm-core structure at all levels, as shown in the right panel of

Figure 7. The results indicate that a lower-tropospheric warm-core

structure can be modified to a lower-tropospheric warm-ring

structure when the subsidence is enhanced in the lower

troposphere at the edge of the eye, as shown in panels D of

Figure 10 and Figure 11. When a lower-tropospheric warm ring

develops in a tropical cyclone, the baroclinic terms acquire a more

complicated spatial structure, which means the absolute angular

momentum surfaces also acquire a correspondingly more

complicated spatial structure. To see this, consider the thermal

wind equation written in the form f2(R/r)3(zR/zz) = (g/T0)(zT/zr).

From this form of the thermal wind equation, we can easily deduce

the following general rules.

Radially inward of a warm ring :

zT

zr
> 0 0

zR

zz
> 0

0 R − surfaces tilt inwardwith height;

Radially outward of a warm ring :

zT

zr
< 0 0

zR

zz
< 0

0 R − surfaces tilt outwardwith height.

(35)
Thus, if a tropical cyclone has a warm core at all pressure

levels, the R-surfaces tilt outward with height everywhere.

Since the R-surfaces help shape the secondary circulation, the

eyewall updraft would generally be expected to tilt outward at

all levels. However, if a tropical cyclone has a warm-core

structure in the upper troposphere but a warm-ring structure

in the lower troposphere, the R-surfaces tilt inward with

height in the lower troposphere just inside the radius with

maximum temperature anomaly. The effect is to make the

secondary circulation outward-tilted at upper levels but more

vertical at lower levels—an interesting refinement of the

stadium effect. To better understand such refinements,

additional solutions of Eq. 16 for baroclinic vortices with

warm-ring structure would be helpful and are a topic for

future work since such solutions would require a numerical

approach to Eq. 16. The semi-analytical approach used here is
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restricted to the vertically sheared, Rankine vortex and simply

provides a snapshot in time (rather than a complete time

evolution) that illustrates the tendency for a vortex with a

warm-core structure to transition to a vortex with a lower-

tropospheric warm-ring structure.
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Appendix A: Coordinate
transformation

This appendix provides an outline of the transformation

from the (r, z, t)-version of the gradient balanced model, given in

Eq. 1, to the (R, Z, τ)-version, which is given in Eq. 11.

• To transform the gradient wind formula in Eq. 1, note that

f + v

r
( )v � zϕ

zr
0 f + ζ( )v � zΦ

zr

0 f
R

r
v � zΦ

zR
.

Using v = (R/r)V, we then obtain the first entry in Eq. 11.

• To transform the second entry in Eq. 1, we start with the

absolute angular momentum form and write

D RV + 1
2
fr2( )

Dt
� 0 0

DV

Dt
+ f

r

R
u � 0

0
zV

zτ
+ f

r

R
u + w

f

zV

zZ
( ) � 0

0
zV

zτ
+ fU � 0,

where we have made use of (Dr/Dt) = u and the absolute angular

momentum conservation relation DR/Dt = 0. The final form

results from the definition ofU, which is given in the first entry of

Eq. 10.

• To transform the hydrostatic formula in Eq. 1, note that

zΦ
zZ

� zΦ
zz

− zR

zz

zΦ
zR

� zϕ

zz
+ v

zv

zz
− f

R

r

zR

zz
( ) � zϕ

zz
,

where the second equality results from Φ � ϕ + 1
2v

2 and the

transformed gradient wind equation, while the last equality

follows from cancellation of the terms within the parentheses.

The third entry in Eq. 11 immediately follows. A closely related

formula is

zΦ
zτ

� zΦ
zt

− zR

zt

zΦ
zR

� zϕ

zt
+ v

zv

zt
− f

R

r

zR

zt
( ) � zϕ

zt
,

which justifies the use of the term “geopotential tendency

equation” for Eq. 36.

• Interestingly, a short derivation of the fourth entry in Eq.

11 begins with the vorticity equation and proceeds as

follows:

Dζ

Dt
+ zw

zr

zv

zz
− f + ζ( ) z ρw( )

ρ zz
� 0

0
Dζ

Dt
− f + ζ( ) z ρw( )

ρ zZ
� 0

0
z

zτ

f

f + ζ
( ) + z ρW( )

ρ zZ
� 0,

where the second entry follows by combining the twisting

and divergence terms and the third entry follows from the use of

(D/Dt) = (z/zτ) + w(z/zZ) and the relationship between W and w.

Now start with the tangential wind equation and proceed as follows:

zV

zτ
+ fU � 0 0

z

zτ

z RV( )
R zR

( ) + f
z RU( )
R zR

� 0

0
z

zτ

f

f + ζ
( ) � z RU( )

R zR
,

where the second entry follows by differentiation of R times the

first entry, and the third entry from f2/(f + ζ) = f − [z(RV)/RzR].

Combining the last entries of the above two results yields the

fourth entry in Eq. 11.

• Finally, the transformation of the thermodynamic equation

in Eq. 1 proceeds as follows:

DT

Dt
+ κT

H
w � Q

cp
0

zT

zτ
+ zT

zZ
+ κT

H
( )w � Q

cp

0
zT

zτ
+ T

θ

zθ

zZ
w � Q

cp

0
zT

zτ
+ T0

g
N2W � Q

cp
,

where the final form results from the definitions of N2 and W.

Appendix B: Geopotential tendency
equation

The secondary circulation problems defined in Eqs. 15 and 16

were derived by eliminating Φτ between the two equations in Eq.

14. An alternative approach is to make use of the fourth entry in

Eq. 11 to eliminateU andW between the two equations in Eq. 14,

thereby obtaining the geopotential tendency equation. Then,

translating the Dirichlet boundary conditions on U and W

into Neumann boundary conditions on the normal derivatives

of Φτ, the geopotential tendency problem for the restricted

domain can be written as follows.
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Geopotential Tendency Problem on the Restricted Domain :

z

R zR

Re−Z/H

f̂
2

zΦτ

zR
⎛⎝ ⎞⎠ + z

zZ

e−Z/H

N2

zΦτ

zZ
( ) � 0

for 0≤R<Rew and 0≤Z≤ZT with
zΦτ

zZ
� 0 at Z � 0, ZT,

zΦτ

zR
� 0 at R � 0,

zΦτ

zR
given at R � Rew.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(36)

All the conclusions reached in Section 3 could also be reached

through an analysis of Eq. 36.

Appendix C: Orthonormality of the
vertical structure functions

The orthonormality of the vertical structure functions is

proved as follows. Let Zℓ(Z) and Zℓ′(Z) be eigenfunctions

with corresponding eigenvalues μℓ and μℓ′. Then, multiplying

the equation for Zℓ′ by Zℓ , and the equation for Zℓ by Zℓ′, we

obtain

Zℓ

d

dZ
f̂
2
eZ/H

dZℓ′
dZ

( ) +μ2
ℓ′N

2eZ/HZℓZℓ′ � 0,

Zℓ′
d

dZ
f̂
2
eZ/H

dZℓ

dZ
( ) +μ2

ℓ
N2eZ/HZℓZℓ′ � 0.

(37)

The difference of these two equations can be written in the

form

d

dZ
f̂
2
eZ/H Zℓ

dZℓ′
dZ

− Zℓ′
3

dZℓ

dZ( ){ }
+ μ2

ℓ′ − μ2
ℓ

( )N2eZ/HZℓZℓ′ � 0. (38)

Integrating over Z and noting that both Zℓ(Z) and Zℓ′(Z)
vanish at Z = 0 and Z = ZT, we obtain

μ2
ℓ′ − μ2

ℓ
( ) ∫ZT

0
Zℓ Z( )Zℓ′ Z( )N2 Z( ) eZ/H dZ � 0. (39)

Thus, in the absence of degenerate eigenvalues and with proper

normalization of Zℓ(Z), the orthonormality relation for the

vertical structure functions is

∫ZT

0
Zℓ Z( )Zℓ′ Z( )N2 Z( ) eZ/H dZ � N2

0H if ℓ′ � ℓ,
0 if ℓ′ ≠ ℓ.

{ (40)

The proof of the second entry in Eq. 22 is as follows. Change

the dummy index ℓ to ℓ′ in the first entry of Eq. 22, multiply the

resulting formula by Zℓ(Z)N2(Z) eZ/H, and then integrate over

Z to obtain

∫ZT

0
Ψ R,Z( )Zℓ Z( )N2 Z( ) eZ/H dZ

� ∑∞
ℓ′�1

Ψℓ′ R( )∫ZT

0
Zℓ Z( )Zℓ′ Z( )N2 Z( ) eZ/H dZ

� N2
0HΨℓ R( ),

(41)

where the final equality follows from the orthonormality relation

(Eq. 40).
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