Check for updates

OPEN ACCESS

APPROVED BY Frontiers Editorial Office, Frontiers Media SA, Switzerland

*CORRESPONDENCE Frontiers Production Office, production.office@frontiersin.org

SPECIALTY SECTION This article was submitted to Volcanology, a section of the journal Frontiers in Earth Science

RECEIVED 30 September 2022 ACCEPTED 30 September 2022 PUBLISHED 25 October 2022

CITATION

Frontiers Production Office (2022), Erratum: Pre-eruptive excess volatiles and their relationship to effusive and explosive eruption styles in semiplugged volcanoes. *Front. Earth Sci.* 10:1058269. doi: 10.3389/feart.2022.1058269

COPYRIGHT

© 2022 Frontiers Production Office. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Erratum: Pre-eruptive excess volatiles and their relationship to effusive and explosive eruption styles in semi-plugged volcanoes

Frontiers Production Office*

Frontiers Media SA, Lausanne, Switzerland

KEYWORDS

experimental petrology, Kelud, Kelut, eruption style, volatiles, volcano monitoring, basaltic andesite, arc volcanoes

An Erratum on

Pre-eruptive excess volatiles and their relationship to effusive and explosive eruption styles in semi-plugged volcanoes

by Utami SB, Andùjar J, Costa F, Scaillet B, Humaida H and Carn S (2022). Front. Earth Sci. 10: 882097. doi: 10.3389/feart.2022.882097

Due to a production error, there was a mistake in Table 3 as published. The table headings were incorrect. The corrected Table 3 appears below.

The publisher apologizes for this mistake. The original version of this article has been updated.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher. TABLE 3 Summary of representative mineral compositions from the 1990-2014 eruptions.

Mineral	Срх	Cpx 2007 dome		Срх	Opx	Орх	Орх	Opx		Ol
Eruption year	1990			2014	1990	2007	2014			2014
rock type/stage	main-stage pumice			pumice	main-stag pumice	ge dome	pumice			
Texture	cores, glomerocryst	cores glorr	s, nerocryst	cores, glomerocryst	cores, glomeroc	glomerocry	yst cores, glomero	cryst		
n	8	16		26	20	7	27			27
wt. %										
SiO ₂	51.6 (0.7)	51.8 (0.4)	51.2 (0.6)	52.7 (0.2)	52.9 (0.1)	52.7 (0.5)	S	iO ₂	36.9 (0.4)
TiO ₂	0.48 (0.30)	0.33 (0.04)	0.36 (0.07)	0.28 (0.12)	0.16 (0.01)	0.19 (0.04)	Т	ΪO ₂	0.02 (0.02)
Al_2O_3	1.78 (0.62)	1.71 (0.18)	2.00 (0.44)	1.24 (0.34)	0.91 (0.17)	1.09 (0.36)	Α	l_2O_3	b.d.
FeO*	9.24 (0.58)	9.54 (0.16)	9.48 (0.26)	18.53 (1.18)	19.2 (0.2)	18.44 (1.38) F	eO*	25.9 (1.6)
MnO	0.50 (0.09)	0.52 (0.03)	0.49 (0.05)	0.87 (0.18)	0.90 (0.04)	0.84 (0.11)	Ν	4nO	0.65 (0.09)
MgO	14.47 (0.09)	14.30	(0.23)	14.40 (0.22)	23.5 (0.5)	22.84 (0.07)	23.71 (0.90) N	/lgO	35.1 (1.4)
CaO	21.1 (0.4)	20.8 (0.3)	20.8 (0.3)	1.71 (0.43)	1.44 (0.08)	1.59 (0.22)	C	laO	0.18
Na ₂ O	0.27 (0.02)	0.29 (0.02)	0.28 (0.02)	0.02 (0.01)	0.02 (0.01)	0.01 (0.01)	F	² 0 ₅	(0.03) 0.04 (0.04)
Total	99.4 (0.2)	99.3 (0.4)	99.0 (0.3)	98.9 (0.3)	98.4 (0.1)	98.6 (0.4)	Т	otal	98.8 (0.4)
Pyroxene end- members ^b										. ,
Wo	43.6 (0.8)	43.2 (0.6)	43.1 (0.6)	3.50 (0.87)	2.99 (0.16)	3.24 (0.44)	F	o ontent ^e	70.7 (2.1)
En	41.6 (0.3)	41.3 (0.5)	41.6 (0.5)	66.9 (1.2)	65.9 (0.3)	67.4 (2.0)			
Fs	14.88 (0.91)	15.46	(0.31)	15.34 (0.42)	29.6 (2.0)	31.1 (0.2)	29.4 (2.4)			
Mg Number	73.7 (1.3)	72.8 (0.5)	73.0 (0.6)	69.3 (1.8)	67.9 (0.2)	69.6 (2.4)			
Mineral	Plag		Plag	Plag	Plag	Mineral	Amph ^a	Amph ^a	А	mph
Eruption year	1990		2007	2014	2014	Eruption year	1990	1990	20	014
rock type/stage	main-stage pu	mice	dome	pumice	pumice	rock type/stage				
Texture	microlite/rim		rim	core	rim	Texture				
n of new spots	11		12	4	2	n	13	4	4	
SiO ₂	50.9 (1.3)		50.6 (1.3)	45.3 (1.4)	51.0 (0.1)	SiO ₂	41.3 (0.2)	42.5 (0.5)	4:	3.7 (3.1)
Al ₂ O ₃	30.2 (0.6)		30.4 (0.9)	33.6 (0.3)	29.3 (0.1)	TiO ₂	1.47 (0.10)	1.54 (0.14)	1.	.60 (0.60)
FeO*	0.45 (0.16)		0.62 (0.06)	0.53 (0.05)	0.67 (0.01)	Al ₂ O ₃	15.14 (0.32)	13.92 (1.0	1) 1?	1.37 (3.99)
MgO	0.07 (0.02)		0.06 (0.02)	0.01 (0.01)	0.08 (0.01)	FeO*	11.25 (0.28)	11.29 (0.19) 1!	1.33 (2.05)
CaO	13.58 (0.45)		13.48 (0.88)	17.93 (0.90)	13.42 (0.05)	MnO	0.15 (0.01)	0.17 (0.02)	0.	.19 (0.13)
Na ₂ O	4.06 (0.23)		3.62 (0.50)	1.31 (0.18)	3.86 (0.08)	MgO	13.84 (0.25)	14.21 (0.1	1) 15	5.15 (1.0)

(Continued on following page)

Mineral	Plag	Plag 2007 dome rim 12	Plag 2014 pumice core 4	Plag 2014 pumice rim 2	Mineral Eruption year rock type/stage Texture n	Amph ^a 1990 13	Amph ^a 1990 4	Amph 2014 4
Eruption year	1990							
rock type/stage Texture n of new spots	main-stage pumice							
	microlite/rim							
	11							
K ₂ O	0.09 (0.02)	0.09 (0.03)	n.a.	n.a.	CaO	12.06 (0.16)	11.71 (0.07)	11.14 (1.63)
Total	99.4 (1.0)	98.9 (0.6)	98.7 (0.8)	98.35 (0.01)	Na ₂ O	2.25 (0.08)	2.23 (0.02)	1.77 (0.67)
					K ₂ O	0.31 (0.02)	0.29 (0.02)	n.a.
Plag end-member ^c					Cl	0.01 (0.01)	0.01 (0.01)	n.a.
An	64.4 (1.8)	67.0 (4.5)	89.2 (0.9)	65.8 (0.5)	F	0.08 (0.07)	0.15 (0.12)	n.a.
Ab	35.1 (1.7)	32.5 (4.4)	10.8 (0.9)	34.2 (0.5)	Total	97.9 (0.5)	98.0 (0.2)	96.2 (0.8)
Or	0.4 (0.2)	0.50 (0.15)	n.a.	n.a.				
					$Amph \ end-member^{d}$	Mg-Hst	Ts-Prg	Ts-Prg

TABLE 3 (Continued) Summary of representative mineral compositions from the 1990-2014 eruptions.

Notes. n.a., not analyzed, and b.d., below detection limit. FeO* or Fe*, total Fe as Fe²⁺. Glom, glomerocryst. See Table 2 for meaning of mineral abbreviations.

^aAmphibole composition from Utami et al. (2021). ^bPyroxene end-members: wollastonite, Wo = 100 x Ca / [Mg + Fe^{*} + Ca]; enstatite, En = 100 x Mg / [Mg + Fe^{*} + Ca]; ferrosilite, Fs = 100 x Fe^{*} / [Mg + Fe^{*} + Ca]; Mg # = 100 x Mg / [Mg + Fe*].

Plagioclase end-members: anorthite, An = 100 x Ca / [Ca + Na + K]; albite, Ab = 100 x Na / [Ca + Na + K]; orthoclase, Or = 100 x K / [Na + Ca + K].

^dAmphibole end-members according to Leake et al. (1997), as calculated in Ridolfi et al. (2010). Mg-Hst, magnesio-hastingsite; Ts-Prg, Tschermakite-Pargasite.

^eOlivine Fo content, Fo = $100 \times Mg / [Mg + Fe^*]$.