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The Lower Mekong region is one of the most landslide-prone areas of the

world. Despite the need for dynamic characterization of landslide hazard zones

within the region, it is largely understudied for several reasons. Dynamic and

integrated understanding of landslide processes requires landslide inventories

across the region, which have not been available previously. Computational

limitations also hamper regional landslide hazard assessment, including

accessing and processing remotely sensed information. Finally, open-source

software and modelling packages are required to address regional landslide

hazard analysis. Leveraging an open-source data-driven global Landslide

Hazard Assessment for Situational Awareness model framework, this study

develops a region-specific dynamic landslide hazard system leveraging

satellite-based Earth observation data to assess landslide hazards across the

lower Mekong region. A set of landslide inventories were prepared from high-

resolution optical imagery using advanced image-processing techniques.

Several static and dynamic explanatory variables (i.e., rainfall, soil moisture,

slope, relief, distance to roads, distance to faults, distance to rivers) were

considered during the model development phase. An extreme gradient

boosting decision tree model was trained for the monsoon period of

2015–2019 and the model was evaluated with independent inventory

information for the 2020 monsoon period. The model performance

demonstrated considerable skill using receiver operating characteristic curve

statistics, with Area Under the Curve values exceeding 0.95. The model

architecture was designed to use near-real-time data, and it can be

implemented in a cloud computing environment (i.e., Google Cloud

Platform) for the routine assessment of landslide hazards in the Lower

Mekong region. This work was developed in collaboration with scientists at

the Asian Disaster Preparedness Center as part of the NASA SERVIR Program’s

Mekong hub. The goal of this work is to develop a suite of tools and services on

accessible open-source platforms that support and enable stakeholder

communities to better assess landslide hazard and exposure at local to

regional scales for decision making and planning.
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1 Introduction

Landslides are one of the most dangerous natural hazards

that can cause a sudden loss of human life and substantial

property damage. The Lower Mekong Region (LMR) is highly

susceptible to landslides (Figure 1) due to steep terrain combined

with intense rainfall (Stanley and Kirschbaum, 2017). From the

inset plot of the Figure 1, four out of five countries (Cambodia,

Myanmar, Vietnam, and Thailand) have well covered medium to

high susceptible topography with more than 50 fatalities within

2015–2020.

For the past few decades, several studies have been performed

with various approaches to quantify landslide susceptibility in the

LMR region at a mostly regional scale. Those approaches can be

classified into different types: 1) Machine learning, deep learning

and Artificial Intelligence based methods; 2) Simple GIS analysis-

based methods; and 3) Physical model-based methods. In

Table 1, a summary of the relevant studies in the different

categories is shown. Among the latest methods, Tran et al.

(2020) used a machine-learning algorithm to characterize the

landslide hazards in the Nam Dam Commune, Vietnam region.

Van Dao et al. (2020) found that spatially explicit deep learning

(DL) neural network models performed better than other models

for the prediction of landslide susceptibility in the Muong Lay

district (Vietnam). Bui et al. (2019) compared Deep Learning

Neural Network (DLNN) with four different types of machine

learning models to produce landslide susceptibility. While all

these studies were performed to characterize the landslide

susceptibility in the LMR using different approaches, to our

best knowledge, no study focused on dynamic landslide hazard

assessment in an integrated way for the whole region. A few

possible reasons for not having a near-real-time integrated

FIGURE 1
Distribution of reported landslide fatalities across the Lower Mekong Region based on NASA’s Global Landslide Catalog (Kirschbaum et al.,
2015), with NASA’s global landslide susceptibility map (Stanley and Kirschbaum, 2017).
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FIGURE 2
Landslide inventory records generated by SaLaD-CD Algorithm over the LMR.
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hazard system include: 1) dependability of a specific model/

algorithm to produce reliable landslide hazard with spatio-

temporal consistency; 2) absence of sufficient landslide

inventories; 3) lack of access to or availability of relevant

hydrometeorological parameters that are either satellite-based

or in situ; 4) limitations associated with the computational

resources.

In this study, we focused on minimizing the above-

mentioned key issues that hindered near-real-time landslide

hazard assessment. To address the first issue, we used a

regionalized version of the global Landslide Hazard

Assessment for Situational Awareness model (LHASA)

(Stanley et al., 2021). LHASA was developed to provide an

indication of where and when landslides may be likely around

the world. This model uses surface susceptibility (including slope,

vegetation, road networks, geology, and forest cover loss) and

satellite rainfall data from the Global Precipitation Measurement

(GPM) mission to provide near-real-time hazards. The use of

TABLE 1 Geographic region, landslide relevant studies, types, and major findings.

Country Study Model Comments

Cambodia Lee at al. (2006) Frequency ratio and logistic regression Similar prediction accuracy

Laos Hearn and Pongpanya (2021) A simple index of vulnerability assessment Only for the road network

Myanmar Dang et al. (2020) Deterministic models Velocity, volume and locations

Kolomazník et al. (2021) Provided evidence-based support to the design of the road corridor landslide inventory susceptibility map prepared

Naing et al. (2022) GIS analysis Causes of landslides studied for topographic
variables

Panday and Dong (2021) Investigative study Relationship between landslides and
topographic features was studied

Titti et al. (2021) Landslide susceptibility zoning using weight of evidence method Mapped the landslide susceptibility

Thailand Asian Disaster Preparedness
Center et al. (2008)

Wide variety of assessments at the city and slope scales Combines critical API map with automated rain
gauges for real-time warnings

Intarawichian & Dasananda
(2011)

Frequency Ratio model Susceptibility maps were prepared

Jotisankasa and Vathananukij
(2008)

1D infiltration modeling and slope stability analysis 300 mm rainfall over 1–4 days may trigger
debris flows

Kanjanakul et al. (2016) Combines SEEP/W and SLOPE/W Calculated a critical API of 380 mm

Komori et al. (2018) Logistic regression and Richard’s equation Landslide hazard will increase due to climate
change

Nawagamuwa et al. (2013) Analysis of historical landslides in several countries Thai landslides caused by rainfall over 3 days

Oh et al. (2009) Frequency ratio and logistic regression Frequency ratio performed better

Ohtsu et al. (2012) Modified API, 10-min rainfall data Antecedent rainfall is significant for 2 days prior
to event

Ono et al. (2014) Infinite slope stability model Model was not sensitive to soil parameters

Phien-Wej et al. (1993) Retrospective analysis of the 1988 landslide disaster Most failures in weathered granite; 475 mm
rainfall/day

Salee et al. (2022) Event rainfall depth-duration threshold Best results when combined with 20-day
cumulative rainfall

Schmidt-Thomé et al. (2018) Slope threshold of 30°, combined with “loose soil” Rainfall thresholds by susceptibility zone imply
use in a real-time system

Sidle & Ziegler, (2017) Intensity-duration (ID) threshold, combined with 2-day API Forest canopies have little effect on landslides in
this area

Soralump, (2010) Critical API based on rock groups Applied both locally and nationally

Vietnam Bui et al. (2017) Compared least squares support vector machines (LSSVM) to other
methods

LSSVM Performed best

Bui et al. (2012) Support vector machines (SVM), decision tree (DT), and Naïve
Bayes (NB)

SVM performed best among all

Bui et al. (2011) statistical index and the logistic regression Performed same

Tran et al. (2020) Hyperpipes (HP) algorithm AdaBoost (AB), Bagging (B), Dagging,
Decorate, and Real AdaBoost (RAB)

AdaBoost performed best

Truong et al. (2018) BE-LMtree and Support Vector Machine BE-LMTree model performs better

Van Dao et al. (2020) Deep learning compared with other models: quadratic discriminant
analysis, Fisher’s linear discriminant analysis, and multi-layer
perceptron neural network

Deep learning performed best
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machine learning, when combined with other improvements to

LHASA, doubled the system’s ability, relative to the prior version

(Stanley and Kirschbaum, 2017). Based on this experience, a

regional version of the LHASAmodel was proposed in this study.

To address the dearth of published landslide inventories, Amatya

et al. (2021b) developed a change detection-based Semi-

Automatic Landslide Detection (SALaD-CD) system to detect

landslides in the LMR. To address the regional landslide

triggering topographic and meteorological data scarcity issue,

we used NASA Earth observation datasets, which over the last

few decades have demonstrated potential to be used in

conjunction with ground-based observations for monitoring

water resources and hydroclimatic disasters. Finally, the

emergence of cloud computing and advanced IT infrastructure

reduces the need for local computational resources, which is

helpful for many stakeholder organizations (Biswas and Hossain,

2018; Biswas et al., 2021; Biswas et al., 2020). The freely available

framework, Google Earth Engine-GEE (Gorelick et al., 2017), has

been widely used for cloud-based scientific analysis and

visualization of geospatial datasets by academic, non-profit,

business, and government users. It hosts a public data archive

that includes a record of more than 4 decades and is increasing

every day. This framework has been helping stakeholders and

decision makers use a plethora of satellite data without incurring

any additional charges and widens the possibilities for developing

nations. By integrating the Google Cloud Platform (GCP) with

GEE, a regional version of LHASA named LHASA-Mekong was

trained, validated, and implemented in this study.

Using LHASA-Mekong, the key research questions

addressed in this study are: 1) What level of accuracy can be

attained in assessing landslide hazard activity at a regional scale

using globally available hydrometeorological and topographical

data? and 2) How can a disaster modeling framework be

implemented in a cloud environment for near-real-time

prediction? In the paper, relevant datasets and methodology

of the study are discussed in Section 2, Section 3 emphasizes

the results, major findings, and discussion followed by the

conclusions and future scope of the study.

2 Data and methodology

2.1 Data

2.1.1 Landslide inventory preparation
The landslide inventories used in this research were mapped

utilizing high-resolution satellite imagery from Planet (Planet

Team, 2017) using the modified framework of Semi-Automatic

Landslide Detection (SALaD) system (Amatya et al., 2021a). The

SALaD uses object-based image analysis and machine learning to

map landslides. A change detection-based approach was

introduced to the SALaD framework (SALaD-CD) utilizing

pre- and post-event imagery (Amatya et al., 2021b). The new

framework incorporates image normalization, image co-

registration, and change detection. In addition to the

22 inventories (2 in Laos, 4 in Myanmar, 1 in Thailand, and

15 in Vietnam) released by Amatya et al., 2021 using SALaD-CD,

three new inventories were added in this study (Xam Neua, Laos;

Quang Nam, Vietnam; and Sapa, Vietnam). 112 landslides

recorded in the Global Landslide Catalog (Kirschbaum et al.,

2015) were also included. The map of available landslide

inventories and the monthly distribution of these data are

shown in Figure 2A.

2.1.2 Satellite precipitation estimates
To fill the ground-based observation gap, we depended on

satellite-based observations that show reasonable accuracy when

compared to the ground-based data. For the precipitation

product, we used the Global Precipitation Measurement

(GPM) satellite provided Integrated Multi-satellitE Retrievals

for GPM (IMERG) version 6 product (Huffman et al., 2015).

The IMERG rainfall product was developed using a unified

TABLE 2 Static variables and the data sources used in LHASA-Mekong.

Variable Source

Distance to faults GEMGlobal Active Faults (GEMHazard Team,
2019)

Lithology Strength Global lithological map (Hartmann and
Moosdorf, 2012)

Slope SRTM DEM

Relief

Topographic Wetness
Index (TWI)

Distance to Rivers HydroRIVERS (USGS HydroSHEDS)

Distance to Roads Global Roads Inventory Project (Meijer et al.,
2018)

TABLE 3 LHASA-Mekong model description with the interaction and
monotone constraints.

Model
parameters

Tuned value

Maximum depth 2

Eta 0.05

Objective binary: logistic

Tree method Exact

MaximumDelta Step 1

Subsample 0.5

Monotone
Constraints

Distance to Roads, Distance to Faults, Distance to rivers is
an inverse relationship, all others are having linear
relationship

Interaction
Constraints

Precipitation can interact with others
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FIGURE 3
Explanatory variables used during the development of LHASA-Mekong Model, (A) 99th percentile of 3-day accumulated precipitation, (B)Mean
of CFS soil moisture variable, (C) Relief, (D) Slope, (E) Lithological strength, (F) Distance to faults, (G) Distance to roads, (H) Distance to rivers, and (I)
Maximum topographic wetness index (TWI).
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algorithm that provides rainfall estimates by combining data

from microwave and infrared instruments on satellites along

with precipitation gauge data for calibration. The native spatial

resolution of the data is 0.1° by 0.1° (approximately a 10-km by

10-km grid) with a half-hourly temporal resolution. The half-

hourly data was converted into 3-day accumulations at the per-

pixel basis to feed the model. The mean of 3-day accumulated

precipitation is shown in Figure 3B and the 99th percentile of 3-

day accumulated precipitation is shown in Figure 3C.

2.1.3 Climate forecast system soil moisture
The Climate Forecast System (CFS) version 2 was developed

at the Environmental Modeling Center at the National Centers

for Environmental Prediction (NCEP) (Saha et al., 2011). It is a

fully coupled model representing the interaction between the

Earth’s atmosphere, oceans, land, and sea-ice and became

operational at NCEP in March 2011. This dataset was chosen

because of its acceptability and availability in GEEwith the lowest

lag-time (earth engine asset id: NOAA/CFSV2/FOR6H).

Minimized lag-time and consistent data availability is

important for any kind of operational product. The spatial

resolution of the data is 0.2° and the variable used in this

study was “Volumetric_Soil_Moisture_Content_depth

_below_surface_layer_150_cm.” A snapshot of the spatial

variability of soil moisture data is shown in Figure 3B.

2.1.4 Static variables
Besides the dynamic variables, several static variables (such as

slope, relief, distance to rivers, distance to roads, and lithological

strength) were also included in the model. Among the static

variables, slope and relief were calculated from the Shuttle Radar

Topographic Mission (SRTM) Digital Elevation Model (DEM). The

native resolution of the SRTM DEM is 30 m. Lithological strength

data were leveraged from the global LHASA model as that was the

only consistent and reliable data related to lithological strength for

this region. Spatial variability of these parameters is shown in

Figure 3. Table 2 summarizes the static variables, and the data

sources are mentioned.

2.2 Methodology

The overall methodology of the model development is

described in Figure 4.

2.2.1 Rescaling of precipitation
To reflect the climate of each location, we normalized

the IMERG 3-day accumulated precipitation data using the

99th percentile of the historical 3-day accumulated

precipitation. For each of the pixels within the study area,

a log-normal distribution was fitted to the 99th percentile.

This was calculated by fitting a log-normal distribution

for each pixel from daily rainfall records spanning 2000–2020,

then calculating the 99th percentile from the fitted distribution.

Finally, this precipitation was used to rescale the 3-day

accumulated precipitation and the normalized precipitation

was fed into the model framework. A map of the 3-day

accumulated precipitation is shown in Figure 3A.

2.2.2 Exploratory data analysis
An exploratory data analysis was performed before training

the model. Correlation between some of the most important

FIGURE 4
Methodology of the development of LHASA-Mekong model.
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factors that drive landslide initiation such as precipitation, slope,

relief, and soil moisture over the landslide and non-landslide

grids is shown in Figure 5.

2.2.3 Model training and validation
Two dynamic variables (precipitation and soil moisture) and

five static variables were used to train the model. The landslide

inventory was divided into two parts, the 2015–2019 inventory was

used to train the model and the 2020 inventory was used for the

temporal validation of the model. The 2015–2019 inventory was

further split randomly into a part for training the model (67%) and

for validating the model (33%). The XGBoost python library was

used for training of the model. Based on the global landslide

modelling experience, we found that XGBoost model has unique

features such as interaction and monotone constraints which makes

it more appropriate for landslide hazard quantification (Stanley

et al., 2021). Interested users are suggested to see Stanley et al. (2021)

and https://xgboost.readthedocs.io/en/stable/to know about the

XGBoost model. Model configuration parameters are shown in

Table 3. The receiver operating characteristics (ROC) curvewas used

to quantify the accuracy of the model. In order to generate binary

statistics, a probability threshold of 0.08 was chosen based on the

99th percentile of the probability distribution of the non-landslide

sample.

FIGURE 5
Distributions of the most important variables for landslides (orange) and non-landslide grid cells (blue). The highest correlation (0.45) was
between maximum slope and relief.
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2.2.4 Python package with google earth engine
for operationalization

Upon finalizing the model, it was implemented in Google Cloud

Platform (GCP) for the operational prediction. An illustration on

implementation of the LHASA-Mekong model in GCP

environment is shown in Figure 6. The finalized version of the

model was hosted in GCP bucket storage along with the necessary

metadata and configuration information. Compute Engine and

Notebook API were used together to deploy the model. It was

found that the latest IMERG early run precipitation data was not

available inGEE. Thus, the notebookAPI script was used to pull data

from the Goddard Earth Sciences Data and Information Services

Center server of NASAGoddard Space Flight Center (GSFC). Other

dynamic variables (i.e., IMERG late run precipitation data and CFS

soil moisture) were captured from GEE. Then the model was

imported to make the prediction and the final hazard probability

map was pushed back to GCP bucket storage. Finally, the hazard

probability map was pushed to GEE as assets from the GCP bucket

storage. The hazard probability data can be accessed through GEE

and through API services such as Google App Engine.

3 Results and discussion

3.1 Model training and validation

The Area Under the Curve (AUC) value was 99% in the spatial

validation of the model using a random 33% split of the sample data.

During the temporal validation of the model, the AUC values were

similar to that of the spatial validation. Left panel of Figure 7 shows a

feature importance plot combining three different metrics (gain,

cover, and weight). Gain is themost relevant attribute to interpret the

relative importance of each feature. Cover measures the relative

quantity of observations concerned by a feature. Most of the gain was

attained by the precipitation and the second-most important variable

was maximum slope. Relief also showed similar importance

compared to the maximum slope. Soil moisture was incorporated

in the model as a dynamic variable, but its importance was quite low

compared to themaximum slope and relief. This can be explained by

the lower variability and lower accuracy of the variable. The SHapley

Additive exPlanations (SHAP) package from python (link: https://

shap.readthedocs.io/en/latest/index.html) was also used to explain

the feature importance plot of the model, which is shown in right

panel of Figure 7. Here it can be seen that precipitation, soil moisture,

maximum slope, and relief have a higher positive impact on the

predictability of the model. Distance to roads and distance to faults

have more negative impacts on the model. Some of the precipitation

and soilmoisture also have a negative impact on themodel due to the

frequent occurrence of very moist conditions in flat regions of

the LMR.

3.2 Event-specific assessment

In addition to standard validation metrics, we quantified the

model accuracy over six large landslide events. Three events were

FIGURE 6
LHASA-Mekong Model implementation in Google Cloud Platform (GCP).
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selected in the different regions from the training period of

2015–2019, and three of the events were picked from the

validation period. The news sources for all these events can be

found in Amatya et al. (2021). The areas selected from the model

training period are: 1) the Hakha-Falam area of Myanmar where

a number of landslide events happened on 30 July 2015; 2) the

Muong La, Vietnam area for the date of 3 August 2017; and 3) the

Xieng Ngeun, Laos area for the date of 31 August 2018. It was

found that for the first two events, the true positive rate of the

model was higher than 99%. For the third event, it was found that

IMERG estimated rainfall underestimated the ground-measured

amount of rainfall provided by Mekong River Commission

(MRC) and thus the model-generated hazard missed some of

the landslide events, reducing the true positive rate to 97%. The

model was further validated for the three individual events in

2020 that happened in the Central Vietnam region. Almost all the

landslide locations were identified as potentially hazardous

(p>0.08), resulting in a true positive rate (TPR) above 90%.

Spatial maps of the predictions for all events show a more

extensive zone of a hazard than the area known to be affected

by landslides (Figure 8).

3.3 Retrospective simulation and
seasonality analysis

To better understand the seasonal and geographic

distribution of landslide hazards across the LMR, the model

was run retrospectively for the period 2015–2020. The long-term

hazard probability map (Figure 9B) was qualitatively compared

with the global landslide susceptibility map (Figure 9A) prepared

by Stanley and Kirschbaum (2017) and both maps match quite

well, indicating that LHASA-Mekong may correctly reflect the

geographic distribution of landslide hazard which is coherence to

the locations with higher topographic slope, high amount of

rainfall and low lithological strength regions.

The seasonal variation of landslide hazard probabilities is

shown in Figures 9C–F. From Figure 7C, the whole LMR had a

very low chance of having landslide probability, due to extremely

low rainfall that occurs in the dry season. The April-May-June

map shows higher probabilities in the western zone of LMR due

to the comparatively early arrival of the tropical monsoon period.

The same pattern can also be seen in Figures 9E,F with 7f

showing very high hazard in the Central Vietnam region due

to the late arrival of the monsoon. For the same reason, the

Myanmar region showed a very low hazard probability during

the same period of the year (October-November-December).

When the mean hazard probability was converted into a time-

series mean, the seasonality pattern was clearer. In Figure 10, a

time-series comparison of weekly precipitation and weekly mean

hazard probability (along with range) was shown. From

Figure 10, the more frequent occurrence of higher landslide

probability corresponds to a higher amount of rainfall. There

were a few higher probabilities occurring in the late monsoon and

dry season and this was due to the higher rainfall reported by the

IMERG precipitation.

3.4 Discussion

The LHASA-Mekong model showed an AUC of 99%, which

is sometimes treated as overfitting. To reduce overfitting, we used

monotone constraints and interaction constraints that are helpful

in reducing this nature of machine learning models. In order to

re-validate the applicability of the model, we took the following

steps: 1) independently validated the model with the

2020 landslide inventory that was not included in the training

sample, 2) checked the model prediction accuracy against eight

inventories spanning from 2015–2020, 3) evaluated the predicted

hazard outputs at annual and seasonal scale to make sure that the

model has reliable and consistent accuracy temporally and

spatially.

FIGURE 7
Feature importance plot of the LHASA-Mekong model (left) and SHAP value plot (right). Precipitation had the greatest effect on model
outcomes, primarily raising hazard values.
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Model uncertainty also stems from variability and accuracy

of the landslide triggering variables selected for the model. The

precipitation triggering information from NASA GPM IMERG

has known challenges in representing the total rainfall

accumulations for short-duration, high intensity events as well

as orographically-impacted events. We also consider CFS soil

moisture product due to its near-real-time availability; however,

the 25 km spatial resolution of the CFS product cannot

adequately represent the actual soil moisture content at local

spatial scales. Further, in this tropical environment validating this

type of product is not feasible due to the dearth of in situ soil

moisture information. Among the topographic variables, NASA

DEM can be another source of uncertainty that could be

propagated to slope and relief features of the model, with

more recent topographic changes not accurately resolved in

the data source on which the model was trained. Finally, the

SALaD algorithm-generated inventory may not robustly cover all

cover types where landslides may occur, which may bias the

model validation. However, this is a challenge inherent in all

data-limited environments and care was taken to ensure that we

developed the most comprehensive inventory possible to support

this work.

The false alarm rate generated by the model was higher than

anticipated but is similar to the trend observed in the case of

FIGURE 8
Hazard probability map with observed landslide records for different dates, (A) 30 July 2015 over Hakah-Falam, Myanmar; (B) 3 August
2017 over Muong La, Vietnam; (C) 31 August 2018 over Xieng Ngeun, Loas; (D) 12 October 2020 for the Phong Dien, Vietnam event, (E) 17 October
2020 over Huang Hua, Vietnam; and (F) 28 October 2020 for the Quang Nam, Vietnam event. The true positive rate (TPR) for each inventory is
shown.
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Global LHASA model. The model solely depends on the

triggering variables in estimating the landslide hazard

probability. During the model training phase, random grids in

the spatial-temporal direction were treated as non-landslide

samples; however, the non-landslide areas cannot be

corroborated in all cases. As such, the false alarm rate should

be regarded as a relative estimate to represent the expansiveness

of the potential hazard impact area for situational awareness

rather than providing an accurate prediction of landslide events

occurring at very fine resolution. Furthermore, the threshold

defined in the model to distinguish between landslides and non-

landslides played another role in a higher false positive rate for

the tradeoffs. A well-established landslide inventory along with

further testing on the threshold can minimize the false

positive rate.

To reduce the dependency on the local computation

resources, the modeling framework was implemented in the

Google Cloud Platform. The uniqueness of this framework is

that it was developed based on the most updated open-source

cloud computing framework. The GCP provides a great

opportunity in the terms of deployment, data and application

programming interface (API) accessibility, reproducibility, and

scalability. The model can be customized according to the

available data, retrained and re-deployed to the same bucket

in the easiest way just by using a web browser. An ongoing effort

has focused on training and capacity building of the regional

FIGURE 9
The geographic and seasonal distribution of landslide hazard across the LMR; (A) Global susceptibility map, (B) long-term mean hazard
probability map, (C)Mean hazard probability map of Jan-March, (D)Mean hazard probability map of April-June, (E)Mean hazard probability map of
July-September, (F) Mean hazard probability map of October-December.
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agencies within the LMR to use LHASA-Mekong in order to

harness the power of freely available cloud computing resources

and the scalable framework for decision-making and emergency

management.

4 Conclusion

Using globally available hydrologic and topographic

variables and extensive new landslide inventories, LHASA-

Mekong was trained, validated, revalidated, and deployed as

part of this study. The model was designed to keep

customizability in mind so that end-users can retrain and

deploy it based on the accessibility to improved triggering

variables and regional data. Currently, the model has been

producing nowcast hazard probability, but work is ongoing to

explore how forecast precipitation products such as Climate

Hazards center InfraRed Precipitation with Station data -

Global Ensemble Forecast System (CHIRPS-GEFS, Harrison

et al., 2022). Another benefit of this open-source framework

with publicly available source data is that it can be used for the

other regions. However, care must be taken to ensure that data is

sufficient, and the proper training and validation procedures are

followed to ensure robust performance. Ultimately, this

framework has tremendous potential to generate important

landslide hazard assessments for data-sparse regions to inform

emergency response, decision making, and planning to mitigate

impacts within communities.

Data availability statement

The raw data supporting the conclusion of this article will be

made available by the authors, without undue reservation.

Author contributions

DK, TS, PA, and PT contributed to the study conception and

design. Material preparation, data collection and analysis were

performed by NB, TS, and PA. The first draft of the manuscript

was written by NB and all authors commented on previous

versions of the manuscript. All authors read and approved the

final manuscript. There are no competing interests related to

this work.

Funding

This research was funded by the NASA SERVIR Science

Team (NNH18ZDA001N-18-SERVIR18_2-0036) and the

collaboration with ADPC was supported via the joint

FIGURE 10
Long-term mean hazard probability timeseries at weekly scale with precipitation for the LMR.

Frontiers in Earth Science frontiersin.org13

Biswas et al. 10.3389/feart.2022.1057796

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1057796


United States Agency for International Development (USAID)

and NASA initiative SERVIR-Mekong.

Acknowledgments

We would also like to thank SERVIR-Mekong team at ADPC,

SERVIR Coordination Office team, and Spatial Informatics Group

for their valuable support throughout the study.

Conflict of interest

Author AP was employed by Spatial Informatics Group, LLC.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict of

interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Amatya, P., Kirschbaum, D., and Stanley, T. (2021b). Rainfall-induced landslide
inventories for Lower Mekong based on Planet imagery and a semi-automatic
mapping method. Geoscience Data J. doi:10.1002/gdj3.145

Amatya, P., Kirschbaum, D., Stanley, T., and Tanyas, H. (2021a). Landslide
mapping using object-based image analysis and open source tools. Eng. Geol. 282,
106000. doi:10.1016/j.enggeo.2021.106000

Asian Disaster Preparedness Center (2008). Department of Mineral Resources, &
Geotechnical Engineering Research and Development Center. Landslide Mitigation
Demonstration Project for Patong City (Asian Program for Regional Capacity
Enhancement for Landslide Impact Mitigation (RECLAIM II)) [Final Report].
Bankok, Thailand.

Biswas, N. K., and Hossain, F. (2018). A scalable open-source web-analytic
framework to improve satellite-based operational water management in developing
countries. J. Hydroinformatics 20 (1), 49–68. doi:10.2166/hydro.2017.073

Biswas, N. K., Hossain, F., Bonnema, M., Aminul, A., Biswas, R., Buiyan, A., et al.
(2020). A computationally efficient flashflood early warning system for a
mountainous and transboundary river basin in Bangladesh. J. Hydroinformatics
22 (6), 1672–1692. doi:10.2166/hydro.2020.202

Biswas, N. K., Hossain, F., Bonnema,M., Lee, H., and Chishtie, F. (2021). Towards
a global Reservoir Assessment Tool for predicting hydrologic impacts and operating
patterns of existing and planned reservoirs. Environ. Model. Softw. 140, 105043.
doi:10.1016/j.envsoft.2021.105043

Bui, D. T., Lofman, O., Revhaug, I., and Dick, O. (2011). Landslide susceptibility
analysis in the Hoa Binh province of Vietnam using statistical index and logistic
regression. Nat. Hazards (Dordr). 59 (3), 1413–1444. doi:10.1007/s11069-011-
9844-2

Bui, D. T., Pradhan, B., Lofman, O., Revhaug, I., and Dick, O. B. (2012). Landslide
susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-
fuzzy inference system and GIS. Comput. Geosciences 45, 199–211. doi:10.1016/j.
cageo.2011.10.031

Bui, D. T., Tuan, T. A., Hoang, N. D., Thanh, N. Q., Nguyen, D. B., Van Liem, N.,
et al. (2017). Spatial prediction of rainfall-induced landslides for the Lao Cai area
(Vietnam) using a hybrid intelligent approach of least squares support vector
machines inference model and artificial bee colony optimization. Landslides 14 (2),
447–458. doi:10.1007/s10346-016-0711-9

Dang, K., Loi, D. H., Sassa, K., Duc, D. M., and Ha, N. D. (2020). “Hazard
assessment of a rainfall-induced deep-seated landslide in Hakha city, Myanmar,” in
Workshop on world landslide forum (Cham: Springer), 249–257. doi:10.1007/978-3-
030-60706-7-23

GEM Hazard Team (2019). GEM global active faults. Available at: https://github.
com/GEMScienceTools/gem-global-active-faults/tree/master/geopackage
(Accessed July 19, 2019).

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.
(2017). Google earth engine: Planetary-scale geospatial analysis for everyone.
Remote Sens. Environ. 202, 18–27. doi:10.1016/j.rse.2017.06.031

Harrison, L., Landsfeld, M., Husak, G., Davenport, F., Shukla, S., Turner, W., et al.
(2022). Advancing early warning capabilities with CHIRPS-compatible NCEP
GEFS precipitation forecasts. Sci. Data 9, 375–413. doi:10.15780/G2PH2M

Hartmann, J., and Moosdorf, N. (2012). The new global lithological map database
GLiM: A representation of rock properties at the earth surface. Geochem. Geophys.
Geosyst. 13. doi:10.1029/2012GC004370

Hearn, G. J., and Pongpanya, P. (2021). Developing a landslide vulnerability
assessment for the national road network in Laos. Q. J. Eng. Geol. Hydrogeo. 54 (3).
doi:10.1144/qjegh2020-110

Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Xie, P., et al.
(2015). NASA global precipitation measurement (GPM) integrated multi-satellite
retrievals for GPM (IMERG). Algorithm Theoretical Basis Document (ATBD)
version. 4 (26).

Intarawichian, N., and Dasananda, S. (2011). Frequency ratio model based
landslide susceptibility mapping in lower Mae Chaem watershed, Northern
Thailand. Environ. Earth Sci. 64 (8), 2271–2285. doi:10.1007/s12665-011-1055-3

Jotisankasa, A., and Vathananukij, H. (2008). “Investigation of soil moisture
characteristics of landslide-prone slopes in Thailand,“ in International conference
on management of landslide hazard in the Asia-Pacific region, November 11–15,
2008, 12

Kanjanakul, C., Chub-uppakarn, T., and Chalermyanont, T. (2016). Rainfall
thresholds for landslide early warning system in Nakhon Si Thammarat. Arab.
J. Geosci. 9 (11), 584. doi:10.1007/s12517-016-2614-4

Kirschbaum, D., Stanley, T., and Zhou, Y. (2015). Spatial and temporal analysis of
a global landslide catalog. Geomorphol. 249, 4–15. doi:10.1016/j.geomorph.2015.
03.016

Kolomazník, J., Hlavacova, I., and Schloegl, M. (2021). Supporting disaster risk
reduction with satellite Earth Observation Landslide hazard assessment for the Chin
road corridor, Myanmar. In EGU General Assembly Conference Abstracts
(pp. EGU21-1476). doi:10.5194/egusphere-egu21-14769

Komori, D., Rangsiwanichpong, P., Inoue, N., Ono, K., Watanabe, S., and
Kazama, S. (2018). Distributed probability of slope failure in Thailand under
climate change. Clim. Risk Manag. 20, 126–137. doi:10.1016/j.crm.2018.03.002

Lee, J. K., Kim, H. S., Kuk, S. H., and Park, S. W. (2006). in Development of an
e-Engineering environment based on service-oriented architectures. Cooperative Design,
Visualization, and Engineering. EditorY. Luo. LNCS 4101. doi:10.1007/s00254-006-0256-7

Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J., and Schipper, A. M. (2018).
Global patterns of current and future road infrastructure. Environ. Res. Lett. 13,
064006. doi:10.1088/1748-9326/aabd42

Naing, M. T., Aye, M. M., and Oo, K. L. (2022). Rainfall and landslide
susceptibility in Hakha environ in northern chin state, Myanmar. Br. J. Arts
Humanit. 4 (1), 01–14. doi:10.34104/bjah.02201014

Nawagamuwa, U. P., Bhasin, R. K., Kjekstad, O., and Arambepola, N. M. S. I.
(2013). “Recommending regional rainfall threshold values for early warning of
landslides in the asian region,” in Landslide science and practice: Volume 4: Global
environmental change. Editors C. Margottini, P. Canuti, and K. Sassa (Springer),
235–241. doi:10.1007/978-3-642-31337-0-30

Oh, H. J., Lee, S., Chotikasathien, W., Kim, C. H., and Kwon, J. H. (2009).
Predictive landslide susceptibility mapping using spatial information in the
Pechabun area of Thailand. Environ. Geol. 57 (3), 641–651. doi:10.1007/s00254-
008-1342-9

Frontiers in Earth Science frontiersin.org14

Biswas et al. 10.3389/feart.2022.1057796

https://doi.org/10.1002/gdj3.145
https://doi.org/10.1016/j.enggeo.2021.106000
https://doi.org/10.2166/hydro.2017.073
https://doi.org/10.2166/hydro.2020.202
https://doi.org/10.1016/j.envsoft.2021.105043
https://doi.org/10.1007/s11069-011-9844-2
https://doi.org/10.1007/s11069-011-9844-2
https://doi.org/10.1016/j.cageo.2011.10.031
https://doi.org/10.1016/j.cageo.2011.10.031
https://doi.org/10.1007/s10346-016-0711-9
https://doi.org/10.1007/978-3-030-60706-7-23
https://doi.org/10.1007/978-3-030-60706-7-23
https://github.com/GEMScienceTools/gem-global-active-faults/tree/master/geopackage
https://github.com/GEMScienceTools/gem-global-active-faults/tree/master/geopackage
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.15780/G2PH2M
https://doi.org/10.1029/2012GC004370
https://doi.org/10.1144/qjegh2020-110
https://doi.org/10.1007/s12665-011-1055-3
https://doi.org/10.1007/s12517-016-2614-4
https://doi.org/10.1016/j.geomorph.2015.03.016
https://doi.org/10.1016/j.geomorph.2015.03.016
https://doi.org/10.5194/egusphere-egu21-14769
https://doi.org/10.1016/j.crm.2018.03.002
https://doi.org/10.1007/s00254-006-0256-7
https://doi.org/10.1088/1748-9326/aabd42
https://doi.org/10.34104/bjah.02201014
https://doi.org/10.1007/978-3-642-31337-0-30
https://doi.org/10.1007/s00254-008-1342-9
https://doi.org/10.1007/s00254-008-1342-9
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1057796


Ohtsu, H., Chaleiwchalard, N., Koga, H., and Soralump, S. (2012). “A study
on landslide early warning system considering the effect of antecedent
rainfall on slope stability,” in The 41st symposium on rock mechanics,
252–257.

Ono, K., Kazama, S., and Ekkawatpanit, C. (2014). Assessment of rainfall-induced
shallow landslides in Phetchabun and Krabi provinces, Thailand. Nat. Hazards
(Dordr). 74 (3), 2089–2107. doi:10.1007/s11069-014-1292-3

Panday, S., and Dong, J. J. (2021). Topographical features of rainfall-triggered
landslides in Mon state, Myanmar, August 2019: Spatial distribution heterogeneity
and uncommon large relative heights. Landslides 18 (12), 3875–3889. doi:10.1007/
s10346-021-01758-7

Phien-Wej, N., Nutalaya, P., Aung, Z., and Zhibin, T. (1993). Catastrophic
landslides and debris flows in Thailand. Bull. Int. Assoc. Eng. Geol. 48 (1),
93–100. doi:10.1007/bf02594981

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., and Becker, E. (2011).
NCEP climate forecast system version 2 (CFSv2) 6-hourly products. Res. Data
Archive A. T. Natl. Cent. Atmos. Res. Comput. Inf. Syst. Laboratory 10. doi:10.5065/
D61C1TXF

Salee, R., Chinkulkijniwat, A., Yubonchit, S., Horpibulsuk, S., Wangfaoklang,
C., and Soisompong, S. (2022). New threshold for landslide warning in the
southern part of Thailand integrates cumulative rainfall with event rainfall
depth-duration. Nat. Hazards (Dordr). 113, 125–141. doi:10.1007/s11069-022-
05292-0

Schmidt-Thomé, P., Tatong, T., Kunthasap, P., and Wathanaprida, S. (2018).
Community based landslide risk mitigation in Thailand. Episodes 41 (4), 225–233.
doi:10.18814/epiiugs/2018/018017

Sidle, R. C., and Ziegler, A. D. (2017). The canopy interception–landslide
initiation conundrum: Insight from a tropical secondary forest in northern
Thailand. Hydrol. Earth Syst. Sci. 21 (1), 651–667. doi:10.5194/hess-21-651-2017

Soralump, S. (2010). Geotechnical approach for the warning of rainfall-triggered
landslide in Thailand considering antecedence rainfall data. International Conference
on Slope 2010: Geotechnique and Geosynthetics for Slopes, Chiangmai, Thailand

Stanley, T., and Kirschbaum, D. B. (2017). A heuristic approach to global landslide
susceptibility mapping. Nat. Hazards 87 (1), 145–164. doi:10.1007/s11069-017-2757-y

Stanley, T. A., Kirschbaum, D. B., Benz, G., Emberson, R. A., Amatya, P. M.,
Medwedeff, W., et al. (2021). Data-driven landslide nowcasting at the global scale.
Front. Earth Sci. (Lausanne). 378. doi:10.3389/feart.2021.640043

Titti, G., Borgatti, L., Zou, Q., Cui, P., and Pasuto, A. (2021). Landslide
susceptibility in the belt and road countries: Continental step of a multi-scale
approach. Environ. Earth Sci. 80, 630. doi:10.1007/s12665-021-09910-1

Tran, Q. C., Minh, D. D., Jaafari, A., Al-Ansari, N., Minh, D. D., Van, D. T., et al.
(2020). Novel ensemble landslide predictive models based on the hyperpipes
algorithm: A case study in the nam dam commune, vietnam. Appl. Sci. 10 (11),
3710. doi:10.3390/app10113710

Truong, X. L., Mitamura, M., Kono, Y., Raghavan, V., Yonezawa, G., Truong, X.
Q., et al. (2018). Enhancing prediction performance of landslide susceptibility
model using hybrid machine learning approach of bagging ensemble and logistic
model tree. Appl. Sci. 8 (7), 1046. doi:10.3390/app8071046

Van Dao, D., Jaafari, A., Bayat, M., Mafi-Gholami, D., Qi, C., Moayedi, H.,
et al. (2020). A spatially explicit deep learning neural network model for the
prediction of landslide susceptibility. Catena 188, 104451. doi:10.1016/j.
catena.2019.104451

Frontiers in Earth Science frontiersin.org15

Biswas et al. 10.3389/feart.2022.1057796

https://doi.org/10.1007/s11069-014-1292-3
https://doi.org/10.1007/s10346-021-01758-7
https://doi.org/10.1007/s10346-021-01758-7
https://doi.org/10.1007/bf02594981
https://doi.org/10.5065/D61C1TXF
https://doi.org/10.5065/D61C1TXF
https://doi.org/10.1007/s11069-022-05292-0
https://doi.org/10.1007/s11069-022-05292-0
https://doi.org/10.18814/epiiugs/2018/018017
https://doi.org/10.5194/hess-21-651-2017
https://doi.org/10.1007/s11069-017-2757-y
https://doi.org/10.3389/feart.2021.640043
https://doi.org/10.1007/s12665-021-09910-1
https://doi.org/10.3390/app10113710
https://doi.org/10.3390/app8071046
https://doi.org/10.1016/j.catena.2019.104451
https://doi.org/10.1016/j.catena.2019.104451
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1057796

	A dynamic landslide hazard monitoring framework for the Lower Mekong Region
	1 Introduction
	2 Data and methodology
	2.1 Data
	2.1.1 Landslide inventory preparation
	2.1.2 Satellite precipitation estimates
	2.1.3 Climate forecast system soil moisture
	2.1.4 Static variables

	2.2 Methodology
	2.2.1 Rescaling of precipitation
	2.2.2 Exploratory data analysis
	2.2.3 Model training and validation
	2.2.4 Python package with google earth engine for operationalization


	3 Results and discussion
	3.1 Model training and validation
	3.2 Event-specific assessment
	3.3 Retrospective simulation and seasonality analysis

	3.4 Discussion
	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


