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A multi-transmitting boundary is a local artificial boundary widely used for

numerically simulating seismic site effects. However, similar to other artificial

boundaries, the multi-transmitting boundary has instability issue in numerical

simulation. Based on the concept of multi-directional transmitting formula, a

strategy for eliminating the high-frequency instability of the transmitting

boundary is studied and a measure is proposed using a neighbour node of a

boundary node to realize smoothing filtering. The proposed measure is verified

through numerical analysis. The smoothing coefficient chosen for this measure

provides a reference for deriving the coefficient of multidirectional transmitting

formula in the time domain.
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1 Introduction

The influence of local topography on ground motion is fundamentally a wave

scattering problem. Hence, simulating near-field waves is crucial to the numerical

simulation of seismic site effects. The accuracy of near-field wave numerical

simulations directly depends on whether artificial boundary conditions can accurately

simulate an infinite domain. Since the 1960s, several achievements have been attained in

the study of artificial boundaries (Liao, 1984, 2002; Wolf, 1988; Givoli, 1992; Cheng et al.,

1995; Wolf, 1996; Xu et al., 2018; Xing et al., 2021). Among the established artificial

boundary conditions, the multi-transmitting boundary (Liao et al., 1984a; Liao et al.,

1984b; Xing et al., 2017a; Xing et al., 2017b) has a wide application range and high

precision. Moreover, combined with the finite element method, the multi-transmitting

boundary can facilitate decoupling.

Similar to other local artificial boundaries, the transmitting boundary’s computational

stability is a key issue that requires further study. High-frequency oscillation and low-

frequency drift are two types of numerical instability phenomena that may occur when the
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multi-transmission boundary is combined with the finite element

method (Li et al., 2012; Yang et al., 2014). In this paper, a strategy

for eliminating the instability of high-frequency oscillations of

the multi-transmission boundary is suggested.

Smoothing factor filtering is an effective measure for restraining

high-frequency instability of transmission boundary (Liao et al.,

1989; Liao et al., 1992; Liao et al., 2002). Another measure to restrain

high-frequency instability is utilizing the energy consumption

characteristics of explicit integration scheme. This measure

inhibits high-frequency instability by increasing damping in

proportion to strain velocity (Li et al., 1992; Li et al., 2007; Tang

et al., 2010). Modifying the internal node motion equation and

stiffness of the finite element is also an effective measure for

stabilizing the high-frequency of multi-transmission boundary

(Xie et al., 2012; Zhang et al., 2021).

This paper proposes an improved measure for existing

strategies to restrain high-frequency instability using a

smoothing factor. When considering only the high-frequency

error oscillation perpendicular to the artificial boundary and

ignoring the high-frequency oscillation parallel to the artificial

boundary, the current method only smooths the points

perpendicular to the boundary. Based on the concept of a

multidirectional transmitting formula, this paper proposes

smoothing the points on the artificial boundary to restrain

high-frequency instability.

2 Multi-transmitting formula and its
instability of high-frequency
oscillation for restraining instability

2.1 Multi-transmitting formula (MTF)

The multi-transmitting boundary is also called Multi-

transmitting formula (MTF), which is a boundary condition

using the general expression of a one-sided traveling wave

solution to simulate an external wave crossing the boundary

at a point on the artificial boundary. It uses internal point

displacement to represent the boundary point displacement.

MTF was proposed by Liao et al. (Liao, 1984, 2002). In the

finite element discrete model (Figure 1), the MTF of the arbitrary

artificial boundary point J can be expressed as

uP+1
J � ∑N

n�1 −1( )n+1CN
n Tnun (1)

where J of uP+1J represents the position in the discrete grid (e.g.,

point J in Figure 1), P + 1 of uP+1J represents moment P+1, N is

the order of MTF, and CN
n is a binomial coefficient

(CN
n � N!/((N − n)!n!)). The following yields Tn and un:

un � uP−n+1
J , uP−n+1

J−1 ,/, uP−n+1
J−2n[ ]T

Tn � T1,T2,/,T2n+1[ ]
TK � ∑ tK1tK2/tKn K � 1, 2,/, 2n + 1( )

⎧⎪⎪⎨
⎪⎪⎩ (2)

where TK and tKn are dimensionless parameters. Here, TK is

obtained by summing tKn to satisfy the following:

K1 + K2 +/ + Kn � K + n − 1,K1,K2,/,Kn � 1, 2, 3 (3)
t1 � 2 − s( ) 1 − s( )

2

t2 � s 2 − s( )
t3 � s s − 1( )

2

s � caΔt
Δx

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

In Eq. 4, ca is the artificial wave velocity. The wave

unilaterally travels at velocity c and transmits in the direction

of angle θ with a boundary surface (ca � c/ cos θ). As shown in

Figure 1, Δx is the spatial step of the discrete grid in the direction

perpendicular to the artificial boundary; Δt is the time step of the

finite element calculation; and s is a dimensionless parameter.

For first-order transmission (N=1), under the condition that

Eq. 3 is satisfied, Eq. 1 can be written as follows:

uP+1
J � t1, t2, t3[ ] uP

J , u
P
J−1, u

P
J−2[ ]T (5)

By substituting Eq. 4 into Eq. 5, the first-order MTF can be

derived as

uP+1
J � 1

2
1 − s( ) 2 − s( )uP

J + s 2 − s( )uP
J−1 +

1
2
s s − 1( )uP

J−2 (6)

2.2 Analysis of the instability of high-
frequency oscillations

The most intuitive explanation for high-frequency oscillation

instability of MTF is the reflection amplification of high-

frequency wave component in the artificial boundary. An

amplification error wave is reflected to the artificial boundary

in the finite calculation area and then amplified again, resulting in

the instability of the artificial boundary. Such error wave

amplification only occurs in high-frequency waves

approaching the cut-off frequency. These high-frequency

FIGURE 1
Discrete model of multi-transmitting boundary.
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fluctuations causing oscillation instability are outside the scope of

the frequency components considered in numerical simulation;

and they do not benefit the computational stability of numerical

simulation. In the numerical simulation, the high-frequency

waves approaching the cut-off frequency have an insignificant

effect on the accuracy of frequency bands. These high-frequency

fluctuations exist perpendicular and parallel to the artificial

boundary. Therefore, the elimination of useless high-frequency

fluctuations in all directions can stabilize high-frequency

oscillation without affecting the calculation accuracy.

2.3 Fundamental ideas of stabilization
measures

In the meaningful frequency band of the finite element (or

finite difference) simulation of the wave, the transmission

boundary does not produce oscillation instability. Oscillation

instability only occurs in the high-frequency band approaching

the cut-off frequency. Therefore, the guiding principle of

stabilization is to eliminate meaningless high-frequency

components without affecting the low-frequency components

meaningful for wave simulation.

In this paper, the proposed measure for suppressing

oscillation instability is inspired by the concept of a multi-

directional transmitting formula (Liao et al., 1993). The

fundamental concept of the multi-direction transmitting

formula is that the scattering wave from various directions

radiates to the artificial boundary. This abandons the

assumption that the scattering wave is based on a single

direction and only uses the motion information of the node

in the normal direction of the boundary. Instead, the

transmission boundary formula is established using the

motion information of all nodes adjacent to the artificial

boundary node (including those on the artificial boundary and

normal line).

The node position is shown in Figure 2 (I is the target node,

and smooth filtering is performed using the nodes adjacent to

point I on the boundary). When smoothing using three points, I,

I − 1, and I + 1 are involved. When five points are used, I − 2, I −

1, I, I + 1, and I+2 are involved. In this regard, the following three

considerations are emphasized.

1) Smoothing is performed after calculating the artificial

boundary point at time P + 1.

2) Three or five points are selected to be used in smoothing; all

points use their P + 1 values of time. For example, if the

smoothing target point is I on the boundary, the participating

points include point I on the boundary and the points

adjacent to the boundary.

3) Smoothing is performed not only for displacement but also

for the velocity values of the boundary point. This is

implemented after calculating the displacement and

velocity of the artificial boundary point at time P + 1.

After calculating the movement of the artificial boundary

point at P + 1 using MTF (Eq. 1), the displacement and velocity

values of the artificial boundary point I at P + 1 are smoothed. For

point I on the boundary shown in Figure 2, three-point

smoothing involves I − 1, I, and I + 1, and five-point

smoothing involves I − 2, I − 1, I, I + 1, and I + 2. If three-

point smoothing is used, the displacement and velocity can be

calculated using Eqs 7, 9, respectively. If five-point smoothing is

used, the displacement and velocity can be calculated using Eqs 8,

10, respectively. The displacement and velocity of point I after

smoothing at P+1 are ~uP+1i and _̃u
P+1
i , respectively. Coefficients β1,

β2, and β3 in Eqs 7, 9 are three-point smoothing coefficients, and

coefficients β1, β2, β3, β4, and β5 in Eqs 8, 10 are five-point

smoothing coefficients. The values of the smoothing coefficients

in Eqs 7–10 are presented in Section 2.4 of this paper.

~uP+1
i � β1u

P+1
i + β2u

P+1
i−1 + β3u

P+1
i+1 (7)

~uP+1
i � β1u

P+1
i + β2u

P+1
i−1 + β3u

P+1
i+1 + β4u

P+1
i−2 + β5u

P+1
i+2 (8)

_̃u
P+1
i � β1 _uP+1

i + β2 _u
P+1
i−1 + β3 _u

P+1
i+1 (9)

_̃u
P+1
i � β1 _u

P+1
i + β2 _u

P+1
i−1 + β3 _u

P+1
i+1 + β4 _u

P+1
i−2 + β5 _u

P+1
i+2 (10)

2.4 Derivation of smoothing formula
coefficient

For the foregoing smoothing formula, the key problem is

the means for determining the value of the smoothing

coefficient. The values of the smoothing coefficients are

discussed as follows.

The relationship between the wavelength that may cause

high-frequency instability at the boundary point and the mesh

size of the finite element calculation is simplified into four cases,

as shown in Figure 3.

FIGURE 2
Position of the boundary point involvedin filtering.
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The smoothing effect of the coefficients considering four

wavelengths shown in the figure is evaluated. Consider three-

point smoothing as an example. The following four situations are

discussed:

1) For case (a), the amplitude at point 1 in Figure 3A represents

all points under the case. At point 1, the amplitudes before

and after smoothing are −1 and ½ × (−1) + ¼ ×1 + ¼ × 1 = 0,

respectively. The smoothed amplitude is found to be 0% of the

original amplitude.

2) For case (b), the amplitudes at points 1 and 2 in Figure 3B represent

those at all points. The amplitudes before and after smoothing at

point 1 are 0 and ½ × 0 + ¼ × (−1) + ¼ × 1 = 0, respectively. The

smoothed amplitude is found to be 0% of the original amplitude.

At point 2, the amplitudes before and after smoothing are −1 and

½ × (−1) + ¼ × 0 + ¼ × 0 = −½, respectively. The smoothed

amplitude is observed to be 50% of the original amplitude.

3) In case (c), the amplitudes at points 1 and 2 in Figure 3C

represent those at all points in the case. At point 1, the

amplitudes before and after smoothing are -1/2 and ½ ×

(−½) + ¼ × ½ + ¼ × (−1) = −3/8, respectively. The smoothed

amplitude is observed to be 75% of the original amplitude. At

point 2, the amplitudes before and after smoothing are −1 and

½ × (−1) + ¼× (−½) + ¼ × (−½) = −3/4, respectively. The

smoothed amplitude is 75% of the original amplitude.

4) For case (d), the amplitudes at points 1, 2, and 3 in Figure 3D

represent those at all points. At point 1, the amplitudes before

and after smoothing are 0 and ½ × 0 + ¼ × ½ + ¼ × (−½) = 0,

respectively. The smoothed amplitude is 0% of the original

amplitude. At point 2, the amplitudes before and after

smoothing are −1 and ½ × (−1) + ¼ × (−½) + ¼ ×

(−½) = −3/4, respectively. The smoothed amplitude is

observed to be 75% of the original amplitude. At point 3, the

amplitudes before and after smoothing are −½ and ½ × (−½) +

¼× 0 + ¼× (−1) = −½, respectively. The smoothed amplitude is

100% of the original amplitude.

Table 1 summarizes the smoothing values of using three

coefficients in the four wavelength cases. The values in the table

are amplitude percentages after smoothing relative to the original

amplitude.

With this filteringmethod, the amplitudes of the high-frequency

and low-frequency waves are expected to decrease after smoothing.

The foregoing eliminates meaningless high-frequency components

without affecting the low-frequency part of the wave simulation. The

percentage values corresponding to the calculation in this study after

smoothing situations (a) and (b) are anticipated to be lower than

those before smoothing. The percentage values after smoothing

situations (c) and (d) must be higher than those before smoothing.

Table 1 indicates that the effect of values resulting from

three-point smoothing is closest to that expected, followed by the

effect of the five-point smoothing coefficient values (1/3, 1/4, 1/4,

1/12, and 1/12). The five-point smoothing coefficient values (1/2,

1/6, 1/6, 1/12, and 1/12) have the worst effect. Later, numerical

tests are conducted to verify the effects.

3 Modified formula of the MTF with
stabilization measure proposed

First-order and three-point smoothing are considered as an

example to discuss the MTF after smoothing. With point I on the

FIGURE 3
Wavelength andmesh size. (A)Wavelength andmesh size of case (a). (B)Wavelength andmesh size of case (b). (C)Wavelength andmesh size of
case (c). (D) Wavelength and mesh size of case (d).
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boundary shown in Figure 4 as the target point, three points, I, J,

and R, on the boundary are involved in smoothing point I.

According to Eq. 7, the motion expression of point I after

smoothing at time P + 1 is.

~uP+1
I � β1u

P+1
I + β2u

P+1
J + β3u

P+1
R (11)

According to Eq. 6, the motion expressions of I, J, and R at

time P + 1 are Eqs 12–14, respectively:

uP+1
I � 1

2
1 − S( ) 2 − S( )uP

I + S 2 − S( )uP
I−1 +

1
2
S S − 1( )uP

I−2 (12)

uP+1
J � 1

2
1 − S( ) 2 − S( )uP

J + S 2 − S( )uP
J−1 +

1
2
S S − 1( )uP

J−2 (13)

uP+1
R � 1

2
1 − S( ) 2 − S( )uP

R + S 2 − S( )uP
R−1 +

1
2
S S − 1( )uP

R−2 (14)

By substituting Eqs 12–14 into Eq. 11, the motion

expression of point I after smoothing at time P + 1 is

derived as follows:

~uP+1
I � 1

2
1 − S( ) 2 − S( ) β1u

P
I + β2u

P
J + β3u

P
R( )

+ S 2 − S( ) β1u
P
I−1 + β2u

P
J−1 + β3u

P
R−1( )

+ 1
2
S S − 1( ) β1u

P
I−2 + β2u

P
J−2 + β3u

P
R−2( ) (15)

Eq. 15 can also be regarded as a multi-directional

transmitting formula constructed using the information of all

nodes (including I − 1, I − 2, J, J − 1, J − 2, R, R − 1, and R −2)

around boundary node I, as shown in Figure 5. Coefficients β1, β2,
and β3 in Eq.15 can be considered as the share coefficients of

node participation in transmission.

Next, to verify the effectiveness of the proposed measure in

suppressing high-frequency instability, numerical tests are conducted.

4 Numerical test

As an example, the wave propagation is simulated for a semi-

infinite space model, as shown in Figure 6. The coordinates of the

observation points are as follows: point 1 (0 m, 0 m); point 2

TABLE 1 Smoothed amplitude percentage.

Three-point smoothing Five-point smoothing (1) Five-point smoothing (2)

(1/2, 1/4,1/4) (1/3, 1/4, 1/4,1/12, 1/12) (1/2, 1/6, 1/6, 1/12, 1/12)

(%) (%) (%)

case (a) Point 1 0 0 30

case (b) Point 1 0 0 0

Point 2 50 17 30

case (c) Point 1 75 50 50

Point 2 75 50 50

case (d) Point 1 0 0 0

Point 2 100 83 83

Point 3 100 60 70

FIGURE 4
Discrete model of multi-transmitting boundary area.

FIGURE 5
Multi-directional transmitting boundary.
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(−500 m, 0 m); point 3 (−500 m, −500 m); point 4

(−500 m, −1,000 m); point 5 (0 m, −1,000 m); and point 6

(0 m, −500 m). The input SH wave pulse–time history is shown

in Figure 7. The incident angle is 0°, and the wave velocity is 2000m/

s. Themesh size isΔx = 10 m andΔy = 5 m. The calculated time step

is Δt = 0.0025 s.

Figure 8 shows the comparison results between

implementing and not implementing the proposed measures

for eliminating high-frequency instability. As shown in

Figure 8, the coefficients are as follows: in three-point

smoothing, β1 = 1/2 and β2 = β3 = ¼; in five-point smoothing

(1), β1 = 1/3, β2 = β3 = ¼, and β4 = β5 =1/12; and in five-point

smoothing (2), β1 = 1/2, β2 = β3 = 1/6, and β4 = β5 =1/12.
By analysing the results of the displacement–time history

comparison of observation points in Figure 8, the following are

deduced.

1) The processing method of adjacent nodes participating in

filtering smoothing on the artificial boundary is effective for

suppressing the instability of high-frequency oscillations.

2) The corresponding curve of the three-point smoothing

measure does not exhibit high-frequency oscillations,

indicating that the measure has a satisfactory effect on

suppressing high-frequency instability.

3) The time history curve of the observation point obtained using

the five-point smoothing measure exhibits slight oscillations.

Between the two values yielded by five-point smoothing, the

following coefficients is the worst: 1/2, 1/6, 1/6, 1/12, and 1/12. In

Figure 8B, C, E, the time history curves corresponding to the

foregoing set of values have small high-frequency oscillations,

indicating that this group of values cannot completely eliminate

high-frequency instability.

4) In Figure 8E, F, the curves corresponding to the two five-point

smoothing measures have distinct abnormal fluctuations

between 2 and 3 s. No abnormal fluctuations are observed in

the curves corresponding to those in which no measure for

eliminating high-frequency oscillation is applied and the curves

corresponding to the three-point smoothing measure. This

shows that the abnormal fluctuation is caused by the

disturbance from numerous low-frequency components

introduced by the five-point smoothing method while filtering

high-frequency components. The disturbance due to numerous

low-frequency components causes abnormal fluctuations. This

also demonstrates that the effect of the three-point smoothing

measure is superior to that of the five-point smoothing one.

Table 2 lists the peak displacement–time histories of each

observation point shown in Figure 8. The data in Table 2 indicate

FIGURE 6
Calculation model.

FIGURE 7
Displacement pulse.
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FIGURE 8
Displacement time history, (A) Observation point 1 (B) Observation point 2, (C) Observation point 3 (D) Observation point 4, (E) Observation
point 5 (F) Observation point 6

TABLE 2 Displacement peak of observation point.

Point 1 Point 2 Point 3 Point 4 Point 5 Point 6

No measures 1.9999 1.9999 0.9999 0.9999 0.9999 1.0000

Three-point smoothing 2.0000 1.9974 0.9991 1.0083 1.0000 1.0001

Five-point smoothing (1) 2.0002 1.9944 0.9979 1.0452 1.0000 1.0001

Five-point smoothing (2) 2.0002 1.9937 0.9974 1.0565 1.0000 1.0001
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that the peak value of point 4 significantly differs. The peak value

error obtained by the three-point smoothing measure is only

0.83%, whereas the errors obtained by the five-point smoothing

one are 4.5% and 5.6%. This further demonstrates that three-

point smoothing measure is better than five-point smoothing

one. By considering the results in Figure 8; Table 2, the three-

point smoothing measure is found to resolve the high-frequency

instability, and the peak value of the observation point is least

disturbed. This verifies the observation presented in Section 1.4.

In terms of practical implementation, three-point smoothing is

simpler than five-point smoothing. Accordingly, the use of the

three-point smoothing measure is recommended.

5 Conclusion

Inspired by the multi-directional transmitting formula, and

considering the high-frequency wave oscillation in the vertical

and parallel directions with the artificial boundary, a strategy for

filtering and smoothing adjacent nodes on the artificial boundary

is proposed in this paper to suppress the instability of high-

frequency oscillations of the multi-transmitting boundary. A

reasonable smoothing coefficient value was obtained, and the

effectiveness of the measure was verified through numerical tests.

The main findings of the study are summarized as follows.

1) The smoothing filtering strategy using the adjacent nodes of

the artificial boundary is effective in suppressing the

instability of high-frequency oscillations of the multi-

transmitting boundary.

2) This paper presents three types of smoothing coefficient value

combinations. Both three-point and five-point smoothing

measures are effective in suppressing high-frequency instability

of the multi-transmitting boundary; however, the three-point

smoothing measure exhibits better performance. This is because

low-frequency components are inevitably introduced when high-

frequency components are filtered. Five-point smoothing

measure introduces more low-frequency interference factors

than three-point smoothing one. Consequently, excessive low-

frequency disturbances cause the time history curve to fluctuate

and affect calculation accuracy.

3) This study analyses the conceptual similarity between the

smoothing of the motion calculated by the boundary point

and multi-directional transmitting formulas. Hence, it

provides a reference for establishing the coefficient value of

the multi-directional transmitting formula in the time

domain.
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