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A newly developed modelling framework is presented which specifically

focusses on the central Oklahoma case and the high-volume injection of

wastewater, which led to a surge of induced seismicity. However, the

modelling framework is versatile enough to be applied to any anthropogenic

subsurface activities and should be seen as a good practice to manage injection

while minimizing induced seismicity. The objective is to account for all the

available knowledge to deploy the simulation of the flow, induced stress

changes and seismicity in the underground. The spatio-temporal pore

pressure changes caused by high-volume injection are first determined by

using the historical injection rate of the 220 wells at central Oklahoma. From

these pressure fields, induced stresses at the basement depth, due to both pore

pressure diffusion and poro-elastic inflation of the underground, are computed.

The rate-and-state frictional response of the Oklahoma faults is then honored

to derive the yearly seismicity rate. After assimilation of the observed seismicity

at central Oklahoma, it is demonstrated that our predictions canwell explain the

historical spatio-temporal evolution of the seismicity at central Oklahoma.

Finally, making use of the calibrated predictive model, a constrained

optimization approach is used for an efficient screening of multiple injection

scenarios. Ultimately, an optimum theoretical scenario is identified which

allows the maximization of injection volumes while keeping the seismicity

level below a safe cap and, more specifically, would have prevented the

dramatical growth of the seismicity rate in 2015. The optimum scenario

involves equalizing the injected volumes in all wells and preventing the

injection of additional large volumes in the area where most of the

wastewater have been already injected prior 2014.
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1 Introduction

In response to the rapid increase of the rate of seismicity in

2015 in central and northern Oklahoma, the regulators decided

in 2016 to reduce the total volume of injected brine (waste-

product of the hydrocarbon industry activities, notably shale gas

production) to less than 40% of the 2014 total volume (Ellsworth,

2013; Walsh and Zoback, 2015). Late 2016, large magnitude

earthquakes were recorded, and in April 2017 all the wells were

shut in. In 2016–2017, the detailed causal relationship between

injection operations and seismicity was unclear. In contrast, it is

now well recognized and documented that the surge of the

number of earthquakes in the central and northern Oklahoma

can be attributed to the high-volume injection of brine in the

subsurface (Keranen et al., 2014; Weingarten et al., 2015).

Multiple models have already been deployed to study either

1) the physical mechanisms at the origin of the induced events at

Oklahoma (Norbeck and Horne, 2016; Goebel et al., 2017a;

Goebel et al., 2017b; Johann et al., 2018; Dempsey and

Riffault, 2019) or 2) to predict the return of the seismicity

increase to a lower background rate after the stop of the

injection activities in 2017 (Langenbruch and Zoback, 2016;

Goebel et al., 2017a; Goebel et al., 2017b; Langenbruch et al.,

2018; Zhai et al., 2019). Up to now, these modelling strategies

always involved simplifications either at the level of the

simulations of the flow throughout the porous media (Goebel

et al., 2017a; Goebel et al., 2017b; Zhai et al., 2019) or at the level

of the computations of the induced stress development and

seismicity changes (Langenbruch and Zoback, 2016; Norbeck

and Horne, 2016; Johann et al., 2018; Langenbruch et al., 2018;

Dempsey and Riffault, 2019). In order to gain confidence in the

predictive power of any modelling strategy, a thorough model

validation against observed data is required. This step has largely

been overlooked in existing modelling approaches of induced

seismicity at Oklahoma which generally rely on simplified

sensitivity analysis.

In this study, a novel modelling approach is outlined that is

tailored to honor as much as possible all available pre-existing

knowledge at injection sites in the central Oklahoma area (for

simplicity the area is simply referred to as “Oklahoma” in the

remainder of the manuscript, see Figure 1). Available knowledge

consists of data on local geology, flow, mechanical and seismicity

response. The model parameters of our seismological model are

conditioned with the observed seismicity in order to best fit the full

spatio-temporal history of induced earthquakes. It is only after

completing this data assimilation procedure that injection

strategies can be optimized to maximize the volume of injected

brine while minimizing induced seismicity. For optimizing injection

FIGURE 1
Maps of the Oklahoma state in United States showing: (i) the area of interest (dashed contour in top-right map), (ii) the locations of the Arbuckle
wastewater disposal wells (black dots in bottom-centre map), (iii) and the Mw3+ earthquakes which nucleated in the basement between 3 and 7 km
depth and from 1995 to 2017 (red stars in the bottom-centre map).
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strategies, we deployed a constrained optimization workflow that

maximizes injection volumes under a fixed limit of allowed

seismicity rate. Optimization results show with a different spatio-

temporal injection history, the rapid growth of the seismicity rate in

2015 can be successfully prevented while the total volume of injected

brine can be maintained. It indicates that injection operations and

mitigation measures for induced seismicity greatly benefit from

optimization of spatio-temporal injection strategies as seismic risks

can be reduced under continuing injection operations.

2 Methodology

2.1 Flow simulations

The two main identified mechanisms that cause induced

seismicity at Oklahoma are: 1) the slow diffusion of elevated pore

pressure from the high-permeability Arbuckle aquifer (locus of

the brine injections) to its low-permeability basement at the

nucleation depth of the induced events (e.g., Langenbruch and

Zoback, 2016; Norbeck and Horne, 2016; Dempsey and Riffault,

2019); 2) the change in total stress at this depth in the basement

that is caused by poro-elastic loading due to the inflation of the

rock volume associated with the increase in pore pressure (e.g.,

Goebel et al., 2017a; Goebel et al., 2017b; Zhai et al., 2019).

The first modelling effort consists of assessing the historical

spatio-temporal distribution of pore pressure changes caused by

the high-volume injection of brine in the subsurface at

Oklahoma. As in each step of our modelling strategy, this step

aims to incorporate all the pre-existing available knowledge on

local geology, flow, mechanical and seismicity response at

Oklahoma (Johnson, 2008; Faith et al., 2010; Holland, 2013;

Keranen et al., 2013; Hincks et al., 2018; Pei et al., 2018). The

computation of the pore pressure changes (Figure 2) is

FIGURE 2
Flow simulation—visualization via ResInsight [open source visualization software, ResInsight (Computer Software), version 2020.10, part of
Open Porous Media Initiative, Ceentron Solutions, 2020] of the pressure field (changes in pore pressure since the start of injection; in bars) at the end
of 2015. Vertical exaggeration x5.
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performed using the open source OPM-flow simulator (Open

Porous Media Initiative, 2020; version 2020.04). OPM-flow is a

three-dimensional three-phase fully-implicit reservoir simulator

with realistic representation of reservoir geological properties.

Wells are incorporated with the standard models used in the

commercial simulators from the oil and gas industry. Multiple

options are available, as black-oil, thermal, aquifer, CO2; in our

specific case we modelled brine. The reader is referred to

Rasmussen et al. (2021) for a complete description of OPM-flow.

The flow model is populated by properties based on current

understanding of the geological and hydrogeological settings at

Oklahoma. Three layered-box models have been deployed, each

of them including the same thickness for the Arbuckle aquifer

and its basement but with different permeabilities and porosities

(Table 1). Only the results of the flow simulation with a

permeability of 50 and 0.05 mD for the Arbuckle aquifer and

its basement, respectively, are discussed in this report (i.e., Model

1 in Table 1). This permeability contrast yields the most likely

changes in pressures in the Arbuckle and its basement and is

preferred to best match observations.

The OPM-FLOW simulation model honors the geographical

location and depths of all the wells according to the Oklahoma

Corporation Commission. It includes 220 wells for central

Oklahoma, the focus area for the present study, and for each

of the well injectors the historical monthly injection rate from

January 1995 to January 2018 is used as input (Figure 3). Note

here that central and western Oklahoma can be considered as

isolated and independent compartments in terms of flow (see

Zhai et al., 2019); the same modelling complexities are attached

to both areas of interest and solely focusing on central Oklahoma

is considered sufficient to demonstrate the capabilities of the

newly developed modelling framework. The injection depth at

the Arbuckle level and distance to the basement is included in our

modelling strategy and has been reported as an important

parameter correlated with the occurrence of the induced

events (Hincks et al., 2018). The run-time of one full OPM-

FLOW simulation from January 1995 to January 2018 takes less

than 20 min, which is rather fast for such a complex flow

simulation. The low computation time makes the simulations

suitable for an ensemble-based approach that is used for the

optimization. This optimization is the last step of our modelling

approach (see Section 2.6).

2.2 Induced stress in the basement

The objective of this modelling step is to assess the spatio-

temporal development of induced stresses at the earthquake

nucleation depth. Most of the events of the catalog compiled

by the Oklahoma Geological Survey are located at a depth

between 3 and 7 km (McGarr and Barbour, 2017; Pei et al.,

2018). Considering an average depth uncertainty of 2 km, an

average earthquake nucleation depth of 4 km depth is considered

for our analysis. The two main mechanisms that were identified

to control induced stress development and earthquake nucleation

at Oklahoma are included: 1) the decrease of the effective normal

stress along the basement faults by pore pressure diffusion and 2)

the changes in total stresses induced by poro-elastic effects

associated with pressure increase and volumetric expansion

of rock.

Our modelling approach assumes matrix-dominated flow in

the Arbuckle aquifer and fracture-dominated flow in the

basement. More specifically highly permeable faults of the

basement are assumed to hydraulically connect the base of the

porous Arbuckle aquifer to the earthquake nucleation depth.

TABLE 1 Geometry and model parameters of the flow simulation models.

Arbuckle Basement

Thickness Porosity Permeability Thickness Porosity Permeability

Model 1 1,050 m 0.22 50 mD 5 km 0.012 0.05 mD

Model 2 1,050 m 0.12 5 mD 5 km 0.008 0.005 mD

Model 3 1,050 m 0.22 50 mD 5 km 0.008 0.005 mD

FIGURE 3
Historical yearly field-wide injection rate.
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Simple analytical calculations including typical fault properties

(diffusivity, porosity, thickness) show that the diffusion time

throughout the highly permeable faults-channels is on the order

of at most a few days (Zhai et al., 2019). Therefore, one can

further assume that the changes in pore pressure modelled by

OPM-FLOW at the base of the porous aquifer are representative

of the changes in pore pressure at 4 km depth experienced by the

basement faults. These changes in pore pressures relatively to the

start of injection and along a horizontal plane at 4 km depth are

shown in Figure 4. The increase in pore pressure is at first

(i.e., 2010) localized at the center of the area of interest and then

starts to progressively migrate towards the North-West.

From the spatio-temporal changes in pore pressures at 4 km

depth (Figure 4), the changes in the normal effective stress can be

directly determined. Analogous to the analysis by Zhai et al.

(2019), vertical strike-slip faults with a unique preferred fault

strike azimuth of 50° are assumed to be ubiquitous in the

basement. This faulting regime and the fault orientation is

consistent with the statistical analysis of earthquake focal

mechanisms, in situ stress analysis, field mapping, and 3D

seismic interpretation at Oklahoma (Holland, 2013; Alt and

Zoback, 2016; Kolawole et al., 2019; Qin et al., 2019; Firkins

et al., 2020). Principal stresses are assumed to be spatially

uniform around Oklahoma with a maximum horizontal stress

azimuth oriented at 85°.

Changes in total stress imposed by the volumetric changes of

the rock volume is determined using the in-house mechanical

simulator MACRIS (Mechanical Analysis of Complex Reservoirs

for Induced Seismicity, van Wees et al., 2019; Candela et al.,

2019). The main advantage of MACRIS is that it is a mesh-free

simulator, i.e., it does not need construction of a dedicated grid

for the geomechanical analysis. MACRIS directly takes the grid of

the flow simulation as input. In the present case, the grid consists

of the 3D pressure fields computed by OPM-FLOW at a yearly

sampling rate. Each grid block of the flow simulation is

considered as an inflating/compacting nucleus of strain (or

center of inflation/compaction, see Mindlin 1936; Geertsma,

1973; Okada, 1992). The contribution of each of these nuclei

is integrated to compute the poro-elastic stress change at 4 km

depth in the basement. The Barnes-Hut algorithm (Barnes and

Hut, 1986) is used for re-discretizing the initial flow grid. The

purpose of using this algorithm is twofold: 1) to cluster the nuclei

of strain close to the 4 km depth horizontal plane in order to

increase the spatial stress resolution, and 2) to shorten the

computation time. The approach has been validated by

comparison with relatively slow finite-element numerical

computations in a previous study (van Wees et al., 2018). The

poro-elastic normal and shear stress changes acting on the faults

at 4 km depth can thus be calculated using MACRIS. Coulomb

stress changes can be evaluated by considering shear stresses and

effective normal stresses:

S � τ − [μ − α]σ ′n (1)

where τ is the shear stress acting along the fault plane, σ ′n is the

effective normal stress (which include the direct effect of the

pore pressure increase intra-fault), μ is the coefficient of fault

friction and α is a constitutive parameter (zero in this study).

The Coulomb stress rate _S along the horizontal plane at 4 km

depth is presented in Figure 5. High Coulomb stress rates are

first (i.e., 2010) localized in the center of the area of interest

(hereafter called Central area), and then progressively migrate

towards the North-West (hereafter called North area). In

2015, Coulomb stress rates are highly localized in the

North area, and following the new measures imposed by

the regulator, the Coulomb stressing rate starts to decrease

and delocalize in 2016.

FIGURE 4
Changes in pore pressure (in MPa) at 4 km depth along the basement faults.
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2.3 Induced seismicity

The traditional Coulomb failure model predicts that

whenever the Coulomb stress reaches a threshold value, an

earthquake is generated (e.g., Ader et al., 2014). Assuming a

population of faults on which the pre-stresses are uniformly

distributed up to the threshold value, the Coulomb failure model

depicts direct proportionality between the seismicity rate and the

Coulomb stress rate. For example, during any arbitrary stressing

history, the Coulomb failure model predicts an instantaneous

reduction or rise of seismic events as soon as the Coulomb stress

starts to decrease/increase. This prediction is not in agreement

with the observed seismicity in Oklahoma since only a few

observed events have been recorded in the year 2009 (cf.

Section 2.4). The Coulomb failure model would predict a high

seismicity rate that is linearly related to the high Coulomb stress

rate in 2010 (Figure 5).

One shortcoming of the Coulomb failure model is that it does

not honor the frictional constitutive behavior of faults.

Laboratory data show that the timing of dynamic instability of

faults depends on initial stress conditions, fault properties and

applied stress (Dieterich and Kilgore, 1996). Rate-and-state

friction laws have been established in order to reproduce these

laboratory observations (see Marone, 1998 for a review). More

specifically, the rate-and-state friction laws reproduce the fact

that the onset of frictional sliding is a non-instantaneous time-

dependent process (as opposed to the instantaneity assumption

of the Coulomb model), which introduces a time-dependent

failure mechanism for the generation of earthquakes. Now

assuming a population of faults following a rate-and-state

frictional behavior, and where the time-to-failure of the

nucleation spots along the faults is uniformly distributed,

Dieterich (1994) derived the following seismicity rate model:

RD � r0
γ _S0

where
dγ

dt
� 1
Aσ ′n

[1 − γ
dS

dt
] (2)

and where RD is the seismicity rate, γ is a state variable, S is the

modified Coulomb stress function defined in Eq. 1. The constant

r0 is the steady-state background seismicity rate at the reference

stressing rate _S0. A is a dimensionless fault constitutive

parameter.

Segall and Lu (2015) reformulated this seismicity rate

equation to eliminate the state variable γ. They defined a

normalized seismicity rate, relative to the background rate, as:

R � RD

r0
(3)

The differential equation for R, derived from Eqs 2, 3, is:

dR

dt
� R

ta
[ _S
_S0
− R] (4)

where ta � Aσ ′n/ _S0 is the characteristic time delay for the

earthquake nucleation process. This delay also corresponds to

the time scale of the decay in aftershock rate from the main shock

back to the background rate.

2.4 Declustering of the observed
seismicity

The earthquake catalogue used for our study has been

compiled by the Oklahoma Geological Survey. Our analysis is

FIGURE 5
Coulomb stress rate fields (in MPa/Year) at 4 km depth along the basement faults. The magenta and green dashed circles in the top-left figure
indicates the North area and Central area respectively.
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carried on with earthquakes larger or equal to Mw = 3; this

minimummagnitude is above the completeness magnitude of the

catalogue, and has been selected for sake of comparison with

previous studies (e.g., Langenbruch and Zoback, 2016; Zhai et al.,

2019). In addition, based on an average depth uncertainty of

2 km and to focus our analysis on the basement only the events

nucleating between 3 and 7 km depth are selected. This depth

range includes most of the events of the catalog. When this

magnitude and depth filtering is applied to the raw earthquake

catalogue, the maximum yearly rate of events at Oklahoma

reaches roughly 400 events/year in 2015 (Figure 6).

One of the assumptions in Dieterich’s seismicity rate theory

(Dieterich, 1994) that is subject of debate, is the lack of

interactions between seismic sources. More specifically,

Dieterich’s seismicity rate theory assumes aftershocks are

directly triggered by the stress changes induced by the

mainshock. Effect of stress interactions between aftershocks is

not accounted for. To circumvent this potential shortcoming of

Dieterich’s theory, we apply the declustering algorithm of

Zaliapin and co-workers (Zaliapin et al., 2008; Zaliapin and

Ben-Zion 2013; Zaliapin and Ben-Zion, 2016). This algorithm

resolves complete triggering chains based on the relative space-

time-magnitude distances, originally introduced by Baiesi and

Paczuski (2004). Only the main ingredients of the approach are

given below, but the reader is referred to the papers of Zaliapin

and co-workers for more details.

The declustering algorithm of Zaliapin et al. (2008) is based

on space-time-magnitude distances between earthquakes i and j

defined as (Baiesi and Paczuski 2004):

ηij � { tij(rij)d10−bmi , tij > 0;
∞, tij ≤ 0.

(5)

tij is the event intercurrence time in years, which is positive if

event j occurred after event i (tij � tj − ti); rij ≥ 0 is the spatial

distance between the earthquake hypocenters in kilometers;mi is

the magnitude of event i; d is the (possibly fractal) dimension of

the hypocenters; and b corresponds to the b-value of the

Gutenberg-Richter frequency-magnitude distribution.

The nearest-neighbor distance for a given event j is the

minimum distance among ηij where i goes over all earlier events

in the catalogue. The event i that corresponds to the nearest-

neighbor distance is called the nearest-neighbor, or parent, of

event j.

FIGURE 6
Declustering effect providing a separation between mainshocks and aftershocks induced by injection activities Left: all events of the catalogue
(grey line) and independent mainshocks (black line). Right: Bimodal distribution of time and space components (log10 T , log10 R) of the nearest-
neighbor distance η. Each gray circle in these plots corresponds to an event in the seismicity catalogue. The location of the event in the
(log10 T , log10 R) plane provides information about the time and space distance to the event’s parent. The threshold value log10 η0 to separate
the two modes is estimated used a 1D Gaussian mixture model applied to the logarithmic nearest-neighbor distances log10 ηij (Hicks, 2011). The red
dashed diagonal lines depict the log10 η0. On the right of the red dashed diagonal line, independentmainshocks are indicated, while events on the left
of the line are clustered aftershocks.

FIGURE 7
Constrained optimization scheme.
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Zaliapin et al. (2008) proposed to consider the scalar distance

η in terms of its space and time components normalized by the

magnitude of the parent event i as:

Tij � tij10
−qbmi ; Rij � (rij)d10−pbmi ; p + q � 1 (6)

And now:

log10 ηij � log10 Tij + log10 Rij. (7)

For our analysis, we fix b � 1, d � 1.6, and p � 0.5 following

Zaliapin and Ben-Zion (2016). Zaliapin and Ben-Zion (2013)

have demonstrated that the estimated cluster structure is stable

with respect to the parameter values. Accordingly, our

conclusion are expected to be non-sensitive to the precise

parameter values.

Zaliapin et al. (2008) and Zaliapin and Ben-Zion (2016) have

shown that observed seismicity generally presents a bimodal joint

distribution of (log10 T, log10 R). In the present Oklahoma

injection case, one mode corresponds to the independent

mainshocks, whereas the other consists of clustered aftershock

events located considerably closer in time and space to their

parents. Figure 6 shows the 2D joint distributions of the rescaled

time and space component (T, R) of the nearest-neighbor

earthquake distance η. For Oklahoma, after applying the

declustering step, the maximum yearly rate of mainshocks

reaches roughly 120 event/year in 2015 (see Figure 6).

2.5 Data assimilation

The objective of the data assimilation procedure is to

determine the set(s) of model parameters [r0, _S0, σs] (see

previous section for definition of symbols) in Dieterich’s

(1994) seismicity rate theory (cf. Eq. 4) that give the best

agreement between the observed seismicity rate and the

computed rate.

FIGURE 8
Posterior probability distributions of the seismicity rate model parameters obtained after the data assimilation procedure with the MCMC
search. Histogram-type plot: marginal probability distribution of each individual parameter A (left), _S0 (centre), r0 (right). Cloud of points: joint
probability distribution of each pair of model parameters A- _S0 (top-left), A-r0 (bottom-left), r0- _S0 (bottom-right). Note that the prior probability
distribution (not shown on this figure) of eachmodel parameter was bounded and uniform such as: A (-): U(1e−5, 1.0), _S0 (MPa/year): U(1e−7, 1.0),
r0 (event/year): U(0.001, 2e5)—with U(a,b) is a uniform distribution between a and b.
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The log-likelihood is defined as the logarithm of the probability

that one specific model (with one specific set of model parameters)

has generated the observed earthquake catalog. For each set ofmodel

parameters the posterior log-likelihood is calculated in order to rank

the models (Ogata, 1998; Zhuang et al., 2012). The model with the

highest log-likelihood is most likely to have generated the observed

seismicity catalogue. For our non-homogeneous stationary Poisson

process, and for a given time interval [t0, t1] and spatial area [x0,x1] ×

[y0,y1], the log-likelihood with respect to N observed earthquakes

which have occurred at times ti and locations (xi,yi) is defined by the

following function:

ll � ∑N

i�1log(RD(xi, yi, ti)) − ∫∫∫t1,x1,y1

t0, x0,y0
RD(x, y, t) dxdydt

(8)

Following a Bayesian approach, and because we do not have a

prior preference for the shape of the distribution of each model

parameter, we attribute a bounded uniform probability

distribution for each model parameter. The Markov Chain

Monte Carlo (MCMC) algorithm is used to condition these

uniform distributions with the observed seismicity.

The start of the time period where the data assimilation

procedure is deployed is 1st January 2009, start of the observed

seismicity, ending on 31 December 2017. Note that we apply our

analysis to seismicity rate only. Incorporation of seismic magnitude

requires further steps in the approach. Ideally, a joint log-likelihood

is applied to assimilate both seismicity rate and seismic magnitude.

However, in order to properly model the magnitude of induced

events, a much more complex modelling strategy is required

combining the nucleation rate from Dieterich’s (1994) theory

with, for example, the state of stress and energy available around

each nucleation point (e.g., Noda et al., 2009; Schmitt et al., 2015;

Dempsey and Suckale, 2016). As performed in previous studies at

Oklahoma (e.g., Zhai et al., 2019), the nucleation rate could be

combined with an arbitrary frequency-magnitude distribution that

is uniform and constant in space and time.However, applying such a

procedure would bring additional uncertainties and, for the current

purpose of the study, little added value. Therefore, we focus the

analysis on nucleation rate of seismic events alone.

2.6 Constrained optimization

After applying the data assimilation procedure, the best set of

model parameters can be selectedwithwhich our predictivemodel is

more likely to explain the observed induced seismicity rate. Using

this calibrated predictive model and set of model parameters, the

optimum injection strategy is determined. The aim is to prevent the

peak of seismicity kicking off in 2014, while at least the same volume

of injected brine is injected as has been historically reported for the

area. The objective is to maximize the total cumulative field-wide

injected brine volume. We include a threshold value for the

seismicity rate as a constraint that cannot be exceeded. The

objective (maximizing injected volume) and the constraint

(minimizing seismicity rate) are expected to be conflicting. The

identification of an injection strategy that meets both our objective

and constraint is a complex task. The complexity is increased by the

non-regular distribution of wells, and the time-dependency of the

geomechanical-seismological response (linking pore pressure

diffusion and earthquake nucleation) to changes in injection rate.

We therefore adopt a numerical optimization approach that aims to

solve the following formalized problem:

û � argmax
u

J(u) subject toR(u)< Rmax ; J(u)> J min (9)

The control vector u contains the well injection rates which

are constant during discretized time intervals,

i.e., u � [u11, u12, . . . , u1Nt
, u21, . . . , u

Nw
Nt

] where the subscripts

FIGURE 9
Comparison of the predicted seismicity histories with the
data (black line). The model corresponds to 300 realizations (cyan)
randomly drawn from the posterior density distribution obtained
with the MCMC search during calibration. The mean of the
models is indicated by the blue line. For each posterior member,
30 synthetic catalogues are generated in order to account for
stochastic Poisson variabilities. The grey region indicates 95% of
the distribution of the 9,000 synthetic catalogues when stochastic
Poisson variabilities are accounted for. Top: cumulated number of
events. Bottom: yearly event rate.
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indicate the time interval, and the superscripts indicate the well. The

total number of controls is expected to be very large in our scenario

since there are more than 200 wells and multiple time intervals. J(u)
is the total volume of injected brine, and R(u) is the maximum field-

wide yearly event rate. J min and Rmax are the historical total

cumulative field-wide injected brine volume from 1st January

1995 to 31 December 2017, and the threshold value of the field-

wide yearly event rate during the same time period, respectively.

We use the Stochastic Simplex Approximate Gradient (StoSAG)

estimation method where the gradients are used in an advanced

method for constrained optimization (Chen et al., 2009; Fonseca

et al., 2014, 2017). An ensemble of randomly chosen control vectors

(well injection rates) is generated and the stochastic gradient, total

volume of brine injected and yearly event rate are computed. Based

on the stochastic gradient direction, the controls are updated, and a

new ensemble of perturbed controls is regenerated. This iterative

process continues until there are no more significant changes in the

total amount of brine injected or controls, or when a maximum

number of iterations is reached (Figure 7). As an initial estimate

(i.e., first guess) for the controls we prescribe constant and equal

rates for all wells, so that the cumulative injected volume is slightly

lower than the historical total injected volume.

3 Results

3.1 Posterior model parameters of the
unsteady Oklahoma fault system

The joint andmarginal posterior probability distributions of the

model parameters obtained after assimilation of the declustered

catalogue over the period from 1st January 2009 to 31 December

FIGURE 10
Mean posterior fields of event density (/cell) at 4 km depth along the basement faults. The black dots indicate the observed events.

FIGURE 11
Comparison of the cumulative field-wide injected volumes
(up) and seismicity rates (down) for the 4 years of the optimization
period. The horizontal dashed line (bottom graph) indicates the
imposed threshold of 70 event/year. Note that the historical
seismicity rate (blue curve in bottom graph) is similar to the mean
posterior (blue curve) in Figure 9.
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FIGURE 12
Comparison of the total injected volumes (m3) per wells. Note the range difference of each color scale in the bottom maps.

FIGURE 13
First guess and optimum event densities (/cell) at 4 km depth along the basement faults. The black triangles indicate the locations of the injector
wells.
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2017 are well constrained (Figure 8). The median of the marginal

posterior distributions of each model parameter define the best

posterior estimates (A � 0.00027, r0 � 18 event/year, _S0 �
0.0004MPa/year). With our modelling approach, the average

effective normal stress is 44MPa at 4 km depth, which leads to

the best posterior estimate of the characteristic relaxation time of

seismicity, ta � Aσ ′n
_S0

� 29.7years.
The assimilation of observed events starts in 2009 when a

significant earthquake activity started to be recorded.

Consequently, the Dieterich (1994) seismicity rate Eq. 4 is

solved assuming initial condition at steady state, that is

R(0) � 1 in 2009. However, the start of the human-induced

perturbation of the Oklahoma fault system by high-volume brine

injections goes back to 1995, and hence it is most likely that the

background activity was not at steady state in 2009. In fact,

defining R′ � βR and by operating a change of variable, we can

show that R′ satisfies an equation similar to Eq. 4 and reads:

dR′
dt

� R′
Aσ ′n/ _S0′

[ _S
_S0′
− R′] (10)

with the unsteady initial condition R′(0) � β in 2009, and the

background stressing rate _S0′ � _S0/β. Following Eq. 3, this solution

corresponds to a background seismicity rate r0′ � r0/β. This

mathematical derivation implies that the background stressing

rate _S0′ and background seismicity rate r0′ were 1/β times lower

in 1995, at the start of injection when the Oklahoma fault system is

assumed to be steady, compared to the values of _S0 and r0 inferred

for 2009. The fault constitutive parameter A is expected to remain

constant in time. However, the background stressing rate and

seismicity rate inferred for 2009 should not be interpreted as real

steady state background values (before the start of human-induced

perturbations by brine injections), but should be understood as

“apparent background values,” which are actually the reference

values at the initial time of the analysis, here 2009.

3.2 Temporal pattern

A posterior ensemble of yearly event rate predictions can be

visualized by randomly picking members from the posterior density

distributions obtained with the MCMC search. This ensemble can

be compared with the data. However, it should be noted that the

modelling strategy does not yet include the intrinsic Poisson

variability of earthquake occurrence. The observed declustered

catalogue is considered here as one unique realization of a

FIGURE 14
Difference between the event densities of the optimum and first guess scenarios. The grid cells underlined in black correspond to the ones with
a high cumulative event density before the optimization period (see Figure 15).

FIGURE 15
Cumulative event density (/cell) right before the start of the
optimization period (end of 2013). Grid cells of the Central area
with a number of events higher than 1.0 are underlined in black.
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stochastic, non-stationary Poisson process. Each posterior member

of the modelling approach is one particular model of the time-

dependent seismicity rate underlying the Poisson process. For an

appropriate assessment of the predictive performance of ourmodels,

the stochastic Poisson variabilities need to be accounted for. For each

posterior member, which can be considered as the mean of an

underlying Poisson distribution, multiple synthetic catalogues are

generated where the likelihoods of the event location and timing are

proportional to the event density (Zhuang and Touati, 2015).

Figure 9 shows that the posterior predictions capture very well

the temporal variation in observed seismicity. More specifically, our

modelling strategy can predict:

(1) the relative seismicity quiescence from 2009 to 2013,

(2) the abrupt ramp-up of the seismicity rate starting in 2014,

(3) the fast decrease of the seismicity rate starting in 2016 with

the new measures imposed by the regulators.

3.3 Spatial pattern

Predictions of spatial distribution of seismicity rate based on

our modelling strategy can also be evaluated. Figure 10 show a

comparison of the spatio-temporal distribution between

observations and model predictions (i.e., event densities). The

overall spatio-temporal evolution of the observed seismicity is

well reproduced by our modelling strategy. More specifically, the

observed and modelled seismicity both start to increase at the

center of the area of interest (i.e., Central area) and then

progressively migrate outwards to finally be concentrated in

the North area.

3.4 Towards an optimum injection
strategy

Now that parameters have been adjusted and that our model

best explains the historical observations, this calibratedmodel can be

used for the optimization exercises. Multiple optimization

experiments have been performed but in the present manuscript

we focus on the description of one key experiment. For this specific

key experiment, we seek to find the optimum injection strategy for

eachwell for the last 4 years [2013–2017] leading to a total volume of

injected brine that is at minimum equal to the total historic injected

volumewhile keeping the yearly event rate below a certain threshold.

This threshold is set to 70 event/year in order to avoid the peak of

seismicity rate starting in 2014. More specifically, the injection rate

can be updated each year of the last 4 years independently for each

well, which corresponds to 880 controls. For each iteration, the

number of perturbations is set to 100 to appropriately compute the

stochastic gradients. The optimizer successfully converged towards

an optimum solution which satisfies both constraints: 1) the total

volume injected is quasi-identical to the historical total volume

injected, and 2) the yearly event rate is equal to the threshold of

70 event/year (Figure 11).

Instead of preferentially using specific wells for most of the

injected volume as historically, the optimum scenario suggests a

more spatially uniform distribution of the injected volumes (see

Figure 12).

It is more interesting to identify any differences in the spatio-

temporal pattern between the first guess scenario and optimum

scenario. Indeed, the first guess scenario consists to the exact

spatially uniform scenario where we prescribe constant and equal

rates for all wells (see Figure 12). Therefore, any deviations from

FIGURE 16
Synthetic examples of the Coulomb stress and relative event rate evolutions for the North area and Central area (see Figure 5). The Central area
(optimum) curve and North area (optimum) curve illustrate the found optimum scenario. The Central area (hypothetical) corresponds to the
hypothetical case where the injection would have been maintained in the Central area during the optimization period. By promoting the injection in
the North area and releasing stresses in the Central area, the found optimum strategy prevents the high seismicity rates in the Central area.
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this first guess scenario should illuminate a non-uniform spatial

pattern for the optimum scenario with preferential use of specific

wells. It is difficult to draw conclusions solely based on the visual

comparison of the event densities for the first guess and optimum

strategies (see Figure 13). The spatial pattern seems identical for

both strategies, except the overall higher event densities for the

optimum scenario. However, and interestingly, plotting now the

differences between the optimum and first guess event densities

(see Figure 14), it appears clear that the optimizer preferentially

used the wells of the North area. This optimum strategy can be

explained by the fact that before the optimization period (that is

before 2014) most of the wastewater have been injected in the

Central area (see Figure 12) resulting in a very localized high

event density in this area (see Figure 15). Therefore, the use of

wells at the Central area has been penalized by the optimizer

since additional stress changes in this area would have led to a

yearly event rate which would have probably exceeded the

threshold of 70 event/year.

Figure 16 illustrates this last conclusion. Indeed, Figure 16

depicts, for the optimum scenario and one hypothetical scenario,

typical stressing rate histories and relative seismicity rate

histories for the Central area and North area. The

hypothetical scenario illustrates the case where the injections

and Coulomb stress rates would have been maintained in the

Central area during the optimization period. In this hypothetical

scenario the relative seismicity rate (already in a steady-state

regime because of the high-injected volumes before 2014) would

have been much higher than the optimum scenario, this last

consisting in promoting injection in the North area.

Historically, even if the injected volumes have been

progressively increased in the North area, a cluster of wells

with high injected volumes has been continuously operating

in the Central area (see Figure 12). These persistent high

injected volumes in the Central area might explain the

historical surge of seismicity at Oklahoma.

4 Concluding discussion

We present a three-step constrained optimization workflow

that outlines injection scenarios for maximizing injected volume

under a constraint imposed by seismicity rates. It represents a

physics-based predictive workflow that ensures that simulated

seismicity is consistent with observed seismicity. For high-

volume wastewater injection around Oklahoma, the workflow

can test multiple injection scenarios to find an optimum scenario

which maximizes the total volume injected while avoiding the

sharp increase of seismicity as observed in 2014. This increase led

to the regulatory measures and ultimately to the shut-down of the

injection.

In the first step of the workflow, a forward modelling strategy

is designed that honors as much as possible all available

knowledge from Oklahoma. It includes information on 1)

geology and flow which are used to set up flow simulations,

and 2) in situ stress conditions, fault orientations, observed

seismicity and prime physical processes controlling it, which

are used to deploy the geomechanical and seismological analysis.

Flow simulations are performed by using the open source OPM-

FLOW simulator which uses historical monthly injection rates of

each well at Oklahoma as input. With the approach, robust

spatio-temporal pressure distributions have been computed,

including complex flow interaction between the 220 wells at

Oklahoma. With the simulations, the pore pressure at the

nucleation depth of seismic events in the basement was

accurately captured. Based on the depth distribution of the

observed events, an average depth of 4 km was selected for

our analysis but note here that selecting an average nucleation

depth slightly deeper, e.g., 5 km, would not have affected the

conclusions of our analysis. The changes in pore pressure are the

main drivers of the two physical processes controlling the

nucleation of induced earthquakes in Oklahoma: the direct

decrease in the effective normal stress at fault due to the pore

pressure increase (Langenbruch and Zoback, 2016; Norbeck and

Horne, 2016; Dempsey and Riffault, 2019), and the poro-elastic

loading caused by the changes in the rock volume when its pore

pressure is increased (Goebel et al., 2017a; Goebel et al., 2017b;

Zhai et al., 2019). The stress contribution from the poro-elastic

loading has been derived from the mechanical simulator

MACRIS (Candela et al., 2019; van Wees et al., 2019).

MACRIS is based on a newly developed mesh-free approach,

which can 1) directly use 3D pressure fields fromOPM-FLOW as

input for geomechanical modelling, and 2) provide high stress

resolution at the interface of interest (the horizontal-plane at

4 km depth in the Oklahoma case). Coulomb stress changes have

been combined with Dieterich’s theory (Dieterich, 1994) to

model the spatio-temporal evolution of the seismicity rate.

In the second step, the seismicity data are assimilated in order

to update the model parameters of the forward model from the

first step. Data assimilation is used to assess the predictive power

of the forward model by comparing simulated and historical

seismicity rates. This assimilation step has often not been

considered in previous studies of induced seismicity at

Oklahoma injection sites. Generally, a sensitivity analysis for

temporal predictions of induced seismicity is performed (e.g.,

Zhai et al., 2019). In the current workflow, the seismicity data has

been assimilated in both space and time (see also Candela et al.,

2019). It has been demonstrated that the distribution of

seismicity in both space and time can be used to constrain the

posterior distributions of model parameters. We showed that 1)

the field-wide modelled yearly event rate and 2) the modelled

spatio-temporal event densities are both successfully capturing

the spatio-temporal distributions of observed events. These

results confirmed the predictive power of our modelling

strategy that aims to honor the ensemble of available

information for the Oklahoma injection sites. Although not

performed in the present study, the results suggest that the
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approach is suitable to forecast the potential return of the

Oklahoma induced seismicity to the background rate

following the arrest of all injection activities (Langenbruch

et al., 2018; Zhai et al., 2019).

In the third step, an optimization approach is outlined that

aims to find an optimum spatio-temporal injection scheme in

order to maximize the total volume injected while keeping the

seismicity rate below a cap. The cap is chosen so that the stop of

the injection activities in April 2017 may be prevented as

seismicity remains below a threshold value.

The present study combines both cutting-edge physics-based

predictive models with a cutting-edge optimization algorithm.

Despite that the modelling framework is applied to the

Oklahoma case study, the primary objective was to

demonstrate that complex optimization problems with two

conflicting objectives involving full physics-based models for

flow, geomechanics and induced seismicity can be solved. The

modelling framework is based on existing workflows that were

originally deployed for the optimization of well planning for

hydrocarbon recovery (Chen et al., 2009; Fonseca et al., 2014,

2017), and adjusted for our specific constrained optimization

problem. As such this modelling framework can thus be seen as

generic and can be applied to other instances of anthropogenic

subsurface activities as for example but not limited to that carbon

storage and sequestration.

We showed that it likely would have been possible to avoid

the dramatic rise of the rate of seismicity starting in 2014 while

still injecting a total volume of fluid identical to the historical

injected volume. The optimum strategy involved more uniform

spatio-temporal distributions of the injection rates. More

specifically the optimizer suggested to prevent the injection of

additional large volumes in the Central area because already at

steady-state seismicity rate due to large fluid-volumes injected

before 2014.

More constraints should be added to the present approach in

order to include additional key factors which have influenced the

spatio-temporal historical distribution of the injection rates. As

an example, the use of wells for injection should be constrained by

additional parameters such as the supply of hydraulic fracturing and

formation fluids from nearby hydrocarbon industry activities and

notably shale gas sites as the fluid brine injected in the Arbuckle

aquifer is a waste-product of production of shale gas. Accordingly, a

spatio-temporal correlation between injection volumes and

hydrocarbon industry operations in the area is likely. In the

current optimization example, it is assumed that all wells were

available at any moment in time. One way to honor the correlation

between hydrocarbon industry operations and injection is to add a

cost constraint in the optimization, i.e., injections viawells that were

not used in historical injection should be penalized with a higher

cost. This additional implementation can be achieved with the

present optimization algorithm.
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