AUTHOR=Zuo Daxing , Wu Chunyi , Zheng Yanhui , Chen Xiaohong , Wang Lina TITLE=Climate change and human activity impacts on future flood risk in the Pearl River Delta based on the MaxEnt model JOURNAL=Frontiers in Earth Science VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2022.1053829 DOI=10.3389/feart.2022.1053829 ISSN=2296-6463 ABSTRACT=
In the background of global climate change and rapid urbanization, extreme climate events are frequent, and highly urbanized areas flooding problems are becoming increasingly prominent. It becomes important to develop qualitative scenario storylines to assess future flooding risk in a changing environment over the highly urbanized areas. In this study, the future (2030–2050) flood risk in the Pearl River Delta (PRD) region of China was assessed based on the MaxEnt model. We have developed four future scenarios under different emission conditions based on the representative concentration pathways (RCPs) and the shared socio-economic pathways (SSPs). The MaxEnt model was trained by using flood hazard sample point data and flood risk indicators, meanwhile, food risk prediction with high accuracy was obtained. We analyzed the influencing factors of flood risk and predicted the flood risk of the PRD under four future scenarios. According to the results, there is a significant increase in the size and proportion of high flood risk areas in most scenarios. Flood risk under scenario SSP5-RCP8.5 are expected to be the most serious in the future. Population density (POPD) and Gross domestic product density (GDPD) have the highest explanatory power for flood risk. This study predict the changes of flood risk under the combined influence of climate change and human activities, and hoped to provide a reference for future planning and disaster mitigation construction in PRD cities.