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In the background of global climate change and rapid urbanization, extreme

climate events are frequent, and highly urbanized areas flooding problems are

becoming increasingly prominent. It becomes important to develop qualitative

scenario storylines to assess future flooding risk in a changing environment over

the highly urbanized areas. In this study, the future (2030–2050) flood risk in the

Pearl River Delta (PRD) region of China was assessed based on the MaxEnt

model. We have developed four future scenarios under different emission

conditions based on the representative concentration pathways (RCPs) and

the shared socio-economic pathways (SSPs). The MaxEnt model was trained by

using flood hazard sample point data and flood risk indicators, meanwhile, food

risk prediction with high accuracy was obtained. We analyzed the influencing

factors of flood risk and predicted the flood risk of the PRD under four future

scenarios. According to the results, there is a significant increase in the size and

proportion of high flood risk areas in most scenarios. Flood risk under scenario

SSP5-RCP8.5 are expected to be the most serious in the future. Population

density (POPD) and Gross domestic product density (GDPD) have the highest

explanatory power for flood risk. This study predict the changes of flood risk

under the combined influence of climate change and human activities, and

hoped to provide a reference for future planning and disaster mitigation

construction in PRD cities.
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1 Introduction

Floods are one of the most significant natural disasters in the

world. Tellman et al. (2021) determined a total inundation area of

2.23 million square kilometres, with 255–290 million people directly

affected by floods from 2000 to 2018. China is one of the most

frequently flooded countries in the world (Zhang et al., 2000; Cheng,

2008) and is severely affected by floods. Floods cause an average

annual economic loss of 3.15% of China’s total national economic

output (Zou et al., 2012). According to the Intergovernmental Panel

onClimateChange (IPCC)’s SixthAssessment Report (AR6), climate

change due to increased greenhouse gas emissions will intensify the

water cycle, thereby increasing the likelihood and intensity of extreme

precipitation and tropical cyclones, resulting in an increased risk of

flooding (IPCC, 2022). In recent years, the Pearl RiverDelta (PRD) in

China have suffered a lot of storm surges and coastal floods impacts.

For example, the 2018 super typhoon “Mangkhut” made landfall in

Guangdong, with maximum winds of 45 m/s near the center at

landfall, causing direct economic losses of 5.2 billion yuan, affecting

nearly 3 million people, evacuating and transferring 1,161,000 people.

The “5–22” rainstorm in Guangzhou in 2020 caused water to

accumulate in 443 places in the city, flooding in many places and

the suspension of Metro Line 13. Since flooding has been frequent in

recent years, flood risk assessment is very important for proper flood

management in an area (Manfreda and Samela, 2019) which

provides an important basis for disaster prevention and mitigation.

Many studies have shown that extreme weather due to climate

change and human activities such as urbanization can lead to an

increased risk of flooding. As one of the fastest growing economic

regions in China, the PRD urban agglomeration has undergone

significant and ongoing changes in land use (Li S et al., 2020) and

socio-economics (Xu et al., 2015) over the past decades. Du et al.

(2015) found that the expansion of impervious surfaces and the

migration of agricultural land to hilly suburbs due to urbanization

can lead to increased flooding. Gu et al. (2014) found an increasing

trend in the frequency and intensity offloods in the Pearl River Basin

from 1951 to 2010 due to changes in precipitation. Li Z. et al. (2020)

developed four scenarios and found that the combined effects of

climate change and human activities led to an increase in flood

sensitivity. Due to the complex factors influencing flood risk, it

becomes important to develop qualitative scenario storylines to

assess future flood risk in the ever-changing environment of the

PRD (Chen X. et al., 2020).

The development of future scenarios in the current study is

usually based on the Representative concentration pathways (RCPs)

and the Shared Socioeconomic Pathways (SSPs). RCPs are a

comprehensive set of emission scenarios used as input

parameters for climate change prediction models under the

influence of human activities in the 21st century (Moss et al.,

2010) to describe the concentrations of greenhouse gases when

future environmental changes occur. SSPs are descriptions based on

socioeconomic trends and are used to model changes in

demographic, economic, and urbanization factors in 21st century

societies (O’Neill et al., 2017). Pan et al. (2020) projected climate data

including precipitation for China from 2007 to 2099 based on the

RegCM4.6 model (Grell et al., 1994). Chen Y. et al. (2020) estimated

the population distribution of China from 2010 to 2,100 under

different RCP and SSP pathways.

Flood risk assessment methods can be broadly classified into

four main types, including multi-criteria decision analysis (MCDA)

(Chen X. et al., 2020), historical disaster mathematical statistics

method (HDMS) (Sado-Inamura and Fukushi, 2019), scenario

simulation analysis (SSA) (Mohanty et al., 2020; Zhi et al., 2020),

and machine learning models (MLMs) (Chen et al., 2021;

Chowdhuri et al., 2020). HDMS requires sufficient historical data

and are not sufficiently flexible and rapid for risk assessment in

urban areas where the natural and social environment is changing.

SSA typically relies on two-dimensional (2D) hydraulic/

hydrodynamic models to identify areas of high susceptibility,

which require large amounts of high-resolution geographic,

hydrological and artificial facility data. However, it is typically

unwise to build them in extensive study areas such as the PRD

due to expensive computational resources (Lyu et al., 2019). MCDA

typically uses subjective methods such as expert scoring, the analytic

hierarchical analysis (AHP), set-pair analysis and fuzzy

comprehensive judgment to assign weights to indicators, which

are mostly based on expert experience and knowledge (Danumah

et al., 2016), resulting in more subjectivity and uncertainty in the

assessment results. MLMs are as flexible as MCDA and MLMs

require less high-resolution data and pre-processing than SSA, but

they provide more objective assessment results than MCDA (Li S

et al., 2020). Many MLMs have been applied to flood risk

assessments and have proven to have excellent flood assessment

capabilities, such as support vector machine (SVM), random forest

(RF), convolutional neural network (CNN), ant colony algorithm,

artificial neural networks (ANN) and logistic regression (Lai et al.,

2016; Zhao et al., 2019; Chen et al., 2021). However, theseMLMs are

not perfect. For example, the SVM model usually requires the

selection of appropriate hyperparameters and kernel functions,

which affect its generalization performance, and there are various

problems in their evaluation. Logistic regression methods are more

sensitive to multicollinearity data. The accuracy of CNN and ANN

tends to increase with the number of dimensions and samples, but

the PRD urban agglomeration is very young and lacks sufficient

inundation point data, which may lead to poor model training (Liu

et al., 2017). Considered from this perspective, the MaxEnt model is

well suited. Compared to other models, the MaxEnt model can

produce better predictions by using only the “occurrence points” of

events without the need for “non-occurrence points”when the event

distribution data is incomplete (Elith et al., 2011; Barbosa and

Schneck, 2015). It has a high accuracy in cases where the sample

size is limited and the relationship between the influencing factors is

not clear. In addition, it allows flexible feature selection and naturally

solves the parameter smoothing problem in statistical models. Due

to these advantages, theMaxEntmodel is widely used in the study of

climate change and its response, such as habitat suitability
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assessment under climate change (Xian et al., 2022) and the impacts

of climate change on drought (Roy et al., 2022).

In this study, we combine climate change scenarios, socio-

economic scenarios and land use changes in the PRD for

scenario setting and experiments. We develop four future

scenarios based on Representative Concentration Pathways

(RCPs) (Moss et al., 2010) and Shared Social Economy Pathways

(SSPs) (O’Neill et al., 2017). We use the MaxEnt model, which has

very appropriate model characteristics but has rarely been applied to

flood risk assessment. We are more objective in predicting and

quantifying the impact of climate change and human activities on

flood risk in the PRD. The objectives of this study are 1) to analyze

the potential geographical distribution of flood risk in the PRDbased

on the MaxEnt model, 2) to analyze the impact factors of flood risk

and the response relationships between flood risk and impact

factors, and 3) to investigate the future changes in flood risk in

the PRD under different SSP and RCP pathways based on reliable

forecast data on extreme precipitation, land use and socio-

economics. We expect the results of this study to raise awareness

of the impact of human activities and climate change on urban flood

risk, and to provide reasonable suggestions for future planning and

construction in the PRD cities.

2 Study area and data

2.1 Study area

The Pearl River Delta (PRD), located in the south-central part of

Guangdong Province, China, covers the nine cities of Guangzhou,

Foshan, Zhaoqing, Shenzhen, Dongguan, Huizhou, Zhuhai,

Zhongshan and Jiangmen (Figure 1). The region belongs to the

subtropical monsoon climate, with an average annual temperature

of 21.4–22.4°C and an average annual rainfall of 1,600–2,300 mm.

The Pearl River Delta (PRD), which has undergone rapid urban

expansion in the past decades, has both a modern manufacturing

industry and a high urban population. The nine cities in the PRD

have a total area of 55,368.7 km2, accounting for less than 1/3 of the

land area of Guangdong Province, gathering 53.35% of the

population and 79.67% of the total economic output of the

country’s largest economic province. Floods have caused serious

economic losses and casualties in the region in recent years (Lai et al.,

2016). The PRD is taken as an example in this study.

2.2 Data

2.2.1 Flooding sample dataset
Locations in cities where flooding frequently occurs are

typically referred to as flooding blackspots. According to

previous research findings (Huang et al., 2017), 292 flooding

blackspots within the PRD were extracted as sample points. And

MaxEnt took a list of 292 flooding blackspots locations as input

in this study. The sample point data was input into Excel cells in

flood, longitude and latitude formats in turn and finally saved as

csv files supported by the MaxEnt model for subsequent analysis.

2.2.2 Flood risk index
The selection of flood risk indices differs from place to place

and should be based on the climatic and geographical

characteristics of the study area. According to the actual

conditions in the PRD region (Yang et al., 2013; Lai et al.,

2016), nine indices were selected from three aspects: disaster-

inducing factor, disaster-breeding environment and disaster-

bearing body. The disaster-inducing factors include two

indices: maximum 1-day rainfall amount (Rx1day) and

number of heavy rainfall days above 25 mm (R25 mm).

Therefore, precipitation from April to September was chosen

as the base data for Rx1day and R25 mm in this study. The

disaster-breeding environment include five indices: Digital

elevation model (DEM), Slope (SL), Runoff coefficient (RC),

DTR (Distance to the river) and Topographic wetness index

(TWI). The disaster-bearing body contain two indices:

population density (POPD) and gross domestic product

density (GDPD). Each of these indices is described in detail

below.

• Maximum 1-day rainfall amount (Rx1day, mm): Annual

average of the maximum single-day rainfall in the PRD flood

season (April-September) during the study time period.

• Number of heavy rainfall days above 25 mm (R25mm,

days): Annual average of the number of days with

rainfall greater than 25 in the PRD flood season (April-

September) during the study time period.

• Digital elevation model (DEM, m): this index reflects the

terrain’s surface. In general, areas in low elevation are prone

to flooding because rainfall easily flows from highlands to

lowlands under natural conditions.

• Slope (SL, degrees): this index reflects the degree of topographic

change. Mountain areas generally have severe slopes that

prevent the collection of water, whereas lowlands or flatlands

have gentle slopes that reflect a constant threat of flooding.

• Runoff coefficient (RC): runoff condition and infiltration

capability vary considerably in different land use patterns. In

this study, the land use types are divided into 7 categories,

including forest land, shrub land, herbaceous land, wetland,

cropland, bare land, construction land and water bodies, and

the RCs are 0.15, 0.18, 0.20, 0.60, 0.70, 0.90, and 1.00,

respectively (Wang et al., 2015).

• Distance to the river (DTR, m): the river system is extracted

based on DEM. The rivers are then set to 0, but this value

grows larger as the distance to the river increases (Viglione

et al., 2013). This step is conducted using Euclidean

distance in the geographic information system (GIS).

• Topographic wetness index (TWI): this index was

commonly used to quantify topographic control on
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hydrological processes (Sørensen et al., 2005). It is a

function of both the slope and the upstream

contributing area per unit width orthogonal to the flow

direction. It can be generated based on DEM using the tool

of ‘Raster Calculator’ of ArcGIS.

• Population density (POPD, people/km2): this index reflects

the population distribution.

• Gross domestic product density (GDPD, 10,000 yuan/

km2): this index reflects the property distribution.

2.2.3 Historical data
The data of Rx1day and R25 mm were derived from the Multi-

Source Weighted-Ensemble Precipitation product (MSWEP, http://

hydrology.princeton.edu/data/hylkeb/MSWEP_V220/), daily value

precipitation data in April-September from 1995 to 2004. The

SRTM DEM with a spatial resolution of 90 m was obtained from

the Geospatial Data Cloudy (http://www.gscloud.cn/). The TWI data

and SL data were calculated based on DEM data. The land use data

were obtained from GlobeLand30 V2010 dataset (www.

globallandcover.com/) (Chen et al., 2014). The river vector data

was obtained from the OpenStreetMap website (http://wiki.

openstreetmap.org/) and the DTR was calculated based on river

data using geographic information system (GIS) techniques. The data

of POPD was provided by the WorldPop website (https://www.

worldpop.org). The GDPD distribution data were obtained from the

Resource and Environmental Science andData Centre of the Chinese

Academy of Sciences (www.resdc.cn/). The detail of the data sources,

time, spatial resolution and data types are shown in Table 1.

2.2.4 Future projection data
Under different representative concentration pathways

(RCPs), future daily precipitation data of 2030–2050 for the

PRD from April to September, were obtained from the

National Tibetan Plateau Data Center (http://data.tpdc.ac.cn).

The dataset was generated by Pan et al. (2020) based on the

RegCM4.6 model for regional dynamical downscaling under

different carbon emission concentration scenarios (RCP2.6,

RCP4.5, RCP6.0 and RCP8.5) of the GFDL-ESM2M model

with a spatial resolution of 0.25°. The future land use data were

from the National Earth System Science Data Sharing

Infrastructure, National Science and Technology Infrastructure

of China (http://www.geodata.cn). Based on the 2010 Chinese land

cover data product FROM-GLC, detailed spatial assignments based

on a downscaling approach with a meta-cellular automata model

were used to generate land use data under different climate change

scenarios. The future population data were from the dataset

“Provincial and gridded population projection for China under

shared socioeconomic pathways from 2010 to 2,100” published

byChen Yidan et al. (2020) at TsinghuaUniversity. The dataset used

multidimensional recursive models to estimate the population

distribution of China from 2010 to 2,100 under different RCP

and SSP pathways based on 2010 population distribution data.

The dataset considered the impact of adjustments to national fertility

and settlement policies, reducing systematic bias in the results of

existing country studies (Chen Y. et al., 2020). The future GDPD

data is based on 2010 GDPD data and is projected based on the SSP

Scenario Database, which is available at the SSP Public Database

(https://tntcat.iiasa.ac.at/SspDb/). The detail of the data sources,

time, spatial resolution and data types are shown in Table 2.

3 Methodology

The methodology of the present study involves four main steps:

1) scenario setting, 2) flood risk assessment, 3) analysis of

environment indices, and 4) projections of the future flood risk.

The methodology flowchart is shown in Figure 2, and the details of

the four steps are presented in the following subsections:

3.1 Scenario setting

In this study, five scenarios were developed to explore flood risk

in the PRD, including one original scenario and four future scenarios.

TABLE 1 The database for the historical data.

Index Source Time Spatial
resolution

Data
types

Rx1day,R25 mm daily precipitation data from Multi-Source Weighted-Ensemble Precipitation (MSWEP) dataset
(http://hydrology.princeton.edu/data/hylkeb/MSWEP_V220/)

1985–2004 (April-
September)

0.1deg ×
0.1deg

Raster

DEM The Geospatial Data Cloud (http://www.gscloud.cn/) 2020 90 m × 90 m Raster

SL Generated from DEM data 2020 90 m × 90 m Raster

TWI Generated from DEM data 2020 90 m × 90 m Raster

POPD World pop website (https://www.worldpop.org) 2010 1 km × 1 km Raster

GDPD Resource and Environment Science and Data Center of the Chinese Academy of Sciences (https://
www.resdc.cn/)

2010 1 km × 1 km Raster

RC GlobeLand30 V2010 dataset (www.globallandcover.com/) 2010 30 m × 30 m Raster

DTR OpenStreetMap (http://wiki.openstreetmap.org/) 2020 - Polyline

Note: Rx1day:maximum 1-day rainfall amount, R25 mm:number of heavy rainfall days above 25 mm.
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3.1.1 Original scenario
In the original scenario (OS), we used precipitation data from

1985 to 2004, used by Pan and Zhang (2020) as the basis for

projecting climate change, as the base data for generating Rx1day

and R25 mm. The POPD, GDPD and land use data used to

calculate RC are all in 2010, which is consistent with the base year

of the projection data. Figure 3 shows all the indices in the

original scenario.

3.1.2 Future scenarios
The Representative Concentration Pathways (RCPs) are a

comprehensive set of emission scenarios that are used as input

TABLE 2 The database for the future projection data.

Index Dataset
name and source

Time Spatial
resolution

Data
types

Rx1day,R25 mm from the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn) 2030–2050 (April–September) 0.2° × 0.25° Raster

RC Dataset of land use projections for the future 30 m in China FROM-GLC-
Simulation_2.6

2030,2050 30 m × 30 m Raster

Dataset of land use projections for the future 30 m in China FROM-GLC-
Simulation_4.5

2030,2050 30 m × 30 m Raster

Dataset of land use projections for the future 30 m in China FROM-GLC-
Simulation_6.0

2030,2050 30 m × 30 m Raster

Dataset of land use projections for the future 30 m in China FROM-GLC-
Simulation_8.5

2030,2050 30 m×30 m Raster

POPD Population Grid for Chain SSP1RCP2.6 2030,2050 1 km × 1 km Raster

Population Grid for Chain SSP2RCP4.5 2030,2050 1 km × 1 km Raster

Population Grid for Chain SSP3RCP6.0 2030,2050 1 km × 1 km Raster

Population Grid for Chain SSP5RCP8.5 2030,2050 1 km × 1 km Raster

GDPD SSP Public Database (https://tntcat.iiasa.ac.at/SspDb/) 2030,2050 - Raster

FIGURE 1
Research region and the spatial distribution of the flooding blackspots.
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parameters for climate change projection models under the

influence of human activities in the 21st century (Moss et al.,

2010). It is used to describe the emissions of greenhouse gases,

reactive gases, aerosols, and the concentrations of atmospheric

constituents when future changes in population, socio-

economics, science and technology, energy consumption and

land use occur. The RCPs consist of four scenarios including

RCP2.6, RCP4.5, RCP6.0 and RCP8.5.

The Shared Socioeconomic Pathways (SSPs) are based on a

description of five socio-economic trends that can describe the

future of society. It is used to model changes in socio-economic

factors in the 21st century, these factors include population,

economic growth, education, urbanization and the rate of

technological development (O’Neill et al., 2017). These

pathways are designed to cover a variety of possible future

worlds. They consist of: a world of sustainable development,

with a focus on growth and equality (SSP1); a world of “middle

paths”, where trends largely follow their historical patterns of

development (SSP2); a “nationalist revival”, regionalized world

(SSP3); a more unequal world (SSP4); and a world of rapid and

unrestrained growth in both economic output and energy use

(SSP5).We refer to O’Neill et al. (2016) for a combination of SSPs

and RCPs to generate four future climates as well as socio-

economic simulation pathways, each of which is described in

detail in Table 3.

We assume that the current DEM, SL, DR and TWI for the

study area remain constant over time, while Rx1day, R25 mm,

RC, POPD and GDPD change according to the climate change

pathways and socio-economic development pathways in the

corresponding scenarios. We use changes in geographic

environmental indices to project how flood risk will change in

the future.

FIGURE 2
The flowchart of flood risk assessment and projections in this study.
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FIGURE 3
Spatial distribution of different indices in 2010 over the PRD. Note:(A)Rx1day inOS, (B) R25 mm inOS, (C)DEM, (D)RC in 2010, (E)SL, (F)DTR, (G)
TWI, (H) POPD in 2010, and (I) GDPD in 2010.

TABLE 3 Presentation of the four scenarios.

Scenario Description

SSP1-RCP2.6 This scenario combines low social vulnerability and a low level of radiative forcing to achieve sustainable development and
millennium development goals. In this scenario, many land use changes (especially the increase of global forest cover) and the
dependence on resources and fossil energy are reduced. Finally, global warming is controlled in the range of 2°C, and the radiation
forcing is stable at 2.6 w/m2 in 2,100

SSP2-RCP4.5 This scenario involves medium social vulnerability combined with a medium-strong radiation forcing level, with the challenge of
medium climate change. In this scenario, the international community would gradually reduce its dependence on fossil energy and
reduce the intensity of resources and energy consumption to a certain extent. Finally, the radiative forcing is stable at 4.5 w/m2 in
2,100

SSP3-RCP6.0 This scenario involves relatively high social vulnerability combined with a relatively high level of radiation forcing. In this scenario,
a large number of land use changes (especially global forest cover reduction) and high-temperature chamber gas emissions
(especially SO2) occur. Finally, the radiative forcing would be stable at 6.0 w/m2 in 2,100

SSP5-RCP8.5 This scenario involves a high level of radiation forcing, in which the traditional economy would be the guide for developing an
energy-intensive fossil economy. Finally, the emissions of greenhouse gases are large, and the radiation forcing is stabilized at 8.5 w/
m2 in 2,100
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3.2 MaxEnt model

3.2.1 Model principle
The MaxEnt model is a density estimation and distribution

prediction model based on the maximum entropy theory (West

et al., 2016). The entropy algorithm to describe the uncertainty or

information content of a random event quantitatively is

described by Shannon (1948) as

H � −C∑n

i�1pi lnpi (1)

where H is the information entropy, pi is the occurrence

probability of a random event, and C is a positive constant.

The entropy H is a function of pi, and thus, under given

experimental conditions, a distribution exists that maximizes

H. This distribution has a dominant probability and is the most

common distribution, so it is called the “most probable

distribution”. To summarize, the principle of maximum

entropy is to choose the distribution under given restrictions

when the entropy is the maximum value in all possible

compatible distributions (Feng and Hong, 2009).

Based on the principle of maximum entropy and the Lagrange

undetermined multiplicator method, the distribution when the

entropy is maximum can be obtained (Feng and Hong, 2009).

Let random variable x be x1, x2, . . . , xn, and the corresponding

probabilities are p1, p2, . . . , pn. They could satisfy

∑n

i�1pi � 1, pi ≥ 0, (2)

The mean value Fk of several known functions fx(xi) is

given as

Fk � ∑n

i�1fx(xi)pi, k � 1, 2, . . . , m(m< n) (3)

To discover the distribution when entropy is the maximum

value under the constraint condition of Eqs. 2, 3, undetermined

multiplicators α and βk are introduced to form a new function:

H–α–β1F1–β2F2– . . . –βmFm. From Eqs. 1–3, we can obtain

H − α −∑m
k�1

βkFk � −∑n
i�1
pi lnpi − α∑n

i�1
pi

−∑m

k−1βk∑n

i�1fk(xi)pi � ∑n

i�1pi ln
⎧⎨⎩ 1
pi

exp⎡⎣ − α −∑m

k�1βkfk(xi)⎤⎦⎫⎬⎭ (4)

Using the inequality lnx≤ x − 1, Eq. 4 is changed into:

H≤∑n
i�1
pi

⎧⎨⎩ 1
pi
exp⎡⎣ − α −∑m

k�1
βkfk(xi)⎤⎦ − 1

⎫⎬⎭ + α +∑m
k�1

βkFk

To have H be the maximum value, the above formula must be

an equation; then, pi should satisfy the following equation:

pi � exp⎡⎣ − α −∑m

k�1βkfk(xi)⎤⎦, i � 1, 2, . . . , n (5)

Using Equation 2 and 5 could be written as α �
ln{∑n

i�1exp[−∑m
k�1βkfk(xi)]}. If Z � eα, then it could be

changed into Z � ∑n
i�1exp[−∑m

k�1βkfk(xi)], where Z is the

partition function. Thus, Eq. 5 would become

pi �
{exp[ − ∑m

k�1βkfk(xi)]}
Z

(6)

To obtain the value of βk, substitute Eq. 6 into constraint Eq.

3 to obtain

Fk � ∑n

i�1

{fk(xi) exp[ −∑m
k�1βkfk(xi)]}

Z
. (7)

In Eq. 7, both fk and fk(xi) are known, while the real

unknowns are m values of β(β1, β2,/, βm). The M equations

could obtain m β values; thus, we could have the value of pi when

entropy is the maximum value (Feng and Hong, 2009). The

above calculation formula obtained from discrete conditions

could also be used in the calculation process in continuous

conditions (Feng and Hong, 2009).

3.2.2 Assessment procedure
We used the MaxEnt model software developed by Phillips

et al. (2004). The MaxEnt model with a maximum of

500 iterations and a maximum of 10,000 background points.

The regularization multiplier and convergence threshold are

defined by the MaxEnt model by default, which can ensure a

better simulation effect, and logistic is used as the output format.

A jackknife test was used to assess the importance of

environmental variables. The threshold was determined by

maximum training sensitivity plus specificity (MaxSS), and the

flood risk levels were divided. The receiver operating

characteristic (ROC) curve is widely used to evaluate the

accuracy of species distribution models. ROC curves were

drawn with the false positive rate as the abscissa and the true

positive rate as the ordinate. Then, the area under the receiver

operating characteristic curve (AUC) was used to evaluate the

model. The AUC value ranges between 0 and 1. The closer to

1 the value is, the better its prediction ability will be. Specifically,

an AUC value greater than 0.5 but less than 0.7 indicates a

general prediction ability, an AUC value greater than 0.7 but less

than 0.9 indicates a good prediction ability, and an AUC value

greater than 0.9 indicates an excellent prediction ability (Swets,

1988; Fielding and John, 1997).

We exported the flood risk indicators as uniform resolution

raster data and then converted these raster data to ASCII format

in ArcGIS software. The flood risk factor data in ASCII format

under the original scenario and the sample point data in csv

format were input into the MaxEnt software to obtain the flood

risk distribution results under the original scenario. According to

the results of the model run, the threshold for determining

whether a flood is likely to occur is approximately 0.16

(MaxSS=0.16). Flooding is considered less likely to occur

when the probability is 0–0.16 and more likely to occur when
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0.16 to 1. This study used the natural breaks classificationmethod

to classify areas with risk values greater than 0.16 into four

classes. The flood risk has been classified into five classes

(Figure 5): lowest risk (0–0.16), low risk (0.16–0.29), medium

risk (0.29–0.44), high risk (0.44–0.62) and highest risk (0.62–1).

Finally, we inputted the flood risk indicators in ASCII format for

the four future scenarios into the MaxEnt software to obtain the

results of the flood risk distribution for the four scenarios. The

output of the MaxEnt software is in ASCII format, which we

converted to raster data for further analyses in ArcGIS software.

3.3 Geographical Detector

Geographical Detector is a new statistical method for

detecting spatial differentiation and for revealing the driving

factors behind it. The model has a wide range of applications in

ecological, meteorological, hydrological, and socioeconomic

fields, so it is well suited for this study. The method is free of

linearity assumptions and has an elegant form and clear physical

implications. The basic idea is that the study area is assumed to be

divided into sub-regions and there is spatial heterogeneity if the

sum of the variance of the sub-regions is less than the total

variance of the region; if the spatial distribution of the two

variables converges, there is statistical correlation between

them (Wang and Xu, 2017). Factor detectors are used to

detect the spatial heterogeneity of the dependent variable and

the explanatory power of the respective variable on the degree of

influence of the dependent variable, measured by the q-value.

q � 1 − ∑L
h�1Nhσ2h
Nσ2

(8)

SSW � ∑L

h�1Nhσ
2
h, SST � σ2 (9)

where: h � 1,/, L is the stratification of variable Y or factor X,

i.e., classification or partitioning; Nh and N are the number of

cells in stratum h and the whole region, respectively; σ2h and σ2

are respectively the variance of Y values in stratum h and the

whole region. SSW and SST are the Within Sum of Squares and

the Total Sum of Squares respectively. The value range of q is

[0,1], with larger values indicating more pronounced spatial

heterogeneity of Y. If the stratification is generated by the

independent variable X, larger values of q indicate stronger

explanatory power of the independent variable X for attribute

Y, and conversely, weaker. In extreme cases, a q value of

1 indicates that factor X completely controls the spatial

distribution of Y, a q value of 0 indicates that factor X has no

relationship with Y, and the q value indicates that X explains

100 × q% of Y.

4 Result and analysis

The AUC curve of the MaxEnt model for the simulation and

projection results of flood risk in the PRD is shown in Figure 4. The

AUC value of the training set is 0.918 (>0.9), indicating that the

accuracy of the prediction results of the MaxEnt model is excellent.

Therefore, the model prediction results meet the research

requirements.

FIGURE 4
Average AUC of the model.
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4.1 Flood risk distribution in the PRD under
the original scenario

Figure 5 shows the distribution of flood risk in the PRD in the

original scenario. The area with the highest flood risk is about

1,475 km2, accounting for about 2.7% of the total PRD area. It is

mainly distributed in central Guangzhou, eastern Foshan, central and

southern Zhongshan, northern Dongguan, eastern Zhuhai and most

of Shenzhen. The high risk area covers an area of about 2,249 km2,

accounting for about 4% of the total area of the PRD, mainly in

southeastern Foshan, northern Dongguan, most of Shenzhen and the

western part of Zhuhai. Themedium risk zone covers an area of about

3,049 km2, accounting for about 5.5% of the total area of the PRD,

mainly in most of Dongguan, northeastern Jiangmen, northern

Zhongshan and central Huizhou. The low-risk area covers an area

of about 3,547 km2, accounting for about 6.4% of the total area of the

PRD, mainly in western Foshan, southwestern Zhaoqing, northern

Guangzhou and central Huizhou. The lowest risk area covers an area

of about 45048.9 km2, which is about 81%of the total area of the PRD,

mainly in most of Zhaoqing, most of Jiangmen, the western part of

Foshan, the northern part of Guangzhou and most of Huizhou.

Among the PRD city agglomerations, Shenzhen and Guangzhou are

at the most serious risk of flooding, followed by Dongguan, Foshan,

Zhongshan and Zhuhai, while Zhaoqing, Jiangmen and Huizhou are

at the lowest risk of flooding. The areas with the highest flood risk are

generally located in areas with high human activity, high

urbanization, and low elevation. These areas, which have disaster

breeding environments, aremore vulnerable and are priority areas for

flood risk management. Low-lying regions are far more likely to

experience severe flooding thanmore elevated areas. Therefore, in the

urban planning and construction of the PRD urban agglomeration, it

is necessary to avoid choosing the regions with low elevation and to

strengthen the construction of flood control and drainage facilities in

low-lying areas.

Table 4 shows area and percentage of highest risk zones in each

city under the original scenario. The cities with the top five highest

flood risk areas are Shenzhen, Guangzhou, Dongguan, Huizhou and

Foshan. The top five cities in terms of percentage of area at highest

flood risk are Shenzhen, Dongguan, Zhuhai, Zhongshan and

Guangzhou. Shenzhen has relatively serious flood risk, with the

highest risk area of 595 km2, accounting for 30.7% of the total area of

the city. Jiangmen and Zhaoqing are the lowest flood risk cities, their

highest risk areas are tiny and account for less than 0.1% of the total

city area.

4.2 Environmental indices affecting the
flood risk

4.2.1 Single index driven analysis
Of the nine environmental indices, only RC has a classified

value, while the other eight environmental indices have

FIGURE 5
Spatial distribution of flood risk in the PRD under the original scenario.
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continuous values. Therefore, this study reclassified these eight

indicators using the natural breaks method in ArcGIS software,

and then entered them into the Geographical Detector model.

From Table 5, spatial distribution of flooding in the PRD region

are related to all these environmental indices. As can be judged

from the magnitude of the explanatory power, POPD has the

greatest influence on the potential geographical distribution of

flood risk in the PRD with an explanatory power of 0.678,

followed by GDPD with an explanatory power of 0.646. All

environmental indices are ranked in descending order of

explanatory power as POPD (0.678) > GDPD (0.646) > RC

(0.432) > DEM (0.231) > SL (0.161) > DTR (0.134) > TWI

(0.096) > Rx1day (0.049) > R25 mm (0.021).

POPD, GDPD and RC, which are directly related to the

intensity of human activity and the degree of urbanization, have

the highest explanatory power. Human activities can result in an

increased risk of flooding by reduced permeability of the ground.

The number of casualties and people affected by flood, as well as

economic losses are the main indicators of the extent of flood

damage. Areas with high POPD and GDPD have a greater risk of

damage than areas with relatively low levels of these two

indicators. The DEM also has explanatory power for flood

risk, and areas at lower elevations tend to be more prone to

flooding. The explanatory power of Rx1day and R25 mm are

lower. According to relevant studies, torrential rain refers to a

heavy rainfall process during which the total precipitation is

equal to or greater than 50 mm in 24 h (Kong et al., 2017). All

Rx1day values within the PRD are greater than 50 mm, implying

that precipitation as the disaster-inducing factor is abundant in

all areas of the PRD.

4.2.2 Response curves of environmental indices
to flood risk

In the MaxEnt model results, the existence is considered less

likely when the probability is greater than 0.5, and more likely

when the probability is greater than 0.5 (Shipley, 2009). Figure 6

shows the response of key environmental indices to the risk of

flooding. In terms of disaster-bearing body, both POPD and

GDPD generally show a positive correlation for flood risk. As

shown in Figure 6A and Figure 6B, the probability of flooding is

greater when the POPD is greater than 7,000 people/km2 and the

GDPD is greater than 50 million yuan/km2. In terms of the

disaster-breeding environment, DEM is negatively correlated

with flood risk while RC is positively correlated with flood

risk. As shown in Figure 6C and Figure 6D, flood risk is

higher when DEM is less than 30 and RC is greater than 0.8.

Figure 6E and Figure 6F shows the response curves from the

disaster-inducing factor, the probability of flooding is higher

when Rx1day is between 140 and 200 and when R25 mm is

greater than 14.5 and less than 15.5.

4.3 Projections of the future flood risk

This study input the flooding blackspots data, the

environmental indices data from the original scenario and the

environmental indices data from the future scenario into the

MaxEnt model. Then obtained the spatial distribution of flood

risk in the PRD under scenarios SSP1-RCP2.6, SSP2-RCP4.5,

SSP3-RCP6.0 and SSP5-RCP8.5 for 2030 and 2050. The flood

risk divided into 5 levels (namely, lowest, low, moderate, high

and highest), which has the same number of categories as the

original scenario.

4.3.1 Flood risk scenario for 2030
As shown in Figure 7 and Table 6, there is an increasing trend

in flood risk in 2030 compared with the original scenario due to

human activities and climate change. The areas above medium

risk of flooding under the SSP1-RCP2.6 scenario (Figure 7A) are

approximately 5,283 km2, an increase of approximately 2.8% of

the total area. Under the SSP2-RCP4.5 scenario (Figure 7B), the

areas above medium risk of flooding are approximately

TABLE 4 Area and percentage of highest risk zones in each city under the original scenario.

SZ GZ DG HZ FS ZS ZH JM ZQ

highest risk areas (km2) 595 352 152 105 101 85 73 10 1

Percentage of high risk area to whole city area (%) 30.7 4.8 6.0 0.9 2.6 4.9 5.2 0.1 0.0

Note, SZ: shenzhen city; GZ: guangzhou; DG: dongguan; HZ: huizhou; FS: foshan; ZS: zhongshan; ZH: zhuhai city; JM: jiangmen; ZQ: zhaoqing.

TABLE 5 Explanatory power of environmental indices.

Index Significance p Explanatory power q

Rx1day 0.000 0.049

R25 mm 0.000 0.021

DEM 0.000 0.231

SL 0.000 0.161

TWI 0.000 0.096

DTR 0.000 0.134

RC 0.000 0.432

POPD 0.000 0.678

GDPD 0.000 0.646

Note: Rx1day:maximum 1-day rainfall amount, R25 mm:number of heavy rainfall days

above 25 mm.
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4,549 km2, an increase of approximately 1.5% of the total area.

The areas above medium risk of flooding under the SSP3-

RCP6.0 scenario (Figure 7C) are approximately 3525 km2,

calculating a reduction in total area of about 0.5% in 2030.

The areas above medium risk of flooding under the SSP5-

RCP8.5 scenario (Figure 7D) are approximately 8,731 km2,

accounting for 15.8% of the total area of the PRD, which

represent the largest increase of about 9.1% in total area

compared with the original scenario.

This study analysis the changes in the highest flood risk zones

in 2030 for the five cities (Guangzhou, Shenzhen, Dongguan,

Foshan and Huizhou) with high flood risk in the PRD. Figure 8A

shows the area of the highest risk zone in the five cities under the

original scenario and the scenarios in 2030. Under scenarios

SSP1-RCP2.6 and SSP2-RCP4.5 in 2030, Shenzhen has the

largest areas of highest risk zone among the five cities in the

PRD. Dongguan and Guangzhou had the largest areas of highest

risk zone under the SSP3-RCP6.0 and SSP5-RCP8.5 scenarios

respectively. Figure 8B shows the percentage of highest risk zone

in the five cities under the original scenario and the scenarios in

2030. Under scenarios SSP1-RCP2.6, SSP2-RCP4.5 and SSP3-

RCP6.0 in 2030, Shenzhen has the largest percentage of area in

the highest risk zone among the five cities in the PRD. Dongguan

has the largest percentage of area in the highest risk zone under

the SSP3-RCP6.0 scenario.

4.3.2 Flood risk scenario for 2050
Figure 9 shows the spatial distribution of flood risk in the

PRD under the four scenarios in 2050. In 2050, the SSP5-

RCP8.5 scenario (Figure 9D) has a relatively high flood risk,

while the SSP1-RCP2.6 scenario (Figure 9A), SSP2-RCP4.5

scenario (Figure 9B) and SSP3-RCP6.0 scenario (Figure 9C)

have more similar flood risks. As shown in Table 7, the

distribution of flood risk in 2050 is closer to the

FIGURE 6
Response curves of environmental indices in MaxEnt models. Note:(A) The response curve of POPD, (B) The response curve of GDPD, (C) The
response curve of DEM, (D) The response curve of rc, (E) The response curve of Rx1day, (F) The response curve of R25mm.
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distribution in 2030. Among the four future scenarios, the

area above medium risk of flooding in 2050 is smaller than in

2030 only under the SSP1-RCP2.6 scenario. There shows a

trend of gradual expansion in the areas above medium risk of

flooding over time, accompanied by shrinking areas of

medium and low risk in the other three scenarios. The

SSP5-RCP8.5 scenario has the most severe increase in the

areas above medium risk of flooding, covering 9,240 km2 or

16.7% of the total PRD area. By 2050, the area is increased by

10% (about 2.5 times) for the region above medium risk.

In general, flood risk under the SSP5—RCP8.5 scenario is the

most serious of the four future scenarios, followed by the

SSP1—RCP2.6 scenario and the SSP2—RCP4.5 scenario, while

future flood risk under the SSP3—RCP6.0 scenario is the lowest.

A noticeable increase in flood risk in the PRD can be found in the

high-emission SSP5-RCP8.5 scenario with the absence of the climate

FIGURE 7
Spatial distribution of future flooding risk over the PRD under four scenarios in 2030.

TABLE 6 Projected changes of flooding risk areas under four scenarios in 2030 compared with the original scenario. (Area of risk zones for different
scenarios in 2030 minus the area of risk zones corresponding to the original scenario).

Risk
level

SSP1-RCP2.6 SSP2-RCP4.5 SSP3-RCP6.0 SSP5-RCP8.5

Area of
change
(km2)

Percentage
(%)

Area of
change
(km2)

Percentage
(%)

Area of
change
(km2)

Percentage
(%)

Area of
change
(km2)

Percentage
(%)

Lowest -3,362 −6.06 −982 −1.77 1,314 2.37 −5,625 −10.15

Low 1,186 3.40 450 0.81 -275 −0.50 695 1.25

Moderate −87 −0.16 −295 −0.53 −840 −1.52 −80 −0.15

High −246 −0.44 −382 −0.68 −358 −0.65 199 0.36

Highest 1809 3.26 1,208 2.18 160 0.29 4,813 8.68

Note: The area of change in the table is obtained by subtracting the area of each scenario in 2030 from the area of the same risk level in the original scenario. The percentage in the table refers

to the area of change divided by the total area.
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policy. By comparing the scenarios in the original, 2030, and 2050, it

is evident that the area of the PRD at high risk of flooding show a

tendency to expand in the future. In terms of the area of highest risk

zone, Guangzhou and Shenzhen are at more serious risk of flooding.

From the perspective of the percentage of the highest risk zone,

Shenzhen and Dongguan are face a more serious risk of flooding.

5 Discussion

This study used highly accurate data such as population

distribution data (Chen Y. et al., 2020) and land use data, which

could improve the accuracy of prediction to some extent. Three

scenarios had an increased risk of flooding in 2030 as compared

FIGURE 8
Area and percentage of the highest risk zone in cities under the original scenario and the scenarios in 2030. GZ, Guangzhou city; SZ, Shenzhen
city; DG, Dongguan city; FS, Foshan city; HZ, Huizhou city. Note:(A) Percentage of the highest risk zone in cities under the original scenario and the
scenarios in 2030. (B)Area of the highest risk zone in cities under the original scenario and the scenarios in 2030.

FIGURE 9
Spatial distribution of future flooding risk over the PRD under four scenarios in 2050.
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to the original scenario. In 2050, three scenarios had an increase

in the area above medium risk of flooding as compared to 2030. It

indicated a general upward trend in flood risk in the PRD region

under the combined influence of human activities and climate

change. Many studies suggested that PRD (Li Z et al., 2020; Chan

et al., 2021) and economically developed coastal cities would be at

greater risk of flooding with climate change and urbanization.

Flood losses in 2050 would be ten times higher than in 2005 in

20 coastal cities around the world, including Guangzhou and

Shenzhen (Hallegatte et al., 2013). Due to Hurricane Harvey,

which produced the highest rainfall totals of 1,270 mm in some

areas of Houston and Texas, the probability of extreme flood

events increased on average by about 21 times (Zhang et al.,

2018). Flood risk in PRD increased most severely under the

highest emission scenario SSP5-RCP8.5, which was consistent

with previous studies (Gemmer et al., 2011; Wu et al., 2014a;

2014b; Chen X. et al., 2020). Therefore, the Guangdong-Hong

Kong-Macao Greater Bay Area (GBA) urban agglomeration

needs to pay more attention to flood prevention and reduce

greenhouse gas emissions in its future planning and urban

development. Avoiding excessive greenhouse gas emissions is

also an effective way of reducing flood risk. Compared with the

results of Chen X. et al. (2020), the distribution of high flood risk

areas is comparatively consistent, indicating that the MaxEnt

model is successful in the simulation and prediction of flood risk.

Previous studies have focused on the fact that extreme

precipitation events were more pronounced under high

emission conditions, leading to increased flood risk (Ji and

Kang, 2015; Robbins, 2016). In this study, in terms of the

impact on flood risk, it was the socio-economic and

topographic indices, which contribute more to the risk of

flooding, rather than the extreme precipitation indices. In

contrast, the lower explanatory power of Rx1day and R25 mm

as disaster-inducing factors was caused by the higher

precipitation intensity in the PRD region (Kong et al., 2017).

The spatial distribution of flood risk due to abundant

precipitation was more dependent on the disaster-breeding

environment and the disaster-bearing bodies. As urbanization

accelerates, some natural green land converted to construction

land, leading to an increase in impervious surfaces and resulting

in an increased risk of flooding. In the analysis of the

environmental indicator response curves, flood risk increased

with increasing POPD, GDPD and RC and increased with

decreasing DEM. The effect of Rx1day on the probability of

flooding in this study was concentrated in the 140–200 mm

interval. Theoretically, the above results are consistent with

the basic laws of probability theory, as the MaxEnt model is

an arithmetic model based on the Bayes Formula (Shipley, 2009;

He, 2010). In the model, high rainfall is an extreme event with

low probability of occurrence at the extremes (Robbins, 2016).

Therefore, in this era of rapid social and economic development,

people should pay more attention to the prevention of natural

disasters such as flooding.

6 Conclusion

This study used the MaxEnt model to assess changes in

flood risk in the PRD region under the influence of climate

change and human activities. We used the Geographical

Detector to calculate the contribution of each indicator to

flood risk. The relationship between flood risk and various

environmental indicators was also explored through response

curves. We predicted the distribution of flood risk under the

RCPs and SSPs scenarios.

The AUC values of the MaxEnt model indicated that the

accuracy of the model’s predictions was excellent. Under the

original scenario, the areas of high- and highest-risk regions

for flooding in the PRD cover an area of about 3,724 km2,

accounting for 6.7% of the total area of the PRD. The areas

TABLE 7 Projected changes of flooding risk areas under four scenarios in 2050 compared with 2030. (Area of risk zones for different scenarios in
2050 minus the area of the corresponding risk zone for each scenario in 2030).

Risk
level

SSP1-RCP2.6 SSP2-RCP4.5 SSP3-RCP6.0 SSP5-RCP8.5

Area of
change
(km2)

Percentage
(%)

Area of
change
(km2)

Percentage
(%)

Area of
change
(km2)

Percentage
(%)

Area of
change
(km2)

Percentage
(%)

Lowest 5,600 10.10 −930 −1.68 −1,080 −1.95 −679 −1.22

Low −1,665 −3.00 413 0.75 0 0.00 144 0.26

Moderate −1,631 −2.94 32 0.06 154 0.28 24 0.04

High −980 −1.77 −279 −0.50 369 0.66 −28 −0.05

Highest -1,324 -2.39 763 1.38 557 1.01 539 0.97

Note: The area of change in the table is obtained by subtracting the area of each scenario in 2050 from the area of the same risk level in the same scenario in 2050. The percentage in the table

refers to the area of change divided by the total area.
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with high risk of flooding were mainly in Guangzhou,

Shenzhen, Dongguan and other cities with high population

density, high urbanization rate and low terrain. Among the

impact indices of flood risk, POPD, GDPD, RC and DEM had

a high explanatory power. POPD, GDPD and RC showed a

significant positive correlation with flood risk, and DEM

showed a negative correlation. In the future (2030–2050),

there was a significant increase in the area and percentage

of the highest flood risk zone. Flood risk under scenario

SSP5—RCP8.5 was the most serious, with the area above

medium risk of flooding of 9,240 km2, accounting for 16.7%

of the total area of the PRD.
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