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The shear strength reduction method provides an effective tool of numerical

analysis for landslides reliability analysis. However, it ignores the failure

probability of the secondary failure surfaces and requires huge

computational cost. To avoid these common criticisms, an intelligent

multiple response surfaces method for system reliability using multiple

response-surface method (MRSM) and least-squares support vector machine

(LSSVM) is presented to evaluate the stability of complex multistage historic

landslides with multiple sliding surfaces. Deterministic analysis of each sliding

surface is first performed using the finite element method of sliding surface

stress analysis, which is applied to obtain the safety factors of different sliding

surfaces from the stress fields generated by finite element simulations. The

LSSVM model with excellent nonlinear fitting ability is then employed to

construct the multiple response-surface method (MRSM) of the sliding

surfaces and a genetic algorithm (GA) is adopted to optimize the LSSVM.

This proposed methodology is finally applied to investigate the probability of

system failure of the Zhenggang landslide in southwestern China. The results

indicate that the proposed approach can reduce the computational cost of

finite element analysis in direct Monte Carlo simulation (MCS) by proper training

using a limited of samples, and the calculation accuracy meets the engineering

requirements of complex multistage historic landslides.
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1 Introduction

Evaluation of landslide stability is an important topic in geotechnical engineering and

disaster prevention. However, large uncertainties of landslide stability are commonly

associated with rock and soil properties and measurement errors (Su et al., 2011; Hong

et al., 2016; Li et al., 2019). Reliability analysis is an effective approach to account for the
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uncertainties associated with the underlying landslide stability

parameters (Griffiths and Fenton 2004; Ji et al., 2012). For

example, Wu et al. (2014) used Monte Carlo simulations

(MCS) to study the random-fuzzy reliability of the

Liangshuijing landslide, and Dadashzadeh et al. (2017)

employed an integrated response surface method to

investigate the reliability of rock slopes. However, a complex

historic landslide may have experienced several sliding episodes

and formed multiple sliding surfaces (i.e., potential failure

modes). Considering the single most critical failure mode

(i.e., the most critical surface) may not give a complete

picture of the overall reliability of the landslide. System

reliability, which considers all significant failure modes and

their correlations, should therefore be employed to study

landslide stability.

Due to the stochastic characteristic of probability analysis, it

is necessary to implement a large number of deterministic

analyses to obtain the safety factors of the landslide stability

probabilistically. The deterministic analysis for landslide system

reliability is almost based on rigid limit equilibrium methods in

literatures (Liu and Cheng 2016; Wang et al., 2020). This is

because the strength reduction method cannot simultaneously

estimate the safety factors of landslide with multiple potential

sliding surfaces, and it requires the long solution time in the

iterative process of shear strength reduction, which has

dramatically increase because of the large number of

deterministic analyses. Finite element method of sliding

surface stress analysis (Zou et al., 1995; Kim and Lee 1997),

the hybrid of limit element method (LEM) and finite element

method (FEM), can calculate directly the safety factor of multiple

potential sliding surfaces based on stress field generated by a

FEM simulation, and thus expands greatly the application of

numerical simulation in landslide system reliability.

Currently, the system reliability methods for landslide mainly

include Monte Carlo simulation (MCS) (Wang and Goh 2021;

Pei et al., 2022), bounds method (Ditlevsen 1979; Low et al., 1997,

2011), mvncdf method (Liu and Low 2017) and multiple

response-surface method (MRSM) (Li et al., 2015). The

Monte Carlo simulation (MCS) is one of the most popular

methods for analyzing the system reliability without closed-

form solutions. However, the MCS requires extensive

computational efforts due to a large number of sampling

needed to ensure a sufficiently accurate estimation of the

failure probability (Dong and Lu 2021). The bounds method

and mvncdf method are based on the situation where an explicit

mathematical function exists (Fu et al., 2019), but it is often

difficult to obtain the explicit relationship function between the

safety factor of landslide and the shear strength parameters. The

MRSM is a metamodel-based method for replacing a complex

model by approximating the actual limit state functions (Li et al.,

2015). It can thus effectively alleviate the cost of functions

evaluation in the response surfaces of all failure modes, and

provides efficient strategies for system reliability analysis.

Generally, traditional MRSM employs multiple polynomial

functions to model low-order problems, and corresponding

computational efficiency of response surface models can

satisfy the requirements of probabilistic numerical models.

Low-order polynomial response surfaces, however, are difficult

to approximate the actual response state function (RSF) with

obvious nonlinear characteristics of landslide. Thus, several

researchers proposed the intelligent algorithms to construct

more accurate RSF in the literatures. For example, Li et al.

(2013) employed a support vector machine (SVM) to

approach the RSF of landslide stability because of its excellent

fitting ability with a limited number of samples. Sung (2008)

developed artificial neural network (ANN) as an approximate

RSF to express the relationship function of landslide between the

safety factor and the shear strength parameters. Tan et al. (2011)

studied the similarities and differences between these RSFs using

ANN and SVM. Applying the similar method, intelligent

multiple response surfaces method can be used for

probabilistic numerical modeling of landslide stability

considering multiple sliding surfaces.

In this study, a system reliability method is proposed for

probabilistic numerical study of landslide stability based on

LSSVM and MRSM. The safety factors of multiple sliding

surfaces, which form the basis of system reliability analysis,

are obtained from results of finite element method of sliding

surface stress analysis. The MRSM, which integrates LSSVM

and genetic algorithm (GA) is then applied to generate the

explicit relationship function between the safety factor and

random variables of landslide. Next, the system failure

probability of a landslide with multiple sliding surfaces can

be obtained by the MCS approach. As a case study, the system

failure probability method is finally applied to the Zhenggang

landslide in southwestern China to illustrate the proposed

approach.

2 Methodology

2.1 Finite element method of sliding
surface stress analysis

The deterministic analysis of landslide is determined using

finite element method of sliding surface stress analysis in this

paper, which is a numerical technique based on the limit

equilibrium method (LEM) and finite element method (FEM).

The finite element method of sliding surface stress analysis can be

applied to evaluate the safety factors of multiple potentially active

sliding surfaces using a finite element simulation (Farias and

Naylor 1998). The nodal stress components (σx, σy, τxy) on a

sliding surface can be obtained from the FEM analysis. The two-

dimensional curve of a sliding surface is discretized into several

segments. The stresses of the two end-points of a segment are

used to approximate the stress components in the segment by
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interpolation. The normal stress σn and shear stress τ of each

segment are expressed as (Yang et al., 2015):

σn �
[(σx + σy) + (σy − σx) cos 2α]

2
+ τxy sin 2α, (1)

τ � (σy − σx) sin 2α
2

+ τxy cos 2α, (2)

where α is the angle between the sliding surface and horizontal

plane. For a discrete ith sliding surface si of landslide (Figure 1),

the safety factor Fsi can be defined as:

Fsi �
∑n

j�1τfjs
i
j∑

j�1

n
τjsij

� ∫τfdsi∫τdsi . (3)

where sij is the length of segment j in ith sliding surface si; n is the

number of discrete segments, and τfj and τj are, respectively, the

shear strength and shear stress on the plane of the jth segment of

the sliding surface. According to the Mohr-Coulomb strength

criterion, the safety factor Fsi along sliding surface si can be

expressed as:

Fsi �
∫(c + σn tan ϕ)dsi∫τdsi , (4)

where c and ϕ are respectively cohesion and friction angle.

2.2 Least-squares support vector machine

The LSSVM is introduced by Suykens (1999) as a modified

form of the support vector machine (SVM), which can transform

the quadratic optimization problem of the SVM into a linear

system of equations based on linear least squares criteria. For a

given data set (xk, yk)mk�1 ∈ Rm × Rwith input data xk and output

data yk. The LSSVM regression model can be described as (Tan

et al., 2016):

f(x) � ∑m
k�1

akK(x, xk) + b, (5)

where K(x, xk) is a symmetric kernel function, and the Gaussian

radial basic function (RBF) K(x, xk) � exp(−(x − xk)2/(2σ2)) is
adopted as the kernel function in this paper. Where σ is the

kernel parameter; m is the sample number; ak is the Lagrange

multiplier; b is a bias term; and a linear equation can be obtained

(Cai et al., 2016):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 0 1Tv

1v Ω + 1
γ
Ι
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦[ b

a
] � [ 0

y
], (6)

where γ is a e tolerance error; y � [y1, y2,/, ym]T;
1v � [1, 1,/, 1]T; a � [a1, a2,/, am]T; Ω is a symmetric

matrix, Ω � ϕ(x)Tϕ(xm) � K(x, xm). The analytical of a and

b can be obtained by:

[ b
a
] � Φ−1[ 0

y
], (7)

Where

Φ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 0 1Tv

1v Ω + 1
γ
Ι
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (8)

Note that there are two user-determined parameters (kernel

parameter σ and tolerance error γ) in the LSSVM model.

Generally, the kernel parameter σ determines the local

properties of RBF function, and the tolerance error γ balances

the training error and model complexity (Roy et al., 2019).

Therefore, the optimal selection of parameters is crucial to

improve the accuracy of LSSVM model.

2.3 Parameters optimization of least-
squares support vector machine using
genetic algorithm

Genetic algorithm (GA) is a global searching method for

handling optimization problems (Li et al., 2018). Actually, GA is

an evolutionary algorithm inspired from the evolution theory of

genetics and natural selection based on the implementation of

natural genetic mechanisms such as selective reproduction,

crossover and mutation. Compared with other optimization

algorithms, GA requires fewer adjustment parameters to

obtain the globally optimal solution and is easy to implement.

Hence, GA is applied to seek the optimum parameters of LSSVM

considering its excellent global search abilities in this paper. The

GA optimization strategy starts by initializing a randomly

generated population. Next, a population with new individuals

FIGURE 1
Schematic diagram for the ith sliding surface of a discrete
slope.
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can be formed by genetic operations, and the process is repeated

in computational iterations of the evolving population.

Subsequently, each individual is evaluated by the statistical

fitness function until the best individual (the optimal

parameters) are attained. The calculating process of optimal

LSSVM parameters using GA for system reliability analysis of

landslide is described in Figure 2.

In this paper, the root mean square error (RMSE) is used as

the fitness function to evaluate the fitting performance of

LSSVM. It can be defined as:

RMSE �
�������������
1
m
∑m
i�1
(yi − ~yi)2,√

(9)

where m is the number of sample points, yi and ~yi are the actual

values and fitting values by the LSSVM model, respectively.

2.4 least-squares support vector
machine-based multiple response-
surface method for system reliability of
landslide

For a complex multistage historic landslide with several

failure modes, i.e., sliding surfaces, the limit state function for

ith failure mode gi(X) can be written as:

gi(X) � Fsi(X) − 1. (10)

Note that an explicit equation Fsi(x) for ith sliding surface of
landslide is difficult to obtain by the FEM simulation. The GA-

LSSVM model is adopted to construct the RSF ~gi(X) to

approximate the implicit relationship function of landslide

between the safety factor and the shear strength parameters.

Applying the similar method, a multiple RSFs with all sliding

surfaces can be established for the system reliability analysis.

According to Eq. 5, the ith LSSVM-based RSF ~gi(X) can be

expressed as:

~gi(X) � ∑m
k�1

ai,kK(X,Xk) + bi. (11)

After a LSSVM-based MRSM is constructed, a direct Monte-

Carlo simulation (MCS) approach (Liu and Low 2017) can be

applied to obtain the failure probability of ith sliding surface pfi

and system failure probability psys
f as follows:

pfi � 1
Np

∑Np

k�1
I[~gi(X)< 0], (12)

psys
f � 1

Np
∑Np

k�1
I[ min

i�1,2,/Nm

~gi(X)< 0], (13)

where Np and Nm are the number of MCS simulations and

sliding surfaces of landslide, respectively; I(·) is an indicator

function.

Once the LSSVM-based MRSM is generated, the evaluation

of the safety factors can be obtained directly by the evaluation of

the algebraic expression without deterministic analysis of

landslide stability. This means that the computational cost of

the MCS is greatly reduced, especially for the deterministic

analysis of finite element simulations. In addition, for

deterministic multiple sliding surfaces of multistage landslides,

the hybridization of the limit equilibrium method (LEM) and

finite element method (FEM) only needs one finite element

simulation to calculate the safety factors of all potentially

FIGURE 2
Calculation diagram of GA optimized LSSVM in system reliability analysis of landslide.
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sliding surfaces from the stress fields generated, which will

further reduce the computation of FEM. The flow chart of

this proposed approach for system reliability of landslide can

be shown in Figure 3.

3 Case study

3.1 Characterization and geology features
of landslide

To illustrate the proposed methodology, the Zhenggang

landslide, which is located on the right bank of the Gushui

hydroelectric power station along the Lancang River near the

village of Zhenggang in Yunnan Province, China, is

considered. The landslide volume is approximately

47.5 million m3 with an elevation of 2180–3220 m, and its

external boundary is indicated by the yellow line in Figure 4A.

The landslide, which has formed three dynamic sliding stages,

lies mainly between the right No. 7 gully on the right bank and

the Yagong gully. Because intensive erosion of the Zhenggang

gully has generated the deepest terrain incision depth, the

landslide can be divided into two geomorphological zones (I

and II).

According to a geological reconnaissance survey, the

Zhenggang landslide has undergone three episodes of large-

scale sliding in the past and formed three potential sliding

surfaces, as evidenced by its long-term deformation evolution

and the destructive features in the surrounding environment

(Wang et al., 2017). The largest bedrock landslide formed in the

first stage and was caused by fracturing, i.e., shear failure of

layered rock, which was subjected to large bending and/or

toppling forces. A transfixion surface gradually formed with

the continuous development of the shear plane and tensile

cracking at the trailing edge, which led to rapid offsets along

Lancang River and formation of the first stage of the landslide

mass. The second- and third-stage landslides occurred inside the

first stage of the landslide body. Their formation mechanisms are

essentially the same: all slides deformed locally in the late

reformation of the oldest landslide. Heavy rainfall, snowfall,

groundwater flow, earthquakes, long-term erosion by melting

glaciers, and weathering are factors that led to the two subsequent

large-scale sliding events, forming the current second and third

landslides. Figure 4B shows it can be clearly seen that the sliding

zone of the Zhenggang landslide is between the landslide deposit

and bedrock in the site.

Figure 5 shows that the landslide deposit formed three

potential sliding surfaces. The same transfixion surface

observed in all stages indicates high correlation between the

three surfaces. The landslide deposit is mainly composed of

diluvium (Qdl), glacial and fluvial deposits (Qfgl), and landslide

deposits (Qdel). A typical profile of the Zhenggang landslide, as

shown in Figure 5, is chosen for the case study.

3.2 Statistical parameters

The values of some material properties, such as unit weights

γ, Young’s modulus E, and Poisson’s ratio μ, typically have a

limited rate of change and have little influence on the reliability

analysis (Tan et al., 2011). They can therefore be considered as

deterministic variables in this case. Furthermore, the slide mass

of the Zhenggang landslide is mainly in landslide deposit and

sliding zone; as a result, it is acceptable to ignore the randomness

of bedrock parameters. The randomness of shear strength

parameters c and φ for deposit and sliding zone is considered

in this paper.

To determine statistical characteristics of shear strength

parameters of the Zhenggang landslide, a certain number of

shear tests are conducted for 22 deposit samples and 3 samples

of sliding zone. The laboratory tests result shows the cohesion

cd and friction angle φd of deposits can be modelled as

FIGURE 3
The flowchart of the system reliability analysis for landslide.
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normally distributed random variables (Xu 2010), and the

corresponding histograms are shown in Figure 6. However, we

could not make definite conclusions regarding the statistical

distribution types of shear strength parameters for the sliding

zone because of the small number of acquisition trials.

Combined with the parameter inversion analysis and

statistical results of similar engineering, the cohesion cs and

friction angle φs of sliding zone can be considered as standard

normally distribution of random variables. Descriptive

statistical parameters for the Zhenggang landslide are listed

in Table 1.

4 Results

4.1 Validation of the finite element model

Deterministic methods, i.e., finite element model and

simplified Bishop method, are employed to analyze the

Zhenggang landslide stability using the mean parameter values

listed in Table 1. The FEM analysis on Zhenggang landslide is

built based on the lastic-plastic constitutive model and Mohr-

Coulomb criterion. The vertical borders of the landslide model

are horizontally constrained, and the bottom is completely fixed.

FIGURE 4
Aerial view and geomorphic features of the Zhenggang landslide (Xu 2010).p

FIGURE 5
A typical profile of the Zhenggang landslide with three sliding surfaces.
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The calculation results of the three sliding surfaces are

respectively 1.119, 1.090 and 1.052, which is in good

agreement with that (i.e., 1.140, 1.069 and 1.059) calculated

from the simplified Bishop. This verifies the accuracy and

feasibility of the sliding surface stress as the deterministic

method of landslide numerical modeling. All safety factors are

greater than 1.05, which demonstrates that the Zhenggang

landslide remains in an essentially stable state. The third stage

(i.e., front area) of the landslide has the lowest safety factor value,

indicating that it is most likely to destabilize; the first failure is

expected to occur in the front area of the landslide. When not

supported by the third sliding body, the landslide gradually

disintegrates and moves towards the Lancang River.

Moreover, for system reliability analysis of landslides

involving deterministic multiple sliding surfaces, the sliding

surface stress analysis has an incomparable advantage than

shear strength reduction. The shear strain colour plot of

Figure 7 indicates that finite element strength reduction

technique can only obtain the most dangerous failure plane

(Third-stage landslide) but cannot reflect the effects of the

secondary failure surfaces on the system stability of landslide.

In contrast, the sliding surface stress analysis can calculate the

FIGURE 6
Histograms of material properties of landslide deposit (A) cohesion and (B) friction angle.

TABLE 1 Descriptive statistics parameters for the Zhenggang landslide.

E (GPa) γ (kN/m3) μ c (kPa) φ(°)

Mean Standard deviation Mean Standard deviation

Deposit 0.10 21.50 0.32 37.44 2.63 29.55 1.01

Slip zone 0.05 20.50 0.35 20.55 2.37 27.0 1.80

Bedrock 5.0 24.00 0.30 250 — 40.00 —

FIGURE 7
Landslide failure plane deduced from finite element
simulation.
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safety factors of multiple potentially active sliding surfaces from

the stress fields generated by a finite element simulation, which

will effectively expand the application of FEM analysis in

landslide system reliability analysis.

4.2 Validation of least-squares support
vector machine-based multiple response-
surface method

The key to system reliability analysis is to construct the

MRSM of Fs for all sliding surfaces using the random

variables of landslide. In this paper, a total of 400 samples

with four random variables, i.e., cd and φd of deposit, cs and φs

of sliding zone, are first randomly generated as training

samples based on normal distribution characters of

random variables. These training samples are generated

using the Latin hypercube sampling method (Huang et al.,

2020). The safety factors of the three sliding surfaces from the

400 training samples are subsequently used to determine the

multiple response-surface functions. That means that

perform 400 runs of FEM analyses to obtain the

corresponding safety factors of the three sliding surfaces.

The LSSVM models for the three sliding surfaces are then

used to construct the MRSM based on the 400 training

samples, and GA is used to search for optimum parameters

of LSSVM (σ and γ). During the build process, three different

and independent suites of LSSVM models are trained

simultaneously, each of which corresponds to a response

surface of sliding surface. The population size of GA is set

to 50 and the maximum generation number is set to 50, the

crossover probability and mutation probability are set to

0.8 and 0.08 respectively. The results of optimum

parameters σ and γ of multiple LSSVM models with the

three sliding surfaces are presented in Table 2.

After the LSSVM-based MRSM is constructed, an

additional dataset of 2000 samples are generated using the

Latin hypercube sampling. The trained LSSVM models are

then adopted to predict the safety factors of the three sliding

surfaces associated with the 2000 random samples. A MCS

method is applied to obtain the failure probability of ith

sliding surface pfi and system failure probability psys
f from

the 2000 LSSVM-predicted values of safety factors, and the

results of calculation are presented in Table 2.

The failure probabilities of the three sliding surfaces are

respectively 2.15%, 5.65%, 16.95%, which is consistent with

the evaluation of landslide safety factor, that is, system failure

of the Zhengang landslide is mainly contributed by the third

sliding. Although the safety factors of the Zhenggang landslide

with the three sliding surfaces are all greater than 1.05, the failure

probability of the third stage landslide is as high as 16.95%. It is

suggested that accurate evaluation of landslide stability based on

deterministic analysis of the landslide alone is insufficient and

system reliability analysis is essential to have a complete picture

of the risk of land sliding. The system failure probability (16.95%)

demonstrates that engineering measures be taken to reinforce the

Zhenggang landslide because of low landslide stability.

For comparison, a direct finite element MCS with

2000 samples is used to estimate the system failure probability

of the Zhenggang with the three sliding surfaces. This means that

the FEM of the sliding surface stress analyses are conducted with

2000 simulations. The calculation result of the three sliding

surfaces are respectively 2.20%, 5.60% and 16.70%, which is in

good agreement with that (i.e., 2.15%, 5.65% and 16.95%)

calculated from the LSSVM-based MRSM. The good

agreement signifies the promising performance of LSSVM-

based MRSM as metamodel of the FEM models.

4.2.1 Nonlinear characteristics of multiple
response surfaces

To study the nonlinear characteristics of multiple response

surfaces of the Zhenggang landslide, four different training

sample sizes, 100, 200, 300 and 400, are used to construct the

multiple response surfaces with the three sliding surfaces in this

paper. Figures 8–11 show the safety factors of three sliding

surfaces with different training sample sizes. Each subplot

contains different number of scatter points that correspond to

the training samples. Label of X-axis, Y-axis and Z-axis

represents respectively the cd and φd of deposit and cs of

sliding zone, and the size of scatters is φd of sliding zone.

According to the calculation results of the FEM method, the

safety factors are marked in different colors on the scatters, where

TABLE 2 Calculation results of intelligent multiple response surfaces for the Zhenggang landslide.

Stages
of typical profile

Optimum parameters Failure probability (%)

σ γ

1st 2.99 543.50 2.15

2nd 3.23 548.12 5.65

3rd 5.12 513.51 16.95

System 16.95
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yellow and blue are safety factors less than 1 and greater than

1 respectively. As shown in Figures 8–11, failure points (Fs <
1) of each failure sliding surface increase obviously as the

increase of training sample size. There are the most failure

points and the largest failure zone in the third sliding surface,

indicating that the third stage is most likely to destabilize,

which is consistent with the evaluation of landslide safety

factor. What’s more, the shape of response surfaces (red

surfaces) with safety factor of 1 is complex and changeable

under the condition of multi-dimensional parameters. It is

obvious that the traditional polynomial-based RSMs are

difficult to fit the red response surfaces with highly

nonlinear characteristics. Therefore, the LSSVM model

with excellent nonlinear fitting ability is used to build the

MRSM of Zhenggang landslide in this paper.

4.2.2 Performance of least-squares support
vector machine-based multiple response-
surface method

Figure 12 shows the predicted safety factors of LSSVM are

compared with the FEM of the sliding surface stress analysis

calculated values under the four different training samples (100,

200, 300 and 400). The 2000 safety factors results from the direct

finite element MCS are taken as the “exact” solutions to examine

the accuracy of the trained LSSVM with the four training sample

sizes. The calculation results show the training sample size

directly affects the prediction performance of the proposed

method. As expected, more training samples means that the

GA optimized LSSVM model can learn more nonlinear features

to describe the mapping relationships between the safety factor

and random variables, resulting in decrease RMSE values.

FIGURE 8
Safety factors of three sliding surfaces with 100 training samples. (A) 1st sliding surface (B) 2nd sliding surface (C) 3rd sliding surface.

FIGURE 9
Safety factors of three sliding surfaces with 200 training samples. (A) 1st sliding surface (B) 2nd sliding surface (C) 3rd sliding surface.p
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FIGURE 10
Safety factors of three sliding surfaces with 300 training samples. (A) 1st sliding surface (B) 2nd sliding surface (C) 3rd sliding surface.

FIGURE 11
Safety factors of three sliding surfaces with 400 training samples. (A) 1st sliding surface (B) 2nd sliding surface (C) 3rd sliding surface.

FIGURE 12
Comparison of safety factor predicted by LSSVM-based MRSM with the four training sample sizes. (A) 1st sliding surface (B) 2nd sliding surface
(C) 3rd sliding surface.
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Moreover, the RMSE values are all smaller than 0.04, which

indicates the safety factors predicted by LSSVM agree reasonably

well with the FEM calculated values in all three subplots.

However, a bias in the trends is also easily observed when the

safety factor is greater than 1.15 or less than 0.97. The

convergence of the bias is generally attained within

300 training samples, which implies that 400 training samples

performed for this study are sufficient.

Figure 13A–C show the failure probability of the three

sliding surfaces with different number of simulations, for both

the LSSVM-based MRSM and direct MCS results. As the

number of simulations increases, failure probability

gradually decreases and converges within 1500 MCS

simulations, indicating that the 2000 simulations are

suitable. Some discrepancies between the safety factors

predicted by LSSVM and calculated by finite element are

observed, and the discrepancies gradually reduce by using

more training samples. The good agreement of the three

sliding surfaces further demonstrates 400 training samples

are the appropriate sample size, and the LSSVM model shows

good prediction performance for the nonlinear response

surface.

In summary, from the perspective of both accuracy and

efficiency, it can be seen that the use of LSSVM-based MRSM

provides a highly promising method for probabilistic numerical

modeling of landslide stability considering multiple sliding

surfaces.

5 Discussion

The promising performance of system reliability analysis

heavily depends on the computational cost of deterministic

landslide analysis and the number of samplings. Considering

the deterministic analysis adopted by the proposed method,

sliding surface stress analysis can effectively avoid the

iterative calculation in the process of shear strength

reduction. The computational cost associated with the

construction of probabilistic numerical modeling can be

quite high should the other shear strength reduction is

applied.

Besides, the accuracy and time costs of system reliability

increase linearly with the number of samplings, and more

samples means more deterministic analyses are performed.

Compared the directly MCS, the MRSM adopts metamodels

with a small number of samples to replace the deterministic

analysis procedure, which greatly improves the

computational efficiency. However, the traditional MRSM

method is limited to the design of sample number and

ranges, and quadratic polynomial functions are difficult to

approximate true RSFs nonlinearities for this case are

presented in Figure 8–11.

The proposed intelligent multiple response surfaces

method employs the robust generality of the LSSVM to

approximate the values of implicit RSFs, which combines

the advantages of the LSSVM and traditional MRSM

approach. As shown in Figure 12, the proposed method is

quite capable of representing the RSFs by using only

400 training samples that system reliability analysis can be

implemented with acceptable accuracy. Therefore, it is

applicable to a wide range of system reliability problems in

engineering geology, including the complex system reliability

analysis of multistage landslide involving sliding surfaces.

There are some shortcomings associated with the present

study. The minimum failure probability of the three sliding

surfaces is approximately 2% in this case, and the landslide

reliability problem with low levels of failure probability has

not yet been considered. It is well known that reliability

calculation could be very time consuming especially when the

failure probability is less than 10–4 (Jiang and Huang 2016).

Additional studies of geotechnical problems involving the

inherent spatial variability of soil properties will be

implemented to further illustrate the promising performance

of the proposed method in future work.

FIGURE 13
Comparison of failure probability for different number of simulation.p
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6 Conclusion

An intelligent multiple response surfaces method is proposed

to study the probability of system failure of a landslide by using

the MRSM combined with GA optimized LSSVM. The method is

applied to investigate the system reliability of the Zhenggang

landslide, in Yunnan Province, China, involving sliding surfaces.

The following conclusions can be drawn:

1 The sliding surface stress analysis can calculate simultaneously

the safety factors of multiple sliding surfaces for system reliability

analysis, which is not possible using shear strength reduction

method. This effectively expands the application of FEM analysis

in system reliability analysis of landslides involving deterministic

multiple sliding surfaces.

2 The GA optimized LSSVM can effectively improve the

fitting accuracy of the multiple response-surface method

with a limited number of samples, from which they obtain

substantially obtain the ability to make high-quality FEM

predictions.

3 By comparing the LSSVM-based MRSM against direct MCS

method, the accuracy and validity of the proposed intelligent

multiple response surfaces method are verified using the

Zhenggang landslide case study involving sliding surfaces.

Wong, 1985.
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