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Noise is ever present in seismic data and arises from numerous sources and is

continually evolving, both spatially and temporally. The use of supervised deep

learning procedures for denoising of seismic datasets often results in poor

performance: this is due to the lack of noise-free field data to act as training

targets and the large difference in characteristics between synthetic and field

datasets. Self-supervised, blind-spot networks typically overcome these

limitation by training directly on the raw, noisy data. However, such

networks often rely on a random noise assumption, and their denoising

capabilities quickly decrease in the presence of even minimally-correlated

noise. Extending from blind-spots to blind-masks has been shown to

efficiently suppress coherent noise along a specific direction, but it cannot

adapt to the ever-changing properties of noise. To preempt the network’s ability

to predict the signal and reduce its opportunity to learn the noise properties, we

propose an initial, supervised training of the network on a frugally-generated

synthetic dataset prior to fine-tuning in a self-supervised manner on the field

dataset of interest. Considering the change in peak signal-to-noise ratio, as well

as the volume of noise reduced and signal leakage observed, using a semi-

synthetic examplewe illustrate the clear benefit in initialising the self-supervised

network with the weights from a supervised base-training. This is further

supported by a test on a field dataset where the fine-tuned network strikes

the best balance between signal preservation and noise reduction. Finally, the

use of the unrealistic, frugally-generated synthetic dataset for the supervised

base-training includes a number of benefits: minimal prior geological

knowledge is required, substantially reduced computational cost for the

dataset generation, and a reduced requirement of re-training the network

should recording conditions change, to name a few. Such benefits result in

a robust denoising procedure suited for long term, passive seismic monitoring.
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1 Introduction

Noise is a constant, yet undesirable, companion of our

recorded seismic signals. Noise arises from a variety of

sources, ranging from anthropogenic activities to industrial

endeavours to undesirable waves excited by the seismic source

(e.g., groundroll occurring during a reflection seismic survey);

each of these sources generate noise signals with their own

characteristics (energy and frequency content) and duration.

Therefore, the composition of the overall noise field observed

in seismic data, often just referred to as noise, is continuously

changing. Noise is particularly troublesome for microseismic

monitoring where the signal often arises from a low

magnitude event, and is therefore, hidden below the noise

(Maxwell, 2014), which can result in errors and artefacts in

detection and imaging procedures (Bardainne et al., 2009). As

such, large efforts are made to reduce the noise from data

collection (e.g., Maxwell, 2010; Auger et al., 2013; Schilke

et al., 2014) to data processing (e.g., Eisner et al., 2008;

Mousavi and Langston, 2016; Birnie et al., 2017), and to

ensure monitoring algorithms are adequately tested under

realistic noise conditions (Birnie et al., 2020).

Following the great success in several scientific domains, in

the last decade Deep Learning (DL) has seen a rising interest in

the geophysics community. As far as seismic denoising

applications are concerned, Saad and Chen (2020) utilised an

autoencoder for random noise suppression, Kaur et al. (2020)

utilised cycleGANS for groundroll suppression, and Xu et al.

(2022) used deep preconditioners for seismic deblending, among

others. One major challenge of such DL procedures is that they

are trained in a supervised manner and therefore require pairs of

noisy-clean data samples for training—an often unobtainable

requirement in seismology. Whilst some studies have

investigated the use of synthetic datasets for network training,

this introduces uncertainty when applying the network to field

data due to the large difference between field and synthetic

seismic data (Alkhalifah et al., 2021). In an attempt to reduce

this difference, many exert a great deal of effort in generating

“realistic” synthetic datasets, which often require costly

waveform and noise modelling. Another alternative, some

geophysicists have adopted, is to denoise the field data using

conventional denoising methods, like local time–frequency

muting filters, to generate the clean target data (e.g., Kaur

et al., 2020). Whilst such an approach may speed up the final

denoising procedure (due to fast inference of neural networks),

the performance of the trained DL denoising procedure will, at

best, equal that of the conventional method used for generating

the training labels.

As the requirement of having direct access to noisy-clean

data pairs is unfeasible across many scientific fields, Krull et al.

(2019) proposed the use of self-supervised, blind-spot networks

for random noise suppression; by training a network directly on

single instances of noisy images, they demonstrated promising

denoising performance on both natural and microscopy images.

Birnie et al. (2021) adapted the methodology of Krull et al. (2019)

for suppression of random noise in seismic data, providing

examples of successful applications to both synthetic and field

data that outperformed state-of-the-art (non-Machine Learning)

denoising procedures. However, the study of Birnie et al. (2021)

also highlighted the degradation in the denoising performance as

any correlation begins to exist within the noise. Building on this,

Liu et al. (2022a,b) proposed to extend the blind-spot property to

become a blind-trace, adapting the previously proposed self-

supervised denoiser for the suppression of trace-wise noise.

Similarly, both Luiken et al. (2022) and Wang et al. (2022)

proposed blind-trace networks implemented at the

architecture level, as opposed to the likes of Krull et al.

(2019); Birnie et al. (2021); Liu et al. (2022a) which were

implemented as processing steps. Both Liu et al. (2022a) and

Luiken et al. (2022) illustrated successful suppression of trace-

wise noise, specifically poorly coupled receivers in common shot

gathers and blending noise in common channel gathers,

respectively. Similar to Birnie et al. (2021), both these studies

highlighted the potential of self-supervised learning to

outperform conventional methods, when applied optimally.

However as highlighted in numerous studies, noise is

continually changing and is neither fully random nor fully

structured and, therefore, cannot be represented via a single

distribution (Birnie et al., 2016). Earlier implementations of self-

supervised, blind-spot networks have all focussed on suppressing

a single component of the noise field as opposed to tackling the

noise field as a whole. In order to tackle the continually evolving

noise field throughout a field seismic recording, it is not possible

to use a rigid scheme involving a strict noise mask—such as the

trace-wise noise suppression of Liu et al. (2022a) and Luiken et al.

(2022)—instead a more flexible solution is needed.

In an attempt to target the noise field as a whole, we propose

the use of transfer learning to boost the performance of these self-

supervised procedures. Transfer learning involves pre-training a

network on one specific dataset, or task, and using the network

weights to warm-start the training process on either a new

dataset, or a new task (Torrey and Shavlik, 2010). Within

geophysics, a number of studies have already highlighted the

potential of transfer learning. For example, Wang B. et al. (2021)

proposed the use of transfer learning for a seismic deblending

task where an initial network is trained on synthetic data and

fine-tuned on labelled field data obtained via conventional

deblending methods. Similarly, Zhou et al. (2021) pre-trained

a model with synthetic data prior to fine-tuning on field data,

however this time the task at hand was fault detection. Both these

studies illustrated the benefit of pre-training on synthetic data

despite being slightly constrained by the need for some labelled

field data. Within this study, we propose supervised pre-training

on a ‘frugally’ generated synthetic dataset prior to using the

trained weights for initialising a self-supervised network that we

train on the field data. We hypothesize that, by utilising transfer
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learning, the supervised pre-training can teach the network to

learn to reconstruct the clean data using a blind-spot approach.

Whilst the subsequent, self-supervised, fine-tuning allows the

network to quickly adapt to the characteristics of the seismic

signature within the field dataset without learning to replicate the

field noise. As such, transfer learning may allow us to circumvent

the costly requirement of utilising highly realistic synthetic data

for supervised training whilst also avoiding the known challenges

of self-supervised learning where coherent noise is retained

alongside the desired seismic signal.

Self-supervised, blind-spot networks are one of the very few

options that allow training and applying a network utilising

only noisy field data. Given adequate time, such networks learn

to predict all the coherent components that contribute to a

central pixel’s value, both signal and noise. Focussing on a

microseismic use case, in this work we illustrate how blind-spot

networks can be pre-trained on synthetic data to learn to

predict the seismic signal from noisy data prior to fine-

tuning the network for a reduced number of epochs to learn

to reproduce the field seismic signature; stopping the network’s

training before it learns to replicate the coherent noise present

in the field data. We show how the utilisation of transfer-

learning allows us to tackle the full noise field without pre-

defining noise structures, as required in previous blind-spot

procedures. In these experiments, we explicitly use frugally

generated synthetic datasets for the network pre-training,

removing the computationally expensive—and often non-

trivial - task of generating realistic synthetic datasets.

Following supervised training on the synthetic dataset, the

network is further trained in a self-supervised manner to

adapt to the seismic signal observed in field data.

Benchmarked against both supervised and self-supervised

procedures, the supervised synthetic base-training followed

by the field self-supervised training is shown to improve the

SNR of the data whilst introducing the least damage to the

desired signal. Furthermore, the inclusion of the pre-training

allows a tuning of the denoised solution ranging from a cleaner

product with a smoothed signal to a high-quality signal with a

little more noise, depending on our needs, which may be driven

by down-the-line tasks of interest.

2 Theory: Self-supervised, blind-spot
networks

There are two key terminologies repeatedly discussed in this

paper:

• self-supervised learning: where parts of the same training

sample are used as both the input and target for training a

neural network (NN), and

• blind-spot networks: a specific NN implementation where

a central pixel’s value is hidden in the input to the NN for

training therefore requiring the network to learn most of

the pixel’s value from the neighbouring pixels.

Typically, blind-spot networks are implemented in a self-

supervised manner. However, there is no technical reason as to

why blind-spot networks cannot be implemented in a supervised

manner, as will be done later in this paper. For the remainder of

this section, we will introduce the theory of blind-spot networks

from self-supervised point of view.

Conventional deep learning denoising methodologies rely on

having pairs of clean and noisy samples for training. In some

instances this may be possible, such as using photos on a perfectly

clear day to train a network to suppress rain noise observed at the

same location on a subsequent day (Ren et al., 2019). However, in

many fields such as microscopy, medical imaging and geoscience,

it is almost impossible to collect perfectly clean images to be used

as the training target. For MRI, Lehtinen et al. (2018) recast this

problem to overcome the requirement for a noisy training target.

Assuming they had pairs of images with the same underlying

signal but different noise properties, they showed how a network

can be trained to map between the two images. However, as the

noise varies between samples, the network never truly learns to

map the noise and the resulting prediction is just the signal.

Whilst removing the requirement of a clean target, this approach

still required multiple instances with an identical signal - an

unobtainable ask for wave-based data such as those obtained

from seismic monitoring.

Self-supervised, blind-spot networks were originally

proposed as a means to overcome this requirement of having

pairs of training data. Krull et al. (2019) identified that under the

assumption that signal is coherent and noise is independent and

identically distributed (i.i.d.), then the domain mapping of

FIGURE 1
Schematic illustration of a noisy trace undergoing blind-spot
denoising. For the prediction of a central value (red star), the input
to the network is the nearby samples (blue area). The central value
is not used in the prediction of its own value.
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Lehtinen et al. (2018) could be extended to utilising a single

instance per training sample. To do so, the networkmust use only

neighbouring pixels to predict a central pixel’s value and cannot

be exposed to the original, noisy value of the central pixel.

Figure 1 illustrates what a blind-spot network would be

exposed to when predicting a central value on a noisy trace.

Assuming the trace is contaminated by random noise, the

network cannot learn to predict the noise component of the

trace and, therefore, only the signal component will be

reproduced.

Extensions to blind-spot networks have recently been

proposed allowing the suppression of coherent noise along a

specific direction. Broaddus et al. (2020) originally proposed an

extension of the “blind-spot”, termed Structured Noise2Void, to

mask the full area of coherent noise that may contribute to a

pixel’s predicted value. Recall—the network learns to predict the

non-random components of the central pixel. Therefore, without

the masking of coherent noise, the network would learn to

replicate both the signal and noise. Figure 2 shows how the

blinding structure could be constructed for different noise types

observed in seismic data. The first (a) is noise with a short-lived

correlation in time and space, possibly due to a local

meteorological phenomenon. The mask for such noise,

assuming equal spatio-temporal correlation, is just an

extension of the blind-spot to a blind-square. The second (b)

noise type shown is trace-wise, arising from a handful of poorly-

coupled receivers. In this instance, the noise is coherent across

the trace so the blind-spot is extended to a blind-trace, as

proposed by Liu et al. (2022a). The next noise type (c) is the

arrival of a seismic wave from a distant event, causing a linear

move-out pattern. In this case, the blind-spot becomes a blind-

line with the same rotation angle as the expected event. The

challenge with building extensions of the blind-spot is that they

require constant noise properties across the full training set.

Whilst it is vital for successful denoising to remove the

presence of coherent noise, it is important to note that by

removing those pixels’ contributions from the network’s input

can result in a substantial reduction in the amount of signal the

network will see. Considering the final example (d) in Figure 2,

the properties of the coherent noise affecting one pixel to the left

of the array are significantly higher to those affecting a pixel in

the middle which are again significantly different to those on the

left of the array. As such, it is highly non-trivial to design a blind-

mask that would stop all coherent noise being provided to the

network whilst still permitting enough signal information. For

this reason, we return to the initial blind-spot approach and

consider how we can adapt the training procedures to reduce the

influence of coherent noise without explicitly masking it out.

In this work, we assume that it is impossible to obtain

perfectly clean samples of field data for training and that

there will always be a difference in features between synthetic

and field data. Therefore, if we wish to train on data with the

same properties as the data onto which we intend to apply the

trained network then we must use the noisy, raw field data as our

training input and target. As mentioned in the introduction, the

‘blinding’ operation can be achieved through data manipulation

(e.g., Krull et al., 2019) or network design (e.g., Laine et al., 2019).

A comparison of the two approaches has not yet been published

to identify if one or the other is better for seismic data. Therefore,

following on from the study of Birnie et al. (2021), we utilise the

pre-processing method, which will be discussed in the following

methodology section.

3 Methodology

Self-supervised, blind-spot networks have been shown to be

strong suppressors of i.i.d. noise without requiring pairs of noisy-

clean training samples. However, the assumption under which

these networks were proposed breaks as soon as any correlation

exists within the noise (Krull et al., 2019). In this section, we first

introduce our implementation of blind-spot networks through

pre-processing alongside a tailored loss function. This is followed

by a discussion on the general neural network (NN) architecture

and training schemes used in this study and a detailed description

of the implementation of transfer learning in this application.

FIGURE 2
Different noise types and their respective blind-masks. (A) Coloured noise, (B) trace-wise noise, (C) noise from a far away event, and (D) field
noise.
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Going forward, the term supervised training refers to the

scenario where noisy data are used as input to the NN and clean

data are the NN’s target. Whilst self-supervised training refers to

the scenario where no clean data are used, therefore a modified

version of the noisy data are used as the input of the NN and the

raw, noisy data are the NN’s target. Blind-spot networks

specifically refer to an adaptation of conventional networks

where a randomly chosen pixel has its value removed from

the network’s receptive field, forcing the network to learn to

predict this pixel’s value from neighbouring pixels. Herein, the

randomly chosen pixels will be referred to as active pixels,

referring to their role in the loss function used for training

the network. As highlighted below, blind-spot networks can

be implemented in both a supervised and self-supervised fashion.

3.1 Blind-spot implementation

Under the assumption that signal is correlated between

nearby pixels and that noise is i.i.d., a model can be trained to

predict the signal component of an active pixel based off

neighbouring pixels’ values. To ensure the network cannot use

the active pixel to predict itself, a pre-processing step is

implemented that identifies a number of these active pixels

and replaces their value with that of a neighbouring pixel, as

illustrated in Figure 3. In our implementation, this active pixel

selection and replacement is applied at every epoch, changing

both the location and values of the selected active pixels. Unlike

Krull et al. (2019) who randomly select the replacement pixel

value from within the full neighbourhood region, we explicitly

ensure that an active pixel’s value cannot be replaced by itself.

This “corrupted” version of the raw noisy data becomes the

input to the network. For the conventional, self-supervised case,

the network’s target are the raw noisy data themselves. The

purpose of the network is to learn to predict an active pixel’s

value based on the contribution of neighbouring pixels.

Therefore, the loss is only calculated at the active pixels’ locations,

Ldenoising � 1
NsNp

∑
Ns

j�1
∑
Np

i�1
|xj

i − ŷj
i |, (1)

where Ns represents the number of training samples, Np denotes

the number of blind-spots per sample, xj
i is the original value of

the i-th active pixel, and ŷj
i is the predicted value of the i-th active

pixel. Here, the operator |·| denotes the absolute value. As with
most NN tasks, the loss is back-propagated and used to update

the weights (Siddique and Tokhi, 2001). Under the assumption of

i.i.d. noise, the network cannot learn to accurately recreate the

noise component of each active pixel due to its random nature.

Therefore, the loss function is minimised across the training

samples as the signal component is being recreated without

predicting the noise.

The blind-spot procedure has a number of parameters, in

particular the number of active pixels and the neighbourhood

radius from which the replacement pixel value is selected.

Previous work by Birnie et al. (2021) highlighted how

increasing both those values can allow some accommodation

for breaking the i.i.d. noise assumption. Table 1 compares the

different parameters selected for different studies. In this work,

we aim to tackle the full noise field, a combination of random and

coherent noises, therefore we initialised our parameter selection

based on the seismic field data parameters of Birnie et al. (2021).

FIGURE 3
Proposed workflow for the incorporation of transfer learning into self-supervised, blind-spot networks. First, a blind-spot network is trained in a
supervised fashion with a clean target (left). The weights after training are then used to initialise a new network, which is trained directly on the field
data, in a self-supervised manner.
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Manual tuning of the parameters did not provide any

improvement in the networks’ denoising performance.

3.2 Network design and training
procedures

Throughout the experiments shown in this paper, the

network design and training parameters are held constant.

These are detailed in Table 2 and were chosen based on

previous blind-spot network implementations combined with

a trial-and-error optimisation for the field dataset considered in

this study.

For the self-supervised, blind-spot implementations, the

number of epochs over which the network is trained has been

shown to be a determining factor in the networks ability to

suppress the noise. The longer the network is trained, the more

time it has to learn to replicate the noise, as well as the signal. The

selection of the number of epochs to train over is strongly

dependent on the signal and noise within the data of interest.

As such, in this study we investigate the optimum number of

epochs for the self-supervised networks.

3.3 Transfer learning implementation

This study lies its foundations on the hypothesis that a

network can be initially trained to learn to predict the signal

component of an active pixel without the network learning to

also replicate the noise component. This initial training is

performed using overly-simplistic synthetic datasets with

noisy-clean training pairs prior to the learnings being

transferred to the self-supervised procedure via a weight

transfer. Throughout we will refer to the supervised (initial)

training as the base-training and the subsequent self-supervised

training, as the fine-tuning.

Figure 3 represents the proposed workflow for the inclusion

of the base-training (left-side) prior to the original self-

supervised training (right-side). Both networks are trained in

a blind-spot manner, i.e., following the active pixel selection and

corruption of Krull et al. (2019). Unlike for self-supervised, blind-

spot procedures, the target of the base-training are the clean,

synthetic data. This clean target provides the network with the

exact values that we wish for it to predict, i.e., only the signal

component, but teaches it to do so from only the neighboring

pixels.

For the fine-tuning, this is performed as a self-supervised task

under the assumption that no clean target data are available. As

such, only a blind-spot implementation is utilised and the target

is the raw, noisy data themselves. The initial weights of the

networks are transferred from the earlier base-training

experiments prior to being optimised following the self-

supervised training procedure, as illustrated by the long, black

arrow in Figure 3.

For comparative purposes, a self-supervised, blind-spot

network is trained from randomised weights, as opposed to

using the transferred weights from the base-training. In

addition, the blind-spot network trained in a supervised

manner is also applied to the data to provide a benchmark

against supervised options.

4 Training data generation

Self-supervised learning procedures aim to tackle the often

unobtainable requirement of having clean-noisy training pairs.

In geophysics this requirement has previously been overcome, to

a certain extent, by the use of realistic synthetic datasets, which

are often non-trivial to generate - requiring expensive waveform

modelling and realistic noise generation. To avoid re-introducing

this non-triviality into the blind-spot procedure we use simplistic

synthetic datasets for the supervised training. Alongside the

TABLE 1 Blind-spot network parameters for different data and noise types.

Study Data Type Noise Type % Active Pixels Neighborhood Radius

Krull et al. (2019) Natural Images i.i.d. 0.2 - 2 5

Birnie et al. (2021) Seismic WGN 0.2 5

Birnie et al. (2021) Seismic Bandpassed 25 15

Birnie et al. (2021) Seismic Field Data 33 15

This study Seismic Field Data 33 15

TABLE 2 The neural network architecture and training parameters.

NN Architecture # Layers # Initial
Filters

Kernel
Size

UNet 2 32 3x3

Loss Function Batch Size Optimiser Initial LR

MAE 32 Adam 1e-4
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simplistic synthetic dataset, a semi-synthetic dataset is generated

for benchmarking purposes (i.e., it is never used in the supervised

training of the models). Semi-synthetic datasets are particularly

useful for denoising studies as they combine field-recorded noise

with computationally generated seismic waveforms. Therefore,

there is a known denoising product desired (the clean waveform)

and the noise that exhibits the same characteristics as that in field

data, onto which the denoising procedures are later to be applied.

In this study we focus on a passive seismic dataset previously

analysed by Wang H. et al. (2021). Three different datasets

utilised in this study as illustrated in Figure 4.

The synthetic data are generated using a two-step procedure:

first, Eikonal-based modelling is used to compute the travel-

times at all receivers to a given subsurface volume and then, the

synthetic seismograms are generated via convolutional

modelling. Receivers are placed on the surface and distributed

in a similar manner to those used to acquire the field data. Travel-

times are computed from each receiver to all subsurface points

through a laterally homogeneous velocity model using the fast

marching method (Sethian, 1999), implemented via the scikit-

fmm python package (Furtney, 2019). For memory purposes,

only the travel-times corresponding to a specific area of interest

(i.e., around the reservoir) are retained for generating the

synthetic seismograms. After the computation of the travel-

time tables, source-locations are randomly selected and the

corresponding synthetic seismic data is generated per receiver

by placing an Ormsby wavelet at the arrival time. In order to

increase variety within the training data, the frequency content of

the wavelet is randomly chosen per event, within a reasonable

frequency range for microseismic events. Finally, to account for

geometric spreading, each trace is scaled by 1/r, where r

represents the distance between the source and corresponding

receiver.

Using an Eikonal solver can drastically decrease the compute

cost, whilst the reliance on prior geological knowledge is also

reduced through the use of a laterally, homogeneous model.

Through this approach, we do not account for realistic source

mechanisms or complex propagation. Such assumptions

contradict our knowledge of elastic waveform propagation

from microseismic sources, rendering the generated

waveforms highly unrealistic. In order to introduce noise,

Coloured, Gaussian Noise (CGN) is added to all the

waveforms completing the synthetic training datasets

generation. Whilst CGN is slightly more realistic than the

commonly used White, Gaussian Noise (WGN), it still

exhibits highly unrealistic noise properties in comparison to

noise observed in field data.

To allow for a thorough investigation of the benefits of the

proposed methodology, a realistic semi-synthetic dataset is

generated. The waveforms are excited by point sources

FIGURE 4
Microseismic events from synthetic (A) and (D), semi-synthetic (B) and (E) and field data (C). Top row illustrates the data to be denoised, whilst
the bottom row illustrates the noise-free target data (i.e., the generated waveforms).
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randomly placed in the same reservoir region as before, however

this time the waveforms propagate through a 3D velocity model

[from Wang H. et al. (2021)] using an elastic wave equation,

implemented in Madagascar (Fomel, 2003). To include realistic

noise, noise from the field data is directly added to the modelled,

elastic waveform data.

To increase data volumes, giving us an adequate number of

training samples, for both the synthetic and semi-synthetic datasets,

waveforms are randomly flipped (i.e., polarity reversed) with arrival

times shifted across the recording window. For the field dataset, all

available events are used for training the network prior to its

application onto the same field events. As this is a self-supervised

procedure with no clean training target available, we do not have the

same over-fitting concerns as supervised procedures and therefore,

there is no requirement for a blind, holdout set.

5 Results

5.1 Semi-synthetic examples

As there is no ground-truth available when denoising field

data, an initial denoising experiment is performed where semi-

synthetics represent the field data. This allows us to perform a

rigorous statistical analysis on the denoising products identifying

the volume of noise suppressed/remaining, as well as any signal

damage encountered. The Peak Signal-to-Noise Ratio (PSNR) is

used throughout as a measurement of the overall denoising

performance. Signal leakage is a huge concern in seismic-, and

particularly microseismic-, processing with geophysicists

typically preferring to leave in more noise than to cause any

damage to the signal (Mousavi and Langston, 2016). To quantify

FIGURE 5
Denoising performance with respect to epochs for self-supervised (left), supervised (center) and fine-tuned (right) networks. The top two rows
illustrate the PSNR change through denoisingwith different y-axes scales for comparison, the third illustrates the noise suppressed whilst the bottom
row illustrates the volume of signal leakage occurring.
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signal leakage, the Mean, Absolute Error (MAE) is computed

between the clean and denoised data on the pixels where the

clean waveform is present. Finally, to compute the approximate

volume of noise suppressed, the MAE is computed between the

additive noise (i.e., subtracting the clean data from the noisy

data) and denoised data on the pixels everywhere that a clean

waveform is not present.

As previously mentioned, three blind-spot networks are

trained: one self-supervised trained on the “field” data, one

trained in a supervised manner on the synthetic data, and one

fine-tuned in a self-supervised manner, initialised with the

weights of the supervised model. To identify the optimum

number of training epochs per model, a statistical analysis is

performed at regular checkpoints to investigate the denoising

performance. Note, self-supervised methods require substantially

less epochs as they will quickly learn to replicate coherent noise if

trained for too long. Figure 5 illustrates the different networks’

progression during their respective training cycles. An interesting

observation is that the volume of noise suppressed with the

transferred approach, closely follows the trend of the self-

supervised denoising procedure: decreasing the volume of

noise suppressed per epoch as the network starts learning to

replicate the noise as well as the signal. However, the amount of

signal leakage is substantially less than the other two training

approaches, even in the early epochs - highlighting that the fine-

tuning stage has quickly learnt to adapt to the field source

signature.

Considering the trends in each networks’ performance, and

verified via a visual analysis of the denoised products we use the

following number of epochs for the different models:

• Self-Supervised: 15 epochs,

• Supervised: 200 epochs, and

• Transferred: 200 supervised plus 2 self-supervised epochs.

The trainedmodels were tested on 100 new events, unseen in the

training and hyper-parameter tuning procedures. Figure 6 portrays

the performance of the three different models on two of these

microseismic events, with noticeably different frequency content

and moveout shapes. In both events, the proposed methodology

incorporating transfer learning results in the highest PSNR and the

least amount of signal leakage. The network trained in a supervised

manner suppresses all noise within the data, something neither of

the techniques including self-supervised learning achieve. However,

the signal damage (/leakage) is significant, particularly in the second

event. Furthermore, Figure 7 illustrates the change in the PSNR for

the 100 investigated events (a), alongside the volume of noise

suppressed (b) and the signal leakage occurring (c). Similar to

the results from the two displayed events (in Figure 6), the

transfer learning approach offers the highest PSNR improvement

and the least amount of signal damage. Whilst the transferred

approach cannot match the noise removal of the supervised

procedure, substantial noise reduction is observed in comparison

to the standard, self-supervised approach.

FIGURE 6
Two semi-synthetic events denoised by the three different networks: self-supervised (top row), supervised (middle row) and the transfer
learning network (bottom row). The first and fifth columns illustrate the noisy and clean data, while the second and sixth display the denoised
products. The next two columns show the difference between the noisy and clean data, respectively, for the denoising products of the different
networks. Values for the PSNR, noise removed and signal leakage are given in each subplots titles.
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5.2 Field examples

The same supervised model is applied to the field data, whilst

a new self-supervised training is implemented on a similar model

initiated randomly and initiated with the supervised model

weights for what we previously identified as the optimum

number of epochs. Figure 8 illustrates the performance of the

three different networks on four microseismic events observed in

the field dataset. As in the semi-synthetic examples, the events

have different frequency content, move-out patterns and noise

properties. As there is no noise-free equivalent of the field events,

quantifying the increase in the SNR and the amount of signal

damage is non-trivial. However, qualitatively we can observe

from the top row of plots for each event that the transfer learning

procedure suppressed substantially more noise than the self-

supervised procedure. In particular, the high-energy noise

observed on a number of traces in both Event One and Three

has been greatly reduced. In addition to this, by considering the

difference between the noisy data and denoised products (bottom

rows), it is clear that the transfer learning procedure introduces

the least amount of signal leakage.

The denoising performance for the different approaches is

further illustrated in Figure 9 for an additional eight events, with

varying SNRs and arrival move-outs. The first four events have

relatively large SNRs, with all three denoising methods managing

to remove some noise whilst retaining a relatively clean signal

component. Although, for the fourth event the supervised

method is beginning to noticeably struggle with the signal

reconstruction. The final four events are contaminated by

higher noise levels. In this instance, the supervised method

cannot accurately reproduce the signal whilst the fully self-

supervised procedure leaks significant noise into the denoised

product. The fine-tuned model (i.e., transferred approach) is

shown to provide a balance between the drastic signal damage of

the supervised procedure and the noise inclusion of the self-

supervised approach.

6 Discussion

Blind-spot, self-supervised denoising techniques, such as

N2V (Krull et al., 2019) and StructN2V (Broaddus et al.,

2020), remove the common requirement of clean-noisy pairs

of data for training a denoising neural network. However, the

main drawback of N2V is the random noise assumption, that

rarely holds for noise in seismic data. Birnie et al. (2021)

illustrated how training on data with even minor correlation

within the noise field results in the network learning to reproduce

both the desired signal and noise. Whilst N2V’s successor,

StructN2V, can suppress coherent noise, it requires a

consistent noise pattern for which a specific noise mask is

built, e.g., masking the noise along a specific direction. This

has shown great promise for trace-wise noise suppression, such

as dead sensors (Liu et al., 2022a) or blended data (Luiken et al.,

2022), however it is not practical for the suppression of the

general seismic noise field which is continuously evolving. In this

work, we have proposed to initially train a network on simplistic

synthetic datasets and then fine-tune the model in a self-

supervised manner on the noisy field data. This base-trained

model has learnt to replicate only the signal component of a

central pixel from noisy neighbouring pixels. Therefore, a very

small number of epochs (e.g., two) is needed for the network to

adapt to the field seismic signature, significantly reducing the

amount of time the network is exposed to the field noise. As such,

the final network is capable of predicting the field seismic

signature without substantial recreation of the field noise. Due

to the fast training time and small number of self-supervised

epochs required, when applying to new field datasets we

FIGURE 7
Comparison of denoising performance of the different networks: fully self-supervised (SSL), fully-supervised (SUP), and the network pre-trained
in a supervised manner prior to self-supervised, fine-tuning (TRN). The box plots show for 100 events the (A) overall change in PSNR, (B) volume of
noise removed, and (C) shows the amount of signal leakage encountered. The dashed line in (A) indicates a benchmark against the PSNR of the
original, noisy data.
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recommend manually inspecting the models’ performance for

the first five epochs to determine which is optimal for the given

dataset and down-the-line tasks.

6.1 Frugal synthetic dataset generation

The synthetic datasets generated for training only assumed a

rough vertical profile of the subsurface is known. As such, there

was no requirement of a detailed subsurface model or of the

expected noise properties. In addition to requiring less prior

knowledge, generating the travel-timetables for the subsurface

region of interest took 3 minutes per receiver with scikit’s Fast

Marching Method (scikit-fmm—Furtney, 2019) using a single

core [Intel(R) Xeon(R) W-2245 CPU @ 3.90GHz]. Subsequently,

synthetic seismograms were generated from the travel-timetables

using convolutional modelling. Allowing for the random

selection of the wavelet’s frequency content, the arrival time

shift and the generation of the wavelet, the convolutional

modelling step took 1.5 s per microseismic event. In

comparison, the 3D wavefield modelling for the semi-

synthetic dataset took 1.75 h per shot, due to requirements on

the time and space sampling to ensure stability. Whilst these

computation times may not represent the performance of state-

of-the-art computational modelling software, the difference in

compute time between 2D versus 3D and acoustic versus elastic

modelling is well known.

Another benefit of this approach is the removal of the

requirement for the inclusion of realistic noise. A number of

studies in deep learning have circumvented this by the inclusion

of previously recorded noise (e.g., Mousavi et al., 2019; Zhu et al.,

2020; Wang H. et al., 2021). However, this requires a substantial

amount of pre-recorded data and is restricted to the geometry/

field where the data were collected. An alternative is to consider

FIGURE 8
Comparison of the different denoising networks’ performance on four different microseismic events observed within field data. The top, left
panel of each event shows the raw noisy data, with the remaining panels in the top rows showing the denoising results for the different networks. The
bottom rows show the difference between the denoised products and the raw, noisy events.
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statistical noise modelling procedures (e.g., Birnie et al., 2016) or

perform waveform modelling (e.g., Dean et al., 2015). However,

both of these methods can be computationally expensive, and do

not guarantee a perfect recreation of the noise properties within

an unseen field dataset. Therefore, neither provide an ideal

alternative for incorporating realistic noise into the training

dataset.

One final benefit we see is that both the synthetic data and

the pre-trained, base-model are not closely coupled to any

specific well-site condition. For example, if using a fully

supervised model trained with a noise model assuming no

well-site activity, a new training dataset and model would

need to be created for use on data collected during periods of

injection. By utilising an initial, unrealistic noise model, the

synthetic dataset for the base-training is not highly correlated

to the true field conditions. Therefore, allowing the field

conditions to be transferred into the denoising procedure

at the fine-tuning stage—fully driven by the field data. As

such, the only re-training required due to a change in site

conditions would be the two-epoch fine-tuning stage - a

matter of mere seconds.

6.2 Use of blind-spots in base-training

The hypothesis of this project was that initially training the

network to learn the signal component of a pixel based off

neighbouring pixels’ values would allow faster training times

at the self-supervised stage and therefore, allowing the network

less time to learn to predict the coherent components of the field

data’s noise. As such, it is important to implement the pre-

training as a blind-spot scheme through the standard

identification and corruption of active pixels, and the loss

computation on only the active pixels location. Following a

conventional supervised training scheme, going from noisy to

clean without blind-spots, would teach the pre-trained network

to utilise the central pixel’s value when computing

itself—something not possible in the self-supervised, blind-

spot fine-tuning. To quantify the importance of consistent use

of blind-spots throughout the training procedures, Figure 10

highlights the difference in the performance between a network

pre-trained with blind-spots versus one pre-trained in the

conventional deep learning manner. In comparison to

Figure 7, it is clear that the performance of the new fine-

FIGURE 9
Additional comparison of denoising performances on field data. The top row portrays the raw field data whilst the remaining three rows
represent the denoised products from the self-supervised network, supervised network, and transferred network, respectively.
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tuned network no longer outperforms the supervised network.

However, the original, fine-tuned network from earlier in the

study still outperforms the supervised network. Note, in this

instance the supervised network has not been implemented in a

blind-spot manner. This result is unsurprising as when trained in

a conventional manner pixels can be used to predict themselves.

Therefore, during the self-supervised, fine-tuning stage not only

did the network learn to recreate the field signal but it also had to

learn that it cannot use the pixel in its prediction.

6.3 The importance of optimal base-
training

In this study we utilised the optimal model from the base-

training, as determined by its performance on the supervised

training task. In other words, we took the model that best

denoised the simplistic synthetic dataset using the blind spot

technique and used that model for the weights transfer. This

criterion was selected due to its independence from the field

dataset, making it possible to identify this optimal model for any

future applications and/or new field datasets.

For investigative purposes, Figure 11 illustrates the difference in

the transfer-learning denoising performance on the semi-synthetic

dataset where the models were initialised with different numbers of

base-training epochs. The different lines represent transfer-learning

with one, two and three self-supervised, fine-tuning epochs. We can

see a general positive trend in the PSNR with respect to the number

of base-training epochs, particularly in the earlier epochs. Similarly, a

negative trend is observed between the number of base-training

epochs and the volume of signal leakage; indicating that the better

the supervised model has trained (i.e., more epochs), the better the

transferred model will perform. Alongside this, there is no notable

trend in the amount of noise suppressed, highlighting that the signal

reconstruction is the dominating factor in the denoising

performance.

Finally, the difference between one to three fine-tuning

epochs further highlights that two additional epochs results in

FIGURE 10
Comparison of denoising performance when the supervised network is trained in a conventional manner, i.e., when the blind-spot is only
implemented for the self-supervised training stages. The box plots show for 100 events the (A) overall change in PSNR, (B) volume of noise removed,
and (C) shows the amount of signal leakage encountered. The dashed line in (A) indicates a benchmark against the PSNR of the original, noisy data.

FIGURE 11
Comparison of denoising performance on the semi-synthetic dataset with respect to the number of supervised, base-training epochs. The
performance is evaluated after one (red, dotted line), two (black, dashed line) and three (blue, solid line) self-supervised, fine-tuning epochs and
considers the resulting (A) PSNR, (B) volume of noise removed, and (C) amount of signal leakage encountered.
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the optimal PSNR improvement. The fewer epochs elapsed

during the fine-tuning stage results in a higher volume of

noise being suppressed (Figure 11B), supporting the theory

that the self-supervised learning stages quickly begin to learn

to replicate the noise alongside the signal. Similarly, after a

reasonable number of supervised training epochs, the model

which has been exposed to more self-supervised epochs (blue,

solid line) exhibits less signal leakage, implying that more self-

supervised training allows the network to learn to adapt to the

source signature of the field data.

7 Conclusion

Self-supervised procedures for seismic denoising have

typically targetted a single component of the noise field, either

random noise or noise coherent along a specific axis. In this

study, we proposed a methodology to allow the suppression of

the full noise field by the inclusion of supervised base-training.

This initial training is performed using highly simplistic synthetic

datasets generated from an acoustic waveform modelling

through a laterally homogeneous subsurface model.

Benchmarked on a semi-synthetic dataset, the proposed

network is shown to increase the volume of noise suppressed

in comparison to a standard self-supervised network, whilst the

quantity of signal damage is substantially less in comparison to a

network trained in a supervised manner. Similar conclusions are

drawn when the networks are adapted for microseismic events

observed in field data. Our proposed procedure of supervised

base-training on a simplistic synthetic dataset prior to self-

supervised fine-tuning is repeatedly shown to provide the best

denoising performance.
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