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With ever advancing computer technology in machine learning, sediment load

prediction inside the reservoirs has been computed using various artificially

intelligent techniques. The sediment load in the catchment region of

Gobindsagar reservoir of India is forecasted in this study utilizing the data

collected for years 1971–2003 using several models of intelligent algorithms.

Firstly, multi-layered perceptron artificial neural network (MLP-ANN), basic

recurrent neural network (RNN), and other RNN based models including

long-short term memory (LSTM), and gated recurrent unit (GRU) are

implemented to validate and predict the sediment load inside the reservoir.

The proposed machine learning models are validated for Gobindsagar reservoir

using three influencing factors on yearly basis [rainfall (Ra), water inflow (Iw), and

the storage capacity (Cr)]. The results demonstrate that the suggested MLP-

ANN, RNN, LSTM, andGRUmodels produce better results withmaximumerrors

reduced from 24.6% to 8.05%, 7.52%, 1.77%, and 0.05% respectively. For future

prediction of the sediment load for next 22 years, the influencing factors were
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first predicted for next 22 years using ETS forecasting model with the help of

data collected for 33 years. Additionally, it was noted that each prediction’s error

was lower than that of the referencemodel. Furthermore, it was concluded that

the GRU model predicts better results than the reference model and its

alternatives. Secondly, by comparing the prediction precision of all the

machine learning models established in this study, it can be evidently shown

that the LSTM and GRU models were superior to the MLP-ANN and RNN

models. It is also observed that among all, the GRU took the best precision due

to the highest R of 0.9654 and VAF of 91.7689%, and the lowest MAE of 0.7777,

RMSE of 1.1522 and MAPE of 0.3786%. The superiority of GRU can also be

ensured from Taylor’s diagram. Lastly, Garson’s algorithm and Olden’s

algorithm for MLP-ANN, as well as the perturbation method for RNN, LSTM,

and GRU models, are used to test the sensitivity analysis of each influencing

factor in sediment load forecasting. The sediment load was discovered to be

most sensitive to the annual rainfall.

KEYWORDS

Gobindsagar reservoir, sedimentation, recurrent neural network, long-short term
memory, gated recurrent unit

1 Introduction

In environmental and water resources engineering, accurate

modeling of sediment movement by rivers is crucial because it

has a direct impact on the design, management, and use of water

resources. The importance of modeling suspended sediment is

further underscored by the fact that it has a significant impact on

reservoir capacity, dam operation, reservoir life, water quality,

and contaminant transport. However, hydrologists face a difficult

problem when estimating sediment volume because of the

complex and non-linear interactions between the

geomorphological catchment parameters and the stream flow.

Typically, sediment that is suspended in a body of water, such as a

river, is sediment that is transported by fluid and is small enough

that turbulent eddies can overcome the settling of the sediment

particles within the water body, causing them to be suspended.

Suspended sediments can also affect a river’s normal hydrological

system under particular conditions. When the velocity and

momentum of the river channel decrease, suspended

sediments may start to accumulate at the bottom of the river

channel. This causes the bottom of the river channel to be

elevated, which reduces the cross-sectional area of the river

channel and chokes the river’s hydrological system. As a

result, the habitat of aquatic animals living in rivers is

reduced (Dibike et al., 1999; Tarar et al., 2019).

Since the reservoir’s water level fluctuates throughout the

year, from high head conditions when it is full to low head

conditions when it is emptying. Water above this delta erodes the

sediment there and transports some quantity with it every year as

the reservoir level drops. Additionally, some of it is deposited

near the reservoir, forcing the delta to move in the direction of

the tunnel inlets while picking up the remaining particles. Due to

their high velocity, these particles destroy turbines and other

mechanical components downstream, including the tunnel walls.

The concentration of sediment in the outflow grows as the delta

develops, which can reduce the lifespan of tunnels and turbines.

Furthermore, as the delta advances, the storage capacity

decreases yearly (Tarar et al., 2019).

To relate downstream flow ordinates at one location to many

inflow ordinates at upstream locations using a numerical-

hydraulic model, Dibike et al. identified the proper neural

network architecture and training algorithms (Dibike et al.,

1999). According to Xueying et al., the back-propagation

neural network model has been implemented to study the

correlation between sediment flushing in reservoirs and the

factors affecting it because with less complicated calculations,

it is well suited to handle sophisticated non-linear mapping.

Tarar et al. checked the effectiveness of the one-dimensional

model of the hydrologic engineering center river analysis system

(HEC-RAS) and evaluated morphodynamic processes inside the

Tarbela reservoir using sediment rating curves (Tarar et al.,

2019). Rashid et al. advised operating the Tarbela Reservoir at

a lower minimum operating level based on the most recent

sediment assessment by HEC-RAS (Rashid et al., 2014).

Petkovsek et al. reducing volume loss may conflict to prevent

abrasion by flowing water with low sediment concentration

through the outlets, especially if those outlets have power

production units attached (Petkovsek and Roca, 2014). Tfwala

et al. estimated the flow data of one station, and flow data from

three stations were used with higher R2 values of 0.98 and 0.97,

respectively by ANNs (Tfwala et al., 2013).

To calculate the sediment load at the chosen monitoring

stations for the three main US river systems, the neural network

model with BP algorithm uses inputs of precipitation, flow, and

antecedent sediment data (Melesse et al., 2011). Kisi et al. work

has shown the potential of Generalized Regression Neural
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Network models for calculating evapotranspiration using

meteorological data (Kişi, 2006). Crop production

performance is commonly seen as a gauge for assessing the

farm management system, according to a study by Wang

et al. (2008). Lin et al. used a support vector machine model

to forecast long-term flow discharges in Manwani. Monthly flow

forecasts are made using available (Lin et al., 2006). Abid et al.

said contrast to the reservoir, the areas where water escapes, such

as at spillways and tunnels, are quite small. Using sediment rating

curves, the Kalabagh Dam Consultants calculated the yearly

sediment accumulation in Tarbela to be 295.7 Mt (Abid and

Siddiqi, 2010). Leahy et al. showed that a fixed architecture

trained using only traditional backpropagation may still

perform as well as one trained utilizing a global optimization

methodology for ANN architecture and weights to a river level

prediction problem. The performance of the ANN can be

improved to a level that is comparable to that of the fixed

design just by optimizing the weights. The combined

optimization of weights and connections results in a

significant decrease in network complexity, a corresponding

decrease in the number of backpropagation training epochs

needed, and the discovery of the most economical set of

network inputs (Leahy et al., 2008). Mehdi et al. used two

alternative neural network approaches and various

combinations of stream flow and precursor suspended

sediment concentrations to estimate the concentration of

sediments in suspension (Feyzolahpour, 2012). A general

correlation has been provided by Vente and Poesen between

basin area, active erosion processes, sediment sinks, and total

sediment production using sediment yield data from various

sources in the Mediterranean. In general, when drainage area

grows, more erosion processes, like gully erosion, bank erosion,

and mass movement, become possible. As a result, an increase in

area-specific sediment yield is anticipated. However, if a

particular basin area threshold is reached, sediment transport

and deposition begin to outweigh active erosion processes in

terms of sediment yield. Sediment yield starts to decline beyond

this point as basin area grows (de Vente and Poesen, 2005).

Gusarov et al. demonstrated that the regional reduction of these

processes, which included the southern, most agriculturally

developed area of the East European Plain, included reducing

the severity of overall erosion and SSL in the Vyatka vs. River

basin (Gusarov et al., 2021). In a 3D numerical hydrodynamic

model, Torok et al. implemented and combined the Wilcock and

Crowe and the van Rijn bed load transfer models to predict

sediment movement and concomitant changes in complicated

hydro-morphological conditions (Török et al., 2017). According

to calculations by Rodrguez-Blanco et al., the reaction of

suspended sediment to climate change largely followed the

patterns of simulated stream flow fluctuations. The results

showed a decrease in suspended sediment of 11% and 8% for

the years 2031–2060 and 2069–2098, respectively, with a further

decrease up to 42% in the worst scenario by the late century. The

Corbeira stream’s water quality is predicted to deteriorate due to

an increase in suspended particles, though (Rodríguez-Blanco

et al., 2016). Di Francesco et al. describe the use of a photographic

sampling technique on the sediments that make up the bed of a

3 km stretch of the Tescio River, which flows across central Italy

and has an average slope of 3% over its length of 20.1 km (Di

Francesco et al., 2016). The physically-based EROSION-3D

model was used by Németová et al. to simulate the processes

of runoff and erosion in the Slovak watershed. The model aids in

locating a catchment’s most vulnerable zones for erosion and

deposition. Two periods (2015–2016 and 2016–2017) of long-

term simulations were performed and evaluated by the timing of

the bathymetric measurements (Németová et al., 2020). After

6 years of high-resolution weekly monitoring on an Appalachian

hill slope, Luffman et al. investigated the impact of precipitation

parameters on soil erosion while paying particular attention to

seasonal influence (Luffman and Nandi, 2020). Through 6 years

of high-resolution weekly monitoring in an Appalachian

hillslope, Tavelli et al. investigated the influence of

precipitation parameters on soil erosion while paying

particular attention to seasonal effect. Other studies in the

area utilizing an annual dataset did not pick up on the

seasonal pattern of soil erosion in a humid subtropical

environment, but the long-term data did (Tavelli et al., 2020).

Kaffas et al. are to build a fuzzy relationship that will produce a

fuzzy band of in-stream sediment concentration by converting

the arithmetic coefficients of Yang’s total sediment transport rate

formula into fuzzy integers. For the fuzzy regression analysis, a

sizable set of experimental data collected in flumes was used

(Kaffas et al., 2020). Sayah, Al, et al. presented a study of the

impact of ponds in limnologically rich basins on soil erosion and

sediment transport. By exposing the various levels of soil loss and

giving an understanding of the examination of erosion-prone

areas and sediment yield zones of various levels, this assignment

answered recommendations of the European framework for the

Thematic Strategy on Soil Protection (Al Sayah et al., 2019).

According to Wang et al., various downstream riverbed slope

characteristics and obstructions caused by debris during dam

building are examined for the tailings pond. Through

simulation, the evolution traits and deposition laws of the

released tailings flow following a dam breach are explored

(Wang et al., 2019). Lu et al. used the Taiwan Universal Soil

Loss Equation (TUSLE) and estimation of landslide volume to the

SWAT model (Lu and Chiang, 2019). The volume percent of the

inflowing particle size, which was non-dimensionalized, and the

inlet flow velocity of mixes were used to establish a correlation

formula by Song et al. (2018). Xiao et al. analyzed that the average

VF slightly decreased from Period II to Period III, and the

likelihood of sediment entrapment was also somewhat reduced

by the changes in vegetation patterns during three different time

periods (Xiao et al., 2016). The data from the annual surveys and

the information regarding water flows and sediment

concentrations provided by Besham Qila, a gauging station
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upstream of the reservoir, are essential for understanding the

sedimentation processes in the Tarbela Reservoir, investigated

by Marta et al. (Roca, 2012). Abrahat et al. predicted the

possibility to provide numerous solutions at various

generalization levels and robust solutions that may be applied

to unidentified catchment types using neural networks (Abrahart

and White, 2001). Cigizoglu et al. also researched estimating

suspended sediment in rivers using neural network models and

sediment rating curves. They forecasted and estimated sediment

concentration values using artificial neural networks (ANNs)

(Ciǧizoǧlu, 2002). Noor et al. concluded that changing the

operating policy and rule curves will improve reservoir

sustainability and maximize net economic benefits. Muhammad

et al. used a decile indices technique to determine drought and

flood periods (Arfan et al., 2019). Waqas et al. concluded that the

yearly flows and SSC are in a balanced state with a minor decline

throughout the three-decade analysis period in Besham Qila,

located in the upper Indus Basin (Chen et al., 2006). Chen

et al. predicted the concentration of suspended sediment was

higher in the summer and lower in the winter in the inner

portion of the estuary, whereas the estuarine (Teng et al., 2006;

Ul Hussan et al., 2020). Milliman et al. studied the watersheds’

inferior geologic formations (fragile sandstones), particularly in the

upstream sections, causing substantial deposition in the

downstream regions as a result of extreme rainfall events

(Milliman and Syvitski, 1992). Horowitz et al. established a

single link between sediment discharge and their resultant

sediment concentration levels as well as hysteresis (Horowitz,

2003). Thomas et al. concluded, that the size and properties of

the sediments in a specific river have an impact on the suitability of

regression techniques for creating accurate sediment grading

curves (Thomas, 1985). According to Wang et al., artificial

neural networks are capable of simulating any complex non-

linear process that connects climatological data for the

transport and loading of sediments. Artificial neural networks

are effective in hydrological disciplines (Wang and Traore, 2009).

Chen et al. proposed the neural network models for the modeling

of rainfall-runoff (Chen et al., 2013). Conclusion of Julian et al.

despite the initial belief that our ability to obtain explanation of the

prediction process was limited by the seeming complexity of

artificial neural networks (Olden et al., 2004). Using the

RECESS, 1 D model, the sediment evolution in the reservoir

was computed (Haq, 2012). Yang et al. statistical analysis, the

sediment transport model, as constructed, offers a respectably

potent tool for sediment transport modeling. They compared the

simulated and GOCI derived SSC results (Yang et al., 2016).

Tfwala et al. assessed the efficacy of ANNs in predicting silt

discharge in river systems during storm events (Tfwala and

Wang, 2016). Guerrero et al. discovered significant geographical

variations in sand, clay, and sediment backscattering intensity for

Parana and Danube ranges by comparing heterogeneous datasets

of suspended sediments (Guerrero et al., 2016). The WRF-Hydro

platform is expanded by Yin et al. with a sediment module,

enabling the creation of a fully distributed, process-based soil

erosion and sediment transportmodel (Yin et al., 2020). To explain

the primary hydrological and sediment transport-related processes

of small watersheds, Nabi et al. used SWAT watershed modeling

(Nabi et al., 2020). Aksoy et al. are regarded as making

contributions to the problem of erosion and sediment transport

in hydrological watersheds at various spatial and temporal scales as

well as under any form of change (Aksoy et al., 2019). A better

understanding of the process can be incorporated into strategic or

numerical tools for reservoir operations, as demonstrated by

Hauer et al. (Hauer, 2020). According to Nourani and

Andalib’s research, suspended sediment load (SSL) is one of the

most crucial water quality parameters because it directly affects

water transparency, turbidity, and color, among other things, as

well as the planning and administration of water resource systems

and structures. The use of intelligent black box models, such as

Suspended Sediment Load (LSSVM), could result in accurate

calculation of SSL, based on the significance of SSL as a

complex phenomenon. On both a daily and monthly time

scale, the LSSVM model was utilized to forecast SSL of the

Mississippi River one and several steps in advance.

Additionally, the performance of LSSVM was evaluated in

comparison to that of ANN, and finally, the effectiveness of the

wavelet transform was examined as part of the suggested hybrid

wavelet-LSSVM model (Nourani and Andalib, 2015). The

numerical hydromorphological model provided by

Reisenbüchler et al. helps optimize reservoir operations and

create a sediment management strategy (Reisenbüchler et al.,

2020). The sediment stock in a reservoir at the watershed’s

outlet with the sediment yield from a catchment was modeled

by Sotiri et al. (Nourani and Behfar, 2021; Sotiri et al., 2021). In

order to represent the RR process in a snow-covered basin in

Switzerland, Babak et al. devised three conceptual approaches:

IHACRES, GR4J, and MISD. IHACRES, GR4J, and MISD

conceptual models were combined with two well-known ML

approaches (SVM and MLP). In comparison to the

conventional conceptual models, it was discovered that the

conceptual models’ accuracy is increased by a factor of 14–19%.

The IHACRES-based MLP model outperforms other conceptual-

based ML models in terms of performance. The

hydro−meteorological variables of precipitation, temperature,

evapotranspiration, relative humidity, and snow depth were

included in the constructed models, which considerably

increased their accuracy (Mohammadi et al., 2022). In order to

simulate streamflow in four river basins in Indonesia, Babak et al.

evaluated the performance of two process-driven conceptual

rainfall-runoff models (HBV: Hydrologiska Byrns

Vattenbalansavdelning, and NRECA: Non-Recorded Catchment

Areas), as well as seven hybrid models based on three artificial

intelligence (AI) methods (adaptive neuro−fuzzy inference system

(ANFIS), support vector machine (SVM), and group method We

used monthly precipitation and streamflow data collected between

1991 and 2010 at four stations spread over the Indonesian
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Pemali−Comal River Basin. Due to the ability to combine

hydrological and AI models, they found that hybrid models

produced streamflow estimates that were more accurate than

those produced by the base HBV and NRECA models

(Mohammadi et al., 2021a). Multi−layer perceptron (MLP) that

was hybridized with particle swarm optimization (PSO) and then

merged with differential evolution algorithm (DE) is known as

MLP−PSODE. Babak et al. proposed this innovative hybrid

approach for SSL estimation. A hybrid MLP−PSODE model

was used to simulate the SSL of the Mahabad River, which is

situated in northwest Iran. Several methods have been used as

benchmarks to assess the performance of theMLP−PSODEmodel,

including the multi-layer perceptron (MLP), multi-layer

perceptron integrated with particle swarm optimization

(MLP−PSO), radial basis function (RBF), and support vector

machine (SVM) (Mohammadi et al., 2021b). Jothiprakash et al.

used an ANN technique to estimate the annual sedimentation in

the Gobindsagar Reservoir using the simple architecture of

artificial neural networks (Jothiprakash and Garg, 2009).

On the basis of the above extensive literature review, it is

obvious that the very basic neural network model was employed

in 2009 in the reference paper to predict the sediment volume

inside the Gobindsagar reservoir (Jothiprakash and Garg, 2009).

In the present study, the basic neural network architecture is

developed to improve the sediment disposition predictions along

with the implementation of new machine learning RNN based

models including basic RNN, LSTM and GRU. In comparison

with the reference model and the actual sediment volume inside

the Gobindsagar reservoir (Jothiprakash and Garg, 2009), it was

found that the proposedmachine learning models give promising

results as compared to previous model. Only three influencing

features Ra, Iw, and Cr are considered because they were used in

the reference paper. In this study, the results are improved using

the same input features with latest machine learning approaches.

On the basis of outcomes, it has also been observed that the GRU

model performance is better than the other two RNN based

models (basic RNN and LSTM). Three different approaches were

implemented to check the relative importance of the input

features and it was concluded that the yearly basis rainfall has

a significant impact on the volume of sedimentation. The main

objectives of the present study include:

1. Validation of proposed machine learning models including

MLP-ANN, RNN, LSTM and GRU for the Gobindsagar

reservoir in India using three input features influencing on

yearly basis i.e., rainfall (Ra), inflow of water (Iw) and the

storage capacity (Cr) of the Gobindsagar reservoir and one

output of sediment volume (Sv).

2. Accurate prediction of yearly basis sediment volume (Sv)

inside the Gobindsagar reservoir with the forecasted values

of three features Ra, Iw, and Cr.

3. The sensitivity analysis of each influencing factor in predicting

sediment volume.

The subsequent sections go into further detail on the

collection of annual data for the input features, the sediment

volume considered in this study, the various machine learning

models developed, model validation, and sediment volume

prediction.

2 Materials and methods

The proposed machine learning models including multi-

layered perceptron artificial neural network (c) model, basis

recurrent neural network (RNN) model, long-short term

memory (LSTM) based on the recurrent neural network

model, and gated recurrent unit (GRU) which is another type

of RNN model are implemented in MATLAB and validated for

Gobindsagar reservoir. The results obtained by training the

models were compared with reference values of sediment

volume and the previously implemented basic neural network

model. The validated models are then used for the future

prediction of sediment volume in the reservoir. Figure 1

shows the pre-processing of data and application of machine

learning models to validate and forecast the deposition of

sediment inside the reservoir based on the forecasted features

impacting the sediment volume.

2.1 Study area and data collection

Jothiprakash andGarg (Jothiprakash andGarg, 2009) chosen the

Gobindsagar Reservoir at the Bhakra Dam on the Satluj River in the

Himachal Pradesh district of Bilaspur, India, to examine

sedimentation. One of India’s oldest dams, the Bhakra dam was

built in the foothills of the Himalayas, resulting in the construction of

the Gobindsagar reservoir. Devastating floods have been contained,

and the advantages of irrigation and power have significantly

increased wealth in the area. It has a planned 9,867.84×106 m3 of

total storage space. At full reservoir level, the reservoir’s huge water

spread area measures 168.35 km2, and its catchment area is

56,876 km2. The river Satluj, which flows over difficult terrain and

originates fromMansarover Lake, conveys a significant amount of silt

into the reservoir. The area experiences high levels of sediment

transport due to the steep terrain, poor structural characteristics of

the soils, clay-rich rocks, and widespread occurrence of limestone

deposits. This region frequently has slips and landslides, which could

be one of the main sources of sediment in the river.

In addition to the yearly basis rainfall, inflow of water, and the

storage capacity, the study performed by Jothiprakash and Garg

(Jothiprakash and Garg, 2009) used data for the years 1971–2003.

Figures 2A–C represents the yearly variation of influencing factors

while Figure 2D shows the accumulation of sediments inside the

reservoir each year. The time series plot of these data in Figure 3

shows the relationship between the primary y-axis factors, the

rainfall (Ra), water inflow (Iw), and the storage capacity (Cr)
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against the actual volume of sediment (Sv) deposited inside the

Gobindsagar reservoir shown in blue on the secondary y-axis. The

straight lines show the linear trends along with the equations of lines

in their respective legends of all the influencing parameters and the

volume of sedimentation to check the relationship between

influencing parameters and the actual volume of sedimentation

retained inside theGobindsagar reservoir.With the increase of water

inflow, volume of sediments also increases. Consequently, it is

possible to assert that there is a correlation between inflow and

sediment volume. Even though the yearly basis rainfall and storage

capacity data do not strongly correlate with the sediment volume,

these factors were still employed in the current investigation because

they were regarded as important factors in past sedimentation

studies. From Figure 3, it can also be concluded that, due the

impact of all the factors on sediment volume, it is hard to get explicit

combined relationship of all the factors impacting sediment volume.

It is therefore recommended to employ advanced machine learning

approaches instead of basic linear or multivariate regression models.

2.2 Development of machine learning
models

2.2.1 Multi-layered perceptron artificial neural
network (MLP-ANN)

An ANN consists of small computational elements known

as artificial neurons. These neurons when arranged in a

layered structure form are known as multilayered

perceptron artificial neural networks. The outer layers in

MLP-ANN are referred to as the input and output layers,

respectively, based on where we supply our input variables and

where we obtain our output variables. The number of neurons

in these layers is fixed and dependent on the number of input

features and the number of output parameters. The layers

between both the input layer and the output layer are known as

hidden layers, and the artificial neurons that lie within it are

known as hidden neurons. The number of hidden layers and

neurons in each hidden layer can be changed, and the

computational cost of a neural network model is affected by

these numbers. Neural networks are named according to the

number of hidden layers and neurons in each hidden layer.

The typical N3-45-45-1 neural network structure, for example,

indicates that the network has four layers: one input layer, one

output layer, and two hidden layers. It also represents that

there are input layers consisting of 4 neurons, both the first

and second hidden layers consist of 45 neurons and the output

layer contains only 1 neuron. Artificial neural network

modelling in MATLAB was done through trial and error.

The number of neurons in each hidden layer as well as the

total number of hidden layers were changed, and the best

suitable structure that predicted the outcomes with the least

amount of error was selected. Figure 4 depicts the typical

architecture of the N3-45-45-1 network proposed to predict

the sediment volume inside the reservoir.

FIGURE 1
Process flow diagram for pre-processing of data and applying machine learning models to validate and forecast sediment deposition inside
reservoir based on the forecasted features influencing the sediment volume.
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2.2.2 Recurrent neural network
The recurrent neural network is a type of artificially

intelligent neural network designed to analyze sequential

input (RNN). The RNN builds connections between time

steps and circulates weights among them in various time

steps. When users want to execute prediction operations on

sequential or time-series based data, they use recurrent neural

networks, a type of ANN. Ordinal or temporal issues are

frequently addressed by these deep learning layers. RNNs are

built with memory so they can use any data from previous

inputs to affect the input and output at the moment. The same

training techniques are used for this network. RNN generates

the output depending on past input and its context, unlike

classic neural networks, which believe that input and output are

independent of one another. RNN shares parameters with each

layer of the network, which is another distinct feature.

Recurrent neural networks share a single weight parameter

throughout all network layers, unlike feedforward networks,

which provide separate weights to each node.

Figure 5 displays the RNN structure with one hidden layer. In

contrast to multilayer perceptrons, the RNN hidden layer is

connected with both the hidden layer nodes and the output

layer. This causes RNN to create a non-linear relationship

between the sequential data collected at various periods in

addition to reducing the number of parameters. RNN is hence

uniquely advantageous in solving non-linear and time series

problems. The present RNN uses 7 neurons in the hidden

layer and 1 neuron in the output layer, both of which use the

Rectified Linear Unit (ReLU) as an activation function for hidden

layer and the sigmoid activation function for output layer.

Recurrent neural network model in MATLAB was applied

using a trial and error strategy. The number of neurons in

each hidden layer as well as the total number of hidden layers

were changed, and the best structure that predicted the outcomes

FIGURE 2
Yearly basis data used for the estimation of sediments retained inside the Gobindsagar reservoir from year 1971 to year 2003 using three
influencing factors of (A). Rainfall, (B). Water inflow and (C). Storage capacity of the reservoir, (D). Actual amount of yearly sediments accumulated
inside the Gobindsagar reservoir.

Frontiers in Earth Science frontiersin.org07

Shaukat et al. 10.3389/feart.2022.1047290

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1047290


with the least amount of error was selected. A typical RNN

architecture (R3-7-1) is shown in the figure below.

2.2.3 Long-short term memory neural network
A conventional RNN network tends to lose information

when exposed to extended sequences or phrases because it

cannot store the long sequences and because the algorithm

only considers the most recent information that is available at

the node. Vanishing gradients is the term used to describe this

issue. When using RNN to train networks, we backpropagate

through time while calculating the gradient at each time step or

loop operation and updating the network weights as a result.

Now the relative gradient is calculated to be modest if the layer is

not significantly affected by the prior sequence. When dealing

FIGURE 3
Time series plot of influencing parameters including yearly basis rainfall, water inflow, and the storage capacity used for the estimation of
sediments retained inside the Gobindsagar reservoir from the year 1971 to the year 2003.

FIGURE 4
Typical neural network architecture (N4-45-45-1) describes four layers: one input layer consisting of 3 neurons, one output layer with 1 neuron,
and two hidden layers with 45 neurons each.
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with longer sequences, we see that if the gradient of the previous

layer is smaller, the weights that must be applied to the context

are also reduced. As a result, the network does not learn the

impact of earlier inputs, leading to the short-term memory issue.

Specialized RNN versions like LSTM and GRU are developed to

address this issue.

The long-short term memory (LSTM) neural network a

significant advancement over the recurrent neural network. It

can successfully address the issues of RNN gradient explosion

and disappearance and improve the network’s memory capacity.

Additionally, the LSTM network, which has both an internal

“LSTM cell” circulation and an exterior RNN cycle structure, can

retain longer historical data information. As a result, the affine

translation of input and loop units is not simply imposed by

LSTM as an element by element non-linearity (Liu et al., 2021).

In the present LSTM model, 2 hidden LSTM layers with 4 LSTM

neurons in each hidden layer are used. The LSTM model was

applied in MATLAB through a trial-and-error process. The

number of hidden layers and the number of neurons within

each hidden layer were changed, and the best structure that

predicted the outcomes with the least amount of error was

selected. The typical architecture of LSTM (L3-4-4-1) is

shown in Figure 6A. Figure 6B depicts the LSTM hidden

layer’s structural layout. The hidden layer node of the current

sequence has xt as its input,Ct as its hidden layer node state, ht as

its hidden layer node’s output, σ as its non-linear activation

function of sigmoid, and tan h as its hyperbolic tangent function.

xt is the input, and Ct-1 and ht-1 are the node states of the previous

hidden layer sequence. While LSTM networks have more

complex structures, more parameters, and slower convergence

speeds than RNNs, they are superior at learning the long-term

relationship between sequential data.

2.2.4 Gated recurrent unit neural network
The gated recurrent unit (GRU) neural network is an

improvement and up-gradation of the long-short term

memory (LSTM) network. It carries over the LSTM network’s

capacity to handle time series and non-linear issues.

Additionally, it keeps the LSTM network’s memory unit

function while simultaneously streamlining the structure and

lowering the number of parameters, which significantly

accelerates training. In the present GRU model, 2 hidden

GRU layers with 3 GRU neurons in each hidden layer are

used along with the sigmoid activation function in the output

layer. Trial and error was used to apply the GRU model in

MATLAB. The optimal structure that predicted the results with

the least amount of error was chosen after varying the number of

hidden layers and the number of neurons within each hidden

layer. Figure 7A depicts the typical GRU (G3-3-3-1) architecture.

The structure of the GRU neural network is shown in Figure 7B,

where ut denotes the update gate state, rt the reset gate state, and

ht the neuron’s awaiting output. The GRU neural network builds

on the LSTM network by improving the “gate” design and

optimizing it to a cell structure with two “Gates” rather of the

original cell structure’s three “Gates”. The reset gate and the

update gate are the basic components of the gating cycle unit. The

rt and ut, respectively, are defined as the reset gate and up-date

gate states at time t (Goh, 1995; Liu et al., 2022).

FIGURE 5
RNN structure (R3-7-1) diagram with one hidden layer containing 7 neurons.
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rt � σWrxt + Zrht−1( ) (1)
ut � σWuxt + Zuht−1( ) (2)

where xt is the input data andW and Z are weight matrices. The

following formulations are used to compute the candidate hidden

state ht and the hidden state h̃t:

ht � 1 − ut( )ht−1 + uth̃t (3)
h̃t � tan h Whxt + rt*ht−1( )[ ] (4)

Equations 5, 6 contain two distinct activation functions that

can be described as follows:

σ x( ) � 1
1 + exp x( ) (5)

tan h x( ) � 1 − exp 2x( )
1 + exp x2( ) (6)

Utilizing a getting mechanism to learn long-term

dependencies is fundamentally similar to using LSTM. The

FIGURE 6
(A). The proposed LSTM network with two LSTM layers and four hidden layer LSTM neurons, (B). Hidden layer structure of LSTM with input gate
using sigmoid activation function, forget gate and output gate using activation functions: sigmoid and tanh
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GRU has two gates, while the LSTM has three, which is one of the

few points of difference. There is no internal memory in the

GRU, and there is no output gate like there is in the LSTM.While

in GRU the prior hidden state is directly affected by the reset gate,

in LSTM the input gate and target gate are coupled by an update

gate. The input and target gates in an LSTM take on the role of

the reset gate. According to how both layers, LSTM and GRU,

operate, LSTM is more accurate on a larger dataset whereas GRU

utilises fewer training parameters, uses less memory, and

executes more quickly. When dealing with lengthy sequences

and accuracy is a requirement, LSTM is an option; GRU is

employed when less memory use and quicker results are desired.

2.2.5 ETS forecasting model
A technique for time series univariate forecasting is the ETS

(Error, Trend, and Seasonal) method. The flexibility of the model

to trend and take into account seasonal components of numerous

parameters is what makes it flexible. With the exception of the

annual water inflow, there is no general trend for the input

values, hence the approach is utilized. The ETS model is best

FIGURE 7
(A). The proposed GRU network with two GRU layers and three hidden layer GRU neurons, (B). Schematic diagram of GRU network’s hidden
layer where sigmoid activation function is used in the reset gate and update while tanh is used for the output.
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suited for data without a clear trend. The exponential smoothing

process is used by the ETS function to forecast future values.

Excel’s FORECAST tool uses linear regression to forecast a future

value. In other words, FORECAST extrapolates a value from the

past along a line of best fit. The FORECAST function has the

following syntax:

FORECAST Xrequired, yactual, xactual( ) (7)

Where, Xrequired is a numerical x-value for which one can

forecast a new y-value. The actual y’s and actual x’s arrays of

known dependent and independent y-values and x-values,

respectively, are both necessary. In the present study, the

actual x’s are the yearly basis input features of rainfall (Ra),

inflow of water (Iw) and the storage capacity (Cr) of the

Gobindsagar reservoir and the actual y’s are output values of

yearly basis sediment volume (Sv) inside the Gobindsagar

reservoir.

2.2.6 Models training
For the validation of proposed machine learning models for

Gobindsagar reservoir, randomly chosen 23 years of data was

used for training and randomly chosen 9 years of data was used

for validation purposes.

The neural network model’s major parameters, such as the

number neurons in the hidden layer and the number of hidden

layers, must be optimized and adjusted during the training

process of each proposed neural net model of this study.

Theoretically, the model performs better and makes more

accurate predictions the deeper and more complicated the

network is. This is because there are more hidden layers and

neurons. However, certain research has demonstrated that

having too many hidden layers and neurons would cause

training issues and over fitting, which will lower the model’s

predictive accuracy. If the network is too shallow and

straightforward, it will likely result in inadequate fitting and

fall short of the required standards. As a result, the network’s

ability to predict the future depends greatly on the chosen

number of hidden layers and number of neurons. We must

find a balance between the network’s capacity for learning and

the complexity of the training process as well as the demands of

prediction accuracy. Based on our experience and numerous

experimental findings, we must choose the right number of nodes

and hidden layers (Jothiprakash and Garg, 2009; Mohammadi

et al., 2021b). Additionally, the model’s complexity can be

somewhat reduced as well as its convergence speed and

prediction accuracy by optimizing training parameters

consisting of the learning rate, batch size, and a maximum

number of iterations. In the present study, a typical optimized

neural network architecture N3-45-45-1 with resilient

propagation as a training function was used to train the MLP-

ANN. For basic RNN architecture (R3-7-1), rectified linear unit

as an activation function and 1 neuron in the output layer were

used for training purposes. The two-layer LSTM neural network

model’s topology (L3-4-4-1) is used in the present study. Input,

hidden, and output layers are all included in neural network

models, with the hidden layer serving as the network’s structural

backbone. Long-term memory is a capability of GRU neural

network. The GRU network model can successfully limit the

impact of these interactions by addressing the long-term reliance

on series data, and its inbuilt control mechanism can

automatically learn time-series characteristics. The two-layer

GRU neural network model’s topology (G3-3-3-1) is used in

the present study.

2.3 Performance evaluation of proposed
models

To test and train data sets for the MLP-ANN, RNN, LSTM,

and the GRU network models, all data are initially standardized

to range from 0 to 1 using Equation 8. Additionally, the

preprocessing that increased the calculation speed of network

approaches may ensure the convergence of neural nets.

xnormalized � x − x min

x max − x min
; x � Ra, Iw, Cr, Sv (8)

where, x is the original data for the annual rainfall (Ra), annual

water inflow (Iw), storage capacity (Cr) and sediment volume

(Sv) and; xnormalized is the normalized data for the above

mentioned three input parameters and the sediment volume;

and x max and x min respectively, represent the maximum and

minimum of the original dataset of Ra, Iw, Cr, and Sv.

The performance of machine learning models were

compared using various statistical indicators such as

correlation coefficient (R), mean absolute error (MAE),

variance accounted for (VAF), mean squared error (MSE),

and root mean square error (RMSE). Furthermore, these

performance metrics may provide insight into how well the

forecasting model performed in terms of reference value. The

following equations provide the mathematical expressions of

previously mentioned common statistical indicators:

The following is a description of R criteria:

R �

�����������������������
1 −

∑n
i�1 Ŝv − Sv( )

i
[ ]2∑n

i�1 Ŝv( )2
i
− 1

n( )∑n
i�1 Ŝv( )2

i

√√√
(9)

The following is an illustration of MAE criteria:

MAE � 1
n
( )∑n

i�1
Ŝv − Sv( )

i
(10)

When the mean squared error reached the stopping criteria, i.e.

1 × 10−6 with respect to weights and biases, the training process

was terminated. The mean squared error was estimated using

Equation 11 depending on the network prediction (Ŝv) and the
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target value (Sv). For future simulations, the optimized weights

and biases were saved.

MSE � 1
n
( )∑n

i�1
Ŝv( )

i
− Sv( )i[ ]2 (11)

By comparing the assessed values and the model’s evaluated

output, VAF is typically used to gauge a model’s correctness. The

following Equation 12 can be used to calculate the VAF criteria:

VAF � 1 −
var Ŝv( )

i
− Sv( )i[ ]

var Ŝv( )
i

[ ]⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠ × 100% (12)

The RMSE is typically used to track the accuracy of the

model’s error function. As RMSE decreases, the model’s

performance improves. Equation 13 can be used to calculate

the RMSE criteria as follows:

RMSE �
������������������
1
n
( )∑n

i�1
Ŝv( )

i
− Sv( )i[ ]2√

(13)

In machine learning, the accuracy of a model can also be

evaluated using the Mean Absolute Percentage Error (MAPE).

The MAPE is a loss function that specifically identifies the error

of a certain model. Finding the absolute difference between the

actual and predicted values, then dividing by the actual value,

yields the MAPE. The mean is calculated by adding these ratios

for all values. Equation 14 can be used to calculate the MAPE

criteria as follows:

MAPE �

����������������
1
n
( )∑n

t�1

Sv( )t − Ŝv( )
t

Sv( )t

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

√√
(14)

where Sv is the actual sediment load deposited inside the

reservoir, Ŝv stands for the predicted sediment load deposited

inside the reservoir, and n is the number of testing data points for

equations (9) through (14).

2.4 Sensitivity analysis of influencing
factors

Firstly, the sensitivity of each influencing factor in predicting

the sediment volume was measured using an evaluation

approach based on the weight matrix of the suggested

optimized network and Garson’s modified equation (64). The

computational formula is given in the equation below:

Sj �
∑Nh

m�1
wih
jm

∣∣∣∣∣ ∣∣∣∣∣∑Ni
k�1 wih

km

∣∣∣∣ ∣∣∣∣⎛⎝ ⎞⎠ × who
mn

⎡⎢⎢⎣ ⎤⎥⎥⎦
∑Ni

k�1 ∑Nh
m�1

wih
km

∣∣∣∣ ∣∣∣∣∑Ni
k�1 wih

km

∣∣∣∣ ∣∣∣∣( ) × who
mn[ ] (15)

Where, the indices i, h, and o represents the input, hidden and the

output layers respectively, and the indices k, m, and n represents

the input, hidden and the output layer’s neurons, respectively, Sj
denotes the relative significance of the jth influencing factor on

the output variable,Ni andNh denote the number of neurons in

the input and output layers, respectively, and W denotes

connected weights. All connection weights were given their

absolute values in the modified Garson approach to avoid the

opposing effects of positive and negative values (Taylor, 2001).

Secondly, the sensitivity of each influencing factor was

evaluated using Olden’s algorithm, which suggested that the

connection weight approach consistently identified the

correctly ranked significance of all predictor variables. The

weights are provided by the MLP-ANN model (N3-45-45-1)

utilized in this investigation between artificial neurons.

Thirdly, a perturbation method is implemented for RNN-

based models including simple RNN model (R3-3-7-1), LSTM

model (L3-4-4-1), and GRU model (G3-3-3-1), the

importance of each influencing factor is measured. A time

series with the three features Ra, Iw, and Cr serves as the input

data for the current RNN, LSTM and GRU models. A time

series is the Sv target variable for all the three models. The

output is dependent on all three features, as is obvious. The

TABLE 1 Validation of the proposed ANNmodel against the reference ANNmodel and the actual sediment volume inside the Gobindsagar reservoir.

Year Actual
volume (m3)

References ANN model
(m3) [R.E. (%))

MLP-ANN model
(m3) [R.E. (%))

RNN model (m3)
[R.E. (%))

LSTM model (m3)
[R.E. (%))

GRU model (m3)
[R.E. (%))

1971 18.89 19 (0.58) 19 (0.58) 18.8 (0.48) 18.883 (0.04) 18.888 (0.01)

1974 48.89 49 (0.22) 49.2 (0.63) 49.3 (0.84) 48.802 (0.18) 48.876 (0.03)

1975 21.67 18.5 (14.6) 23.1 (6.59) 23.3 (7.52) 21.611 (0.27) 21.667 (0.01)

1980 44 39 (11.4) 42.4 (3.64) 45.4 (3.18) 44.4 (0.91) 43.998 (0.005)

1986 35.56 37 (4.04) 35.6 (0.11) 35.5 (0.17) 35.597 (0.1) 35.574 (0.04)

1988 21.67 19 (12.3) 23.3 (7.52) 22.2 (2.45) 22.053 (1.77) 21.661 (0.04)

1994 17.77 20 (12.5) 19.2 (8.05) 18.9 (6.36) 17.675 (0.53) 17.772 (0.01)

1997 39.8 30 (24.6) 38.5 (3.27) 38.8 (2.51) 39.865 (0.16) 39.821 (0.05)

1999 37.78 37 (2.06) 37.9 (0.32) 37.85 (0.19) 37.777 (0.008) 37.791 (0.03)
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outcomes of different methodologies used to determine the

variable importance should be logically validated by a good

variable importance measure, which should display an

appropriate ranking. A sample size of 23 years of data is

used to calculate the model’s predictions, or Sv, in order to

determine the variable’s significance. Then, for each input

variable, perturbation is performed using a random normal

distribution centered at 0 with scale 0.5 and computes a

prediction Sv. By calculating the difference in Root Mean

Square between the original value of Sv and the perturbed

value of Ŝv, the impact of this perturbation can be improved.

That variable is “more important” if there is a bigger

difference in the Root Mean Square. Of course, your

specific dataset will have a significant impact on the exact

method you use to perturb your data and how you determine

the difference between perturbed and unperturbed results.

FIGURE 8
(A). Comparison of actual volume of sediments retained inside the Gobindsagar reservoir with reference ANN model and proposed machine
learning models using tested data from year 1971 to year 1999, (B). Reduction in relative error of proposed machine learning models in comparison
with the reference model.
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3 Numerical results

Jothiprakash and Garg used 33 years of data i.e. 1971 to

2003 and the basic neural network model to estimate the

sediment volume deposited inside the Gobindsagar reservoir

in India using three yearly basis influencing factors i.e.

rainfall, and inflow of water and storage capacity. The

reference paper used randomly selected data for 23 years for

training and 9 years for validation of the ANN model. For the

data provided in the paper, the machine learning models

described above were used to develop the typical network

structures of MLP-ANN, RNN, LSTM, and GRU. It was

found that the N3-45-45-1, R3-7-1, L3-4-4-1, and G3-3-3-

1 produced superior outcomes as compared to the model used

in the reference paper (Jothiprakash and Garg, 2009). In Table 1,

the outputs of each model are compared with the actual sediment

volume within the Gobindsagar reservoir. The results

demonstrate that the proposed MLP-ANN, RNN, LSTM, and

GRU models, respectively, may produce better results with

maximum errors reduced from 24.6% to 8.05%, 7.52, 1.77,

and 0.05. Additionally, it was noted that each prediction’s

error was lower than that of the reference model. For the

error analysis, it can also be seen that the GRU model

predicts better results as compared to the reference model,

and all the other models presented in this study. Figure 8A

depicts the comparison of actual volume of sediments deposited

inside the Gobindsagar reservoir with reference neural network

model and proposed machine learning models using tested data

from year 1971 to year 1999 while in Figure 8B it can be seen that

the relative errors estimated using GRU model are lying between

-0.5% and 0.5% inside the grey rectangle and showing the better

results as compared to the other models.

In the validation, the proposed machine learning neural

network models were concluded better than the reference

ANN model (Jothiprakash and Garg, 2009) and further it was

found that the GRU performs best as compared to others.

FIGURE 9
Forecasted input parameters for the Gobindsagar reservoir including (A) normalized rainfall; (B) normalized inflow of water and (C) normalized
storage capacity.
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Therefore, the proposed models were used to forecast the

sediment volume inside the Gobindsagar reservoir in the next

22 years i.e. 2003 to 2025. The actual y’s and actual x’s arrays of

known dependent and independent y-values and x values,

respectively, are included in the already known data and are

both required for the input of the function specified in Equation

7. In the current study, the actual‘s are the annual input features

of rainfall (Ra), water inflow (Iw), and storage capacity (Cr) of the

Gobindsagar reservoir, and the actual y′ s are output values of
annual basis sediment volume (Sv) within the Gobindsagar

reservoir. Using the actual x’s and actual y’s for the previous

33 years, the ETS forecasting model predicted the input

parameters for the following 22 years from year 2003 to year

2025. Figure 9A,C depict the three yearly forecasted influencing

factors for the Gobindsagar reservoir: rainfall, inflow of water,

and storage capacity. Figure 10A through Figure 10D show the

results of forecasts for the sediment volume that will be deposited

inside the reservoir over the course of the next 22 years using the

proposed machine learning models MLP-ANN, RNN, LSTM,

and GRU respectively. In Figure 10A–D, the forecasts are also

compared with data on the actual sediment load deposited that

were taken from references for the years 2000–2003. The figure

makes it evident that forecasts for this years’ sediment deposition

are rather close to being accurate.

Eventually, the statistical indicators mentioned previously

were also employed to carry out this comparison and outcomes

of this comparison were presented in Table 2.What can be shown

in Table 2 was that the four kinds of sediment prediction models

based on machine learning method were far superior to that

established in the reference model in their prediction accuracy. It

can be clearly seen that the LSTM andGRUmodels were superior

to the MLP-ANN and RNN model in prediction precision by

comparing the prediction precision of the four types of machine

learning models (MLP-ANN, RNN, LSTM, and GRU)

FIGURE 10
Sedimentation prediction for next 22 years using proposed machine learning models (A)MLP-ANN, (B) RNN, (C) LSTM, and (D) GRU, based on
the three forecasted input parameters.
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established in this study, among which GRU took the best

precision due to the highest R of 0.9654 and VAF of 91.7689,

the lowest MAE of 0.7777, the lowest RMSE of 1.1522 and the

lowest MAPE of 0.3786%. Through the comparison between the

prediction precision of LSTM and GRU, there was just slight

discrepancy between their precision.

To conclude, both LSTM and GRU models could provide a

successful sediment volume prediction performance. The GRU

model showed a higher precision in predicting sediment volume

and from Table 2 which we can conclude that GRU modeled in

this study took a higher efficiency in predicting the sediment

volume with its high precision. Figures 11A–C show the

graphical depiction of the performance indicators for all the

machine learning models for training data, validation data and

the prediction/test data respectively implemented in this study,

where the primary y-axis tells the variation of R, MAE, MSE,

RMSE, MAPE and the secondary y-axis in purple color

represents the variation in VAF with purple error bars along

with the labeled values of VAF in black. From figure, it can also be

seen that LSTM and GRU perform better.

Table 3 represents the hyperparameters settings for the

optimized applied machine learning models.

Taylor diagrams can be used as a graphical representation

of how well a model (or group of patterns) matches the data.

To assess how similar two or more patterns are, the

correlation, the centered root-mean-square difference, and

the standard deviations are employed. When comparing the

relative capabilities of several models or analyzing various

aspects of complicated models, these diagrams are especially

useful. The correlation coefficient, root mean square

difference (RMSD), and standard deviation are all

represented by a Taylor diagram in Figure 12. The cosine

rule between the three-centered data was used to construct

this picture, which shows how closely trends resemble one

another (Liu et al., 2022). A blue circle on the bottom line,

which acts as the reference, designates the position of the

observation. Since the correlation is visible on the azimuthal

axis, values that are closer to 1 are preferable. The radial

distance from the origin is shown by black dashed lines with

the standard deviation; again, the closer to 1 the better. Since

the root mean square errors are displayed as the radial

distance from the origin by green dashed lines, the lowest

distance to the observed position is regarded as the best. The

accompanying Taylor diagram demonstrates that the

TABLE 2Comparing the performance of theMLP-ANN, RNN, LSTM, andGRUmodels using five performancemetrics-correlation coefficient (R), mean
absolute error (MAE), mean squared error (MSE), variance accounted for (VAF), root mean square error (RMSE) and mean absolute percentage
error (MAPE) for training data, validate data and prediction data.

Statistical performance metrics for training data

Model R MAE MSE VAF (%) RMSE MAPE (%)

MLP-ANN 0.8501 0.8901 1.7621 72.2231 1.3274 0.5921

RNN 0.9344 0.8326 1.4332 83.2313 1.1972 0.4991

LSTM 0.9498 0.7811 1.2881 87.0011 1.1349 0.3871

GRU 0.9564 0.7624 1.1762 92.8971 1.0845 0.3777

Statistical Performance Metrics for Validation Data

Model R MAE MSE VAF (%) RMSE MAPE (%)

MLP-ANN 0.8447 0.9119 1.6291 70.9952 1.276362 0.5871

RNN 0.9176 0.8444 1.4091 81.3245 1.187055 0.4881

LSTM 0.9342 0.7764 1.2023 86.6532 1.096494 0.3763

GRU 0.9599 0.7543 1.1509 90.0001 1.0728 0.3642

Statistical Performance Metrics for Prediction Data

Model R MAE MSE VAF (%) RMSE MAPE (%)

MLP-ANN 0.8457 0.9175 1.529 71.1146 1.236527 0.5789

RNN 0.9288 0.8401 1.417 82.6753 1.190378 0.4987

LSTM 0.9423 0.7711 1.214 87.1076 1.101817 0.3998

GRU 0.9654 0.7777 1.1522 91.7689 1.073406 0.3786
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proposed GRU model (shown with a green circle) has one of

the lowest RMSD values and the highest correlation values.

Additionally, in relation to the reference point, its standard

deviation is one of the lowest. Then, the proposed LSTM

model (shown with a purple circle) has one of the second

lowest RMSD values and the second highest correlation

values. Additionally, in relation to the reference point, its

standard deviation is one of the second lowest. On the basis of

RMSD’s, correlation coefficients and the standard deviations,

it can be concluded that the proposed GRU model is the best

model, then LSTM performs better, RNN performs good and

the MLP-ANN model performs reasonably good.

The sensitivity analysis of each influencing factor in

predicting the sediment volume deposited for the Gobindsagar

reservoir was measured using an evaluation approach based on

the weight matrix of the suggested optimized network and

Garson’s modified equation, Olden’s algorithm, and

perturbation method discussed above in Section 2.1.7.

Figure 13A represents the results obtained by Garson’s

modified equation and the Olden et al. approach for MLP-

ANN model used in this study. It can be seen that most

critical parameter in predicting the annual sediment volume

was the annual rainfall whereas the least critical was annual

inflow of water. Figure 13B represents the outcomes obtained

from perturbation method used for all the RNN based neural

network architectures implemented in this study. It is obvious

from the figure that using perturbation method for the basic

RNN (R3-7-1), LSTM (L3-4-4-1), and GRU (G3-3-3-1)

structures, the sediment volume is most sensitive to the

annual rainfall based on the highest perturbation effect

whereas it is least sensitive to the annual inflow of water. The

ranking of the influencing factors is given below;

Annual Rainfall Ra( ) > AnnualWater Inf low Iw( ) > Storage Capacity Cr( )

FIGURE 11
Performance indicators for all the machine learning models for (A). Training data, (B). Validation data, (C). Prediction/test data: where the
primary y-axis tells the variation of R, MAE, MSE, RMSE, MAPE for each model and the secondary y-axis in purple represents the variation in VAF with
purple error bars for each model along with the labeled VAF.
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4 Discussion

The main objectives of this study were to validate the

proposed machine learning models including MLP-ANN,

RNN, LSTM and GRU for the Gobindsagar reservoir in

India based on the three input features i.e., annual rainfall

(Ra), annual inflow of water (Iw) and the annual storage

capacity (Cr) of the Gobindsagar reservoir and one output

of sediment volume (Sv). The accurate future prediction of the

sediment volume and the sensitivity analysis of each

influencing factor was performed using above mentioned

machine learning approaches. On the basis of the

numerical comparison of results with the actual sediment

volume presented in Table 1, it was found that the proposed

models perform better as compared to the reference model.

The prediction’s error were observed to be lower than that of

the reference model. The sediment volume was predicted

more precisely on the basis of the good performance of GRU

model as compared to other implemented models. The

performance of the GRU model can also be ensured from

the Taylor’s diagram as shown in Figure 12. Using

perturbation method, the sediment volume was found to

be the most sensitive to the annual rainfall based on the

highest perturbation effect whereas it is least sensitive to the

annual inflow of water.

Apart from the typical objectives of the present study, it can

be further assessed that under specific circumstances,

accumulated sediments can have an impact on a river’s usual

hydrological system. The sediments may begin to accumulate at

the river channel’s bottom and in result, the river channel’s

bottom becomes elevated, reducing its cross-sectional area and

choking the river’s hydrological system. In case of Gobindsagar

reservoir which has a capacity to store water up to 9.34 billion

cubic meters, the available data sources tell that the amount of

sediment has been accumulated up to 1.4587 billion cubic meters

until year 2003. This accumulation can be calculated from

Figure 2D. Every year, further sediment accumulation may

have an impact on hydropower output due to reduced

TABLE 3 Hyperparameters tuning for applied machine learning models.

Parameter Values

MLP-ANN RNN LSTM GRU

Batch size 100 45 35 35

Learning rate 0.001 0.01 0.01 0.01

The number of hidden layers 2 1 2 2

The number of neurons in each hidden layer 45 7 4 4

The number of neurons at input layer 3 3 3 3

The number of neurons at output layer 1 1 1 1

Activation function for input layer/gate Sigmoid Sigmoid Sigmoid Sigmoid

Activation function for forget gate - - Sigmoid -

Activation function for output layer/gate ReLU ReLU tan h tan h

Activation function for reset gate - - - Sigmoid

Training algorithm Adam Adam Adam Adam

Number of epochs 80 50 30 30

Problem type Time Series (Sequential) Time Series (Sequential) Time Series (Sequential) Time Series (Sequential)

Loss function MSE MSE MSE MSE

FIGURE 12
Taylor Diagram for the evaluation of model performance,
where black dotted arcs represent the standard deviation, green
dashed arcs represent the root mean squared difference, and blue
dotted lines represent the Pearson’s correlation coefficient
(R), and the different colored dots represents the model
performances.
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reservoir storage and/or mechanical component failure. If

sediments are not properly managed, they can have a harmful

effect on the ecosystem and the safety of the reservoir. It is

therefore important to accurately predict the amount of

sediments inside the Gobindsagar reservoir in the coming

years. Based on the available data for the years 1971 to year

2003, the machine learning approaches used in the present study

could be able to predict the amount of sediments accumulated

every year. Figure 10 shows the sediment volume prediction for

next 22 years using proposed machine learning models including

MLP-ANN, RNN, LSTM, and GRU, based on the three

forecasted input parameters. This could help to check the

performance of the best prediction model i.e.; GRU model

which calculates the amount of sediments accumulated in the

next 22 years i.e.; 0.7028 billion cubic meters. The Gobindsagar

reservoir’s yearly sediment deposit frequently disrupts low-level

exits, which results in clogging of spillway tunnels or other

conduits those may happen as sedimentation progresses. As

sediments continue to accumulate, the oxide coating on the

blades begins to erode, causing surface irregularities and

increasingly severe material degradation that can harm

turbines and other mechanical equipment. Extended

shutdown times for maintenance or replacement may result

from continuous erosion. Last but not least, sediment is a

major transporter of suspended contaminants like nitrogen,

phosphorus, and heavy metals. The release of sediments as a

result of sediment management could have long-lasting

repercussions on the environment. The sediment management

techniques for reservoir may require to remove already deposited

material, reroute some sediment through or around the reservoir,

and reduce the quantity of sediment entering the reservoir from

upstream. To accomplish these objectives, several reservoir

operators have employed sediment management strategies

such as bypassing, drawdown routing, dredging, flushing, and

erosion control. Because land users might not directly benefit

from controlling sediment yield, erosion management is likely

the most extensively recommended but least used sediment

management strategy. Regarding the hydrological/sediment

management significance of this work for stakeholders and

local government, further detailed studies and analysis is

required and it is also needed to incorporate more hydro-

meteorological and catchment details to predict the volume of

sediments. These will be studied in the future research and will be

highlighted in detail to discuss the significance.

5 Conclusion

The sediment volume inside the Gobindsagar reservoir in

India was validated and predicted using multi-layered perceptron

artificial neural networks (MLP-ANN), basis recurrent neural

networks (RNN), and other types of RNN models, such as long-

short term memory (LSTM), and gated recurrent unit (GRU).

Firstly, the proposed machine learning models were trained for

the data of 23 years and then validated for the tested data of

9 years. It was observed that the proposed models are better in

performance than the reference model presented by Jothiprakash

and Garg. The reference model only used the regression

modeling and simplified ANN structure to predict the volume

of sediments while in the present study, the advanced machine

learning approaches are used for prediction purposes. The results

demonstrate that the proposed MLP-ANN, RNN, LSTM, and

FIGURE 13
The relative importance of each influencing factor in predicting the sediment volume deposited inside the reservoir which is assessed for MLP-
ANN using (A) Garson’s Algorithm and Olden’s algorithm of connection weights (B) perturbation method for RNN, LSTM and GRU.
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GRU models can produce better results with maximum error

reductions of 8.05%, 7.52%, 1.77%, and 0.05%, respectively. It

was also noticed that each prediction’s error was lower than the

reference model’s maximum error of 24.6%. In terms of the error

analysis, it is also evident that the GRU model out predicts the

reference model and all other models included in this study. The

LSTM and GRU outperform other machine learning models

when compared to the actual volume of sediments deposited

inside the Gobindsagar reservoir utilizing tested data from the

year 1971 to the year 1999 as well as the reference neural network

model and proposed models.

Secondly, by measuring statistical indicators such as the

correlation coefficient (R), mean absolute error (MAE), mean

squared error (MSE), root mean square error (RMSE),

variance account for (VAF), and mean absolute percentage

error (MAPE) the proposed machine learning model’s

performance was evaluated. It was evident that four

different types of machine learning-based sediment

prediction models had far higher prediction accuracy than

the reference model. By comparing the prediction precision of

the four different types of machine learning models, it could

be seen clearly that the LSTM and GRU models were superior

to the MLP-ANN and RNN model. Among these models,

GRU took the best precision due to the highest R of 0.9654 and

VAF of 91.7689, the lowest MAE of 0.7777, the lowest RMSE

of 1.1522 and the lowest MAPE of 0.3786. There was just a tiny

difference in their prediction precision when the prediction

precision of LSTM and GRU were compared. In conclusion,

both LSTM and GRU models could successfully forecast the

volume of sediment. From the measurements of performance

metrics and the Taylor’s diagram, it can be observed that the

GRU model demonstrated greater accuracy in forecasting

sediment volume. It can also be inferred that the high

accuracy of the GRU model used in this study allowed for

greater efficiency in predicting sediment volume.

Lastly, an evaluation method based on the weight matrix of

the suggested optimized network, Garson’s modified

equation, Olden’s algorithm, and perturbation method were

used to measure the sensitivity analysis of each influencing

factor in predicting the sediment volume deposited for the

Gobindsagar reservoir. Results obtained from all the methods

showed that the annual rainfall was the most important

element in forecasting the annual sediment volume,

whereas the yearly inflow of water was the least important.

Other hydro-meteorological/catchment details which

determine the reservoir sedimentations can also be used as

input features in addition to the presently considered input

features to predict the sediment load in the Gobindsagar

reservoir using machine learning approaches in the

upcoming research.
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