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Over the past five decades, the Green Revolution in India has been a great

success resulting in significantly increased crop yields and food grain

productivity. Northwestern India, also known as the country’s breadbasket,

alone produces two-thirds of the wheat and rice grains under the crop rotation

system. Our previous study has shown that the post-monsoon rice crop

production in the Punjab state of India has increased by 25%. The crop

yields produce proportionate amounts of residue, a large part of which is

subjected to burn in the open fields due to the near-absence of a wide-

scale, affordable, and environmentally sustainable removal mechanism. A

significant increase in crop productivity coincides with a 60% increase in

post-harvest crop residue burning during 2002–2016. The study also

demonstrated a robust relationship between satellite measurements of

vegetation index—a proxy for crop amounts, and post-harvest fires—a

precursor of air pollution events, for predicting seasonal agricultural burning.

In this report, the efficacy of the proposed prediction model is assessed by

comparing the forecasted seasonal fire activity against the actual detection of

active fires for the post-monsoon burning seasons of 2017–2021. A simple

linear regressionmodel allows efficient prediction of seasonal fire activity within

an error of up to 10%. In addition to forecasting seasonal fire activity, the linear

regression model offers a practical tool to track and evaluate the effectiveness

of the residue management system intended to reduce fire activities and

resulting air pollution.
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1 Introduction

The movement of the Green Revolution in India, initiated in the 1960s, has brought

great success in terms of significantly increased crop yield and productivity, particularly in

staple food grains such as wheat, rice, and other crop varieties. This has been achieved

through technology adaptation, high-yielding seed varieties, mechanized agricultural

machinery, pesticides, fertilizers, expanded acreage, and a dual cropping system (Parayil,

1992; Pingali, 2012). Especially in the heartland of the Green Revolution, the northern

states of Punjab and Haryana have seen amultifold increase in the yield and production of

OPEN ACCESS

EDITED BY

Parth Sarathi Mahapatra,
Deutsche Gesellschaft für
Internationale Zusammenarbeit (GIZ)
GmbH, India

REVIEWED BY

Asish Saha,
University of Burdwan, India
Vignesh Prabhu,
Center for Study of Science,
Technology and Policy—CSTEP, India

*CORRESPONDENCE

Hiren Jethva,
hiren.t.jethva@nasa.gov

SPECIALTY SECTION

This article was submitted to
Geoscience and Society,
a section of the journal
Frontiers in Earth Science

RECEIVED 17 September 2022
ACCEPTED 08 December 2022
PUBLISHED 20 December 2022

CITATION

Jethva H (2022), Assessing predictability
of post-monsoon crop residue fires in
Northwestern India.
Front. Earth Sci. 10:1047278.
doi: 10.3389/feart.2022.1047278

COPYRIGHT

© 2022 Jethva. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Brief Research Report
PUBLISHED 20 December 2022
DOI 10.3389/feart.2022.1047278

https://www.frontiersin.org/articles/10.3389/feart.2022.1047278/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1047278/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1047278/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.1047278&domain=pdf&date_stamp=2022-12-20
mailto:hiren.t.jethva@nasa.gov
mailto:hiren.t.jethva@nasa.gov
https://doi.org/10.3389/feart.2022.1047278
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.1047278


wheat and rice under the crop rotation system in the last several

decades (Duxbury, 2001). For instance, the compiled data of crop

production by the Punjab University shows an eleven-fold

increase in rice crop productivity in Punjab, i.e., ~1 million

tons in 1965 to ~11 million tons in 2007. Furthermore, Jethva

et al. (2019), using the crop production data compiled by the

Ministry of Agriculture and Farmers Welfare, Govt. of India, has

shown that rice crop production has increased from ~9 million

tons in 2002 to ~13 million tons in 2016, i.e., a net increase in the

productivity by 25%.

Prior to the mid-1980s, seasonal crop harvesting in

northwestern (NW) India had traditionally been carried out

manually. Since then, the practice of manual harvesting has

been gradually replaced by the advent of automatic combine

harvesters (Singh and Kaskaoutis, 2014). Although mechanized

harvesting has reduced labor, machinery leaves a significant part

of the crop stem rooted in the ground. Increasing labor cost of

manual harvest, the lack of affordable crop residue removal

mechanisms that farmers can bear financially, and a shorter

time window for preparing the land for the next seasonal crop,

are prime reasons behind farmers resorting to burning the

residue in open fields (Badarinath et al., 2006).

Several studies published in recent years, using satellite and

ground observations, have adequately highlighted the impact of

post-monsoon rice straw burning on extreme levels of air

pollution affecting one of the most densely populated regions

of the world, i.e., Indo-Gangetic Plain (IGP) (Kaskaoutis et al.,

2014; Cusworth et al., 2018; Jethva et al., 2018). Using a 15-year-

long record (2002–2016) of NASA’s A-train satellite observations

of thermal anomalies (fires) and aerosols (MODIS, OMI,

CALIOP), Jethva et al. (2018) have shown an increasing trend

in post-monsoon agricultural fires (~617 per year) and aerosol

loading (0.031 and 0.04 per year in aerosol optical depth and UV

aerosol index) in November. Furthermore, an intentional delay

in the rice growing season from May to June enforced by the

Punjab Preservation of Subsoil Water Act 2009 has led to a delay

in crop harvesting, followed by the peak residue burning window

by about 2 weeks (Jethva et al., 2019; Liu et al., 2021).

In a follow-up study by Jethva et al. (2019), a strong positive

trend in fires was attributed to the increased rice crop production

by 25%, supported by a net increase in vegetation index (NDVI)

by 21%. Concurrently, the post-harvest agricultural fire activity

rose by a net ~60%, leading to a nearly 43% increase in aerosol

loading over the IGP region. In addition, the ground-level

particulate matter (PM2.5) downwind over New Delhi also

showed a concurrent upward trend of 60%. An increase in

crop yields implies the generation of proportionate amounts

of residue. The relative ratio, also quantified as residue to crop

production ratio (RCR), varies considerably depending on crop

type, harvesting practice, and environmental factors (Kumar

et al., 2015). Previous studies have estimated RCR values in

the range of 1.5–2.25 for rice crops in northern India (Gupta

et al., 2004; Badarinath et al., 2006). In other words, the amount

of agricultural waste generated post-harvest is estimated to be

1.5 to 2.25 times the actual quantities of the crop. Due to the lack

of affordable and effective removal mechanisms, farmers resort

to burning crop residue in open fields to clear and prepare the

land for the following seasonal crop.

Increasing agricultural fire activities implies greater

availability of crop residue to burn, and the generation of

agricultural waste is proportional to the crop production

amounts reflected in NDVI measurements. Following this

hypothesis, Jethva et al. (2019) showed a reasonably well-

correlated (R2 = 0.70) long-term relationship between NDVI

and seasonally accumulated fire counts over NW India. While

earlier studies have examined different aspects of the crop

burning issue in NW India, the prediction of the totality of

seasonal fire activities wasn’t explored until the work of Jethva

et al. (2019). The NDVI-fires relationship opened up the

possibility of predicting seasonal fire activities in advance by

looking at the regional mean NDVI values prior to the onset of

the burning season.

In this brief report, the predictability of crop residue fires in

NW India, based on the work of Jethva et al. (2019), is assessed

for the post-monsoon crop burning seasons of 2017–2021. The

accuracy of the predicted seasonal fire activity is evaluated by

comparing it to near real-time remote sensing data of thermal

anomalies from the Aqua/MODIS sensor. The method section

briefly describes the satellite datasets and further refinements

applied to the fire counts vs. NDVI relationship. The results

section presents the assessment analysis of predicted seasonal fire

activity against actual near real-time observations of fire

occurrences for the years 2017–2021. Finally, concluding

remarks on the findings and future applications are presented

in the discussion section.

2 Methods

The methodology adopted in Jethva et al. (2019) used the

monthly NDVI dataset (product name MYD13C2) and seasonally

accumulated fire counts derived from Aqua/MODIS (product

name MYD14) for the pre-burning and burning periods,

respectively, over NW India. The selection of the geographical

boundaries of the study region over NW Indian subcontinent

(Longitudes: 74°–77°E, Latitudes: 29°–32°N) was based on the long-

term average of active fire detection fromMODIS sensor on board

Aqua satellite encompassing prominent areas of residue burning in

Punjab and Haryana states of India. A further revision of the

derived relationship revealed that the use of the 16-day NDVI

product (product nameMYD13C1) correlates even better with the

total fire counts detected during the post-monsoon season (see

Figure 1). The 16-day NDVI dataset provides an improved

correlation coefficient and standard fitting error of 0.74 and

1,482, respectively, compared to 0.70 and 1,583 obtained using

the monthly NDVI dataset. Because of the improved correlation
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and lower fitting error, the 16-day NDVI is correlated with fire

counts to assess the accuracy of the proposed linear regression

model. The MYD13C1 dataset consists of cloud-free spatial

composites of 16-day 1-km MYD13A2 data and is available as

a Level 3 product projected on a 0.05 degree (5,600 m) geographic

climate model grid (Didan, K., 2015). The dataset was obtained

from LP DAAC online data holdings at the URL https://e4ftl01.cr.

usgs.gov/MOLA/.

The monthly, area-averaged NDVI dataset used in Jethva

et al. (2019) was scaled by a factor that accounts for interannual

variations in the spatial extent of NDVI measurements over the

crop area. The factor was calculated by normalizing the total

number of NDVI measurements for each year with respect to the

maximum number of pixels detected during a particular year

over the period 2002–2016. In this study, both scaled and non-

scaled (simple area averaged without scaling) 16-day NDVI

datasets are used to compare their relative performance in

predicting seasonal fire counts.

The MODIS Thermal Anomaly/Fire product provides the

geolocation of active fire spots and fire radiative power over land

at a spatial resolution of 1 km2 × 1 km2. Active fire detection is

physically based on the strong emission of mid-infrared radiation

from fires used as a signal in a contextual algorithm (Giglio et al.,

2003, 2016). The Aqua/MODIS Thermal Anomalies/Fire 5-Min

L2 Swath 1-km data MYD14 (Collection 006, Giglio and Justice,

2015), both post-processed (2002–2016) and near-real time

(2017–2021), was obtained from the NASA Fire Information

for Resource Management System (FIRMS) (https://earthdata.

nasa.gov/earth-observation-data/near-real-time/firms). Fire

detection pixels flagged with a confidence value of 30%–80%

and 80%–100% that correspond to the “nominal” and “high”

classes, respectively, were considered in this study.

3 Results

3.1 Rice residue burning season

Figure 1 displays the multiyear (2002–2016) linear regression

relationship between the post-monsoon seasonally accumulated

total fire counts (y-axis) observed during the 2-month long

burning season (October and November) and 16-day NDVI

(x-axis) over the same region for the pre-burning period in

September. The black dots represent values for individual

years, whereas the red dotted line is a derived linear

regression. The results shown here are derived using the

scaled (left) and non-scaled (right) NDVI datasets, as

described in the method section. The colored asterisk symbols

represent observations, not used in the linear regression, in both

parameters for the post-monsoon season of 2017 through 2021.

Overall, both relationships are found to adequately predict the

severity of the residue fire season. However, the differences

between the predicted and actual total fire counts remain,

which are quantified as % difference and tabulated in Table 1.

Though the scaled version of the relationship delivers better

correlation and lower fitting error relative to the non-scaled

FIGURE 1
Multi-year (2002–2016) relationships between the pre-burning season NDVI and the total number of fire counts during post-monsoon crop
burningmonthsderived following scaled (A) and non-scaled (B)methods. See the section Method for the description. Both datasets are derived from
Aqua/MODIS sensor over NW India. Black-filled circles show values for individual years, whereas the red dotted line represents a linear regression, the
statistical measures of which are given on the top-left of each plot. Color-coded asterisk symbols are values observed for the years 2017–2021
not used in the regression.
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version, the % error yield with the latter is found to be lower for

the years 2017 and 2021. Both methods render similar accuracy

in predicting seasonal fires for the years 2018 and 2019. While it

is hard to pinpoint the exact reason behind larger errors

encountered in the prediction during specific years, the

observed spread in the fires-NDVI relationship, thus

associated error in the prediction, could be attributed to

several factors, including inherent uncertainties in the

detection of active fires and derivation of NDVI, cloud cover

affecting sampling of both fires and NDVI, unaccounted fire

activities occurring before and/or after Aqua overpass time, a

saturation of NDVI in dense vegetation canopies, and

variabilities in RCR and percentage of total crop residue burned.

Overall, when averaged over the years 2017–2021, the

mean error (absolute error) produced by the scaled and

non-scaled methods is calculated to be 0.93% (7%) and

0.052% (4%). Regardless of how the NDVI dataset was

used, both methods deliver reasonably a good estimate of

seasonally accumulated fire counts with an error of up to 10%

for 2017–2021.

3.2 Wheat residue burning season

Contrary to the rice residue burning during post-monsoon

(October-November), the total fire activities during the

springtime wheat residue burning season in April-May are

noted to be about four to six times lesser (Jethva et al., 2018).

Significantly lower residue burning post wheat harvest may be

attributed to the usage of residue as fodder and fuel in power

generation. An extension of the fire counts vs. NDVI relationship

to the wheat crop burning season (2002–2020), shown in

Figure 2, reveals no systematic behavior between the two

parameters. The linear regression relationships, both scaled

TABLE 1 Values of Aqua/MODIS NDVI for the pre-burning period (September), predicted and actual fire counts for the post-harvest burning season (October
and November), and difference (%, predicted-actual) between the latter two for NW India for the years 2017–2021.

Year NDVI scaled/non-
scaled

Predicted fire counts scaled/non-
scaled

Actual fire counts Difference (%) scaled/non-
scaled

2017 0.6652/0.6683 14,256/13,220 13,081 8.98/1.06

2018 0.6612/0.6727 14,035/13,526 13,825 1.52/−2.16

2019 0.6851/0.6991 15,239/15,362 14,070 8.94/9.19

2020 0.7091/0.7131 16,626/16,336 16,751 −0.74/−2.47

2021 0.7066/0.7393 16,492/18,159 19,188 −14.05/−5.36

The values derived from both scaled and non-scaled NDVI methods are reported. The % difference numbers printed in bold represent relatively lower error in the prediction between the

two methods.

FIGURE 2
Same as in Figure 1 but for the wheat residue burning season (April-May) over NW India.
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and non-scaled, yield poor correlation (R2 = 0.03) with a large

spread in data for the individual years around linear fit and a

slight negative slope. Since the main focus of the present report is

to assess the predictability of fire activities during post-monsoon,

a detailed analysis of the wheat crop burning is left out in this

report. It demands a separate study involving year-to-year

dynamics of crop yield and production, burning practices, and

residue usage for other purposes (fodder, power generation, etc.).

3.3 Scaling fire detection from MODIS to
VIIRS

Since 2012, the VIIRS sensor onboard the Suomi-NPP

satellite has provided continuity in the global remote sensing

of atmospheric and land parameters, including thermal

anomalies. VIIRS detects active fire locations at 375-m

resolution—a significant improvement in spatial resolution

over MODIS, which provides fire detection at 1-km

resolution. Owing to higher spatial resolution, VIIRS is

expected to detect smaller-scale fires, which MODIS might

miss due to its relatively coarser resolution. The linear

regression model developed by Jethva et al. (2019) is based on

MODIS observations of NDVI and fire counts. Therefore, it is

strictly valid for predicting seasonal fire activity as it would detect

by MODIS at a 1-km nominal resolution.

Such a prediction model has not been developed using

observations from VIIRS. To extend the seasonal fire

prediction to VIIRS, a relationship, as shown in Figure 3,

comparing the total fire activity from both sensors over the

crop residue burning region of NW India is warranted. The

VIIRS thermal anomaly data was accessed from the NASA

FIRMS platform. The seasonal fire counts detected during the

rice (left) and wheat (right) burning seasons from both

sensors over the overlapping period 2012–2021 (black

filled circles) are used to derive a linear regression (red

dotted line). It shows that VIIRS detects about 3.56 (1.47)

times more fire incidences with a positive offset of 18,836

(11,404) than those observed from MODIS for the rice

(wheat) residue burning season. The spread of

observations around the linear fit can be attributed to how

two instruments see the active fires, algorithmic differences,

spatial resolution, and temporal changes in fire occurrences

between the overpass time (typically within 30 min). Such an

empirical relationship comparing fire statistics from two

sensors can be helpful in converting MODIS-based fire

prediction to that from the VIIRS sensor.

4 Discussion

The linear regression model correlating post-monsoon

seasonal fire activities and vegetation index NDVI over NW

India proposed by Jethva et al. (2019), with refinements applied

in this article, offers a practical tool to predict, track, and monitor

the severity of the agricultural fire season in advance about one to

2 weeks prior to the onset of a 2-month long burning season. An

assessment of the predictability of such an empirical model

carried out in this report using the satellite data for the years

2017–2021 shows adequate accuracy of the proposed method, in

FIGURE 3
Relationship comparing post-monsoon (A) and springtime (B) total fire detection from Aqua/MODIS and Suomi-NPP/VIIRS sensors over NW
India(red box inside an inset map). Thermal anomaly data with confidence levels >30% for MODIS and ‘nominal’ and ‘high’ classes for VIIRS are
included. Black filled circles show values for individual years (2012-2021), whereas the red dotted line represents a linear regression the statistical
measures of which are given at the top left.
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which the predicted total fire counts are found to be within 10%

of the satellite-observed, near real-time data.

The concerns and general awareness about the seasonal crop

residue burning and its detrimental impact on air quality and

health in the region have grown in recent years, particularly after

the anomalous, elevated levels of residue burning and resulting

extreme bad air pollution episodes of post-monsoon 2016. With

the growing attention and concern year by year, it is expected that

an effective, economical, and farmer-friendly crop residue

management policy will be implemented in the region to

control and curb seasonal burning activities. Under such a

favorable scenario, the proposed empirical prediction model

discussed in this report will be further helpful in tracking and

monitoring the effectiveness of the residue management policy.

For instance, reduced burning activities as a result of the strict

implementation of such policies would deviate

(underestimation) from the expected seasonal crop fire

statistics under the “as usual” scenario derived from the

proposed linear model. The difference between the two,

beyond the inherent uncertainties in the proposed method,

can be interpreted as a net reduction in fire activities.

Beginning the post-monsoon season of 2017, the prediction

of the total fire activities over NW India was announced and

made available to the authorities, academic and government

institutions in India, and the public in general on social media

(such as Twitter) prior to the onset of seasonal burning. The

Earth Observatory—an outreach platform and a part of the

EOS Project Science Office at NASA Goddard Space Flight

Center has referred to and highlighted the seasonal forecast

values in their story/image of the day articles published around

the peak time of the residue burning (first 2 weeks of

November) almost every year. One such article for the year

2020 can be accessed at the URL https://earthobservatory.nasa.

gov/images/147547/a-busy-season-for-crop-fires-in-

northwestern-india.

The early forecast assumes importance in gauging the

severity of the fire activities, thereby serving as a guideline

for planning and preparedness for better management of

extreme air pollution episodes. Furthermore, the prediction

of the totality of seasonal fires can be useful to gauge the

overall spatiotemporal variations in PM2.5 and aerosol

loading over the source as well as in the downwind region

by assimilating its spatial and temporal distribution over a

two-month long season (based on the patterns observed

during previous years) into the regional modelsfor making

the short-term to even seasonal forecast. The work presented

in the report meets at the intersection of land and atmosphere

disciplines of Earth Science. While increasing crop production

of the staple grain food of wheat and rice secures the nation’s

food demand, agricultural practices and crop residue

management require urgent attention, particularly in NW

India, which is a major contributor to the agricultural

output of the country. Until an effective, economical, and

farmer-friendly crop residue management is in place, it is

expected that farmers, in the wake of no other alternatives, will

continue to follow the traditional burning of crop residues in

open fields for clearing agricultural land.

The extreme episodes of air pollution resulting from the open

field burning of residue in NW India not just affect the source

region but encompasses the length and breadth of the populous

IGP, as evident from ground instrumentation and satellite maps

of aerosol retrievals. The PM2.5 concentration measured at

ground stations in the region during the peak period of

residue burning (i.e., the last week of October and the first

2 weeks of November) often exceeds the 24-h averaged safe

guideline value set by WHO (the standards adopted by the

Central Pollution Control Board of India) by a factor of

10–30 (8–15), leading to a situation of a public health

emergency. Such hazardous level of air pollution is further

enhanced by the wintertime meteorology (i.e., colder

temperatures, temperature inversion, and shallower boundary

layer) coupled with the possible semi-direct effect of smoke

aerosols (Mhawish et al., 2022), resulting in the trapping of

particulate matter near-surface.

Increasing crop fires and proportionately deteriorating air

quality over IGP is a pressing concern. The work presented here

stands as scientific evidence urging the policymakers in India to

implement an effective, economical, and farmer-friendly crop

residue management system towards eliminating the burning

practice, which otherwise may continue to be responsible for the

seasonal, hazardous air pollution in the region, affecting the

health of millions.
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