
Automatic identification of
conodont species using
fine-grained convolutional
neural networks

Xiong Duan1,2*
1School of Geographical Sciences, China West Normal University, Nanchong, China, 2Sichuan
Provincial Engineering Laboratory of Monitoring and Control for Soil Erosion in Dry Valley, China West
Normal University, Nanchong, China

Conodonts are jawless vertebrates deposited in marine strata from the

Cambrian to the Triassic that play an important role in geoscience research.

The accurate identification of conodonts requires experienced professional

researchers. The process is time-consuming and laborious and can be

subjective and affected by the professional level and opinions of the

appraisers. The problem is exacerbated by the limited number of experts

who are qualified to identify conodonts. Therefore, a rapid and simple

artificial intelligence method is needed to assist with the identification of

conodont species. Although the use of deep convolutional neural networks

(CNN) for fossil identification has been widely studied, the data used are usually

from different families, genera or even higher-level taxonomic units. However,

in practical geoscience research, geologists are often more interested in

classifying species belonging to the same genus. In this study, we use five

fine-grained CNN models on a dataset consisting of nine species of the

conodont genus Hindeodus. Based on the cross-validation results, we show

that using the Bilinear-ResNet18 model and transfer learning generates the

optimal classifier. Area Under Curve (AUC) value of 0.9 on the test dataset was

obtained by the optimal classifier, indicating that the performance of our

classifier is satisfactory. In addition, although our study is based on a very

limited taxa of conodonts, our research principles and processes can be used as

a reference for the automatic identification of other fossils.
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1 Introduction

Fossils are defined as paleontological remains and active

remains preserved in rocks. They provide an important basis

for the study of the origin of life, biological evolution,

stratigraphic age, the paleogeographic environment, plate

tectonics, oil and gas exploration and other scientific topics

(Du and Tong, 2009). Fossil identification is particularly

important for accurately obtaining key taxonomic

knowledge for biostratigraphic analysis and to better serve

earth science research. The general process of fossil

identification is as follows: experts familiar with a particular

genus examine the external morphology and internal structure

of a fossil, consult the relevant paleontological literature,

compare it with previous fossil specimens, plates and

descriptions, and rely on their own experience to identify

the species. The traditional process of fossil identification

usually relies too much on the prior knowledge of experts,

and is time consuming, labor intensive, and subjective. For

earth science researchers without a background in

paleontology, the challenge of accurately identifying fossils

may be one of the factors that slows their progress.

Paleontologists can only identify species with which they

are familiar and the expertise of paleontologists is usually

limited to a specific taxon. The reality is that the proportion of

researchers in the field of geology with a background in

paleontology is small, but there is a huge demand for fossil

identification for both scientific research and industrial

production. This problem is becoming increasingly

prominent.

With the digitization of geological specimen images, the

application of big data mining and machine learning in the

field of geosciences has been improved and broadened (Zhou

et al., 2018), and the potential application of computer vision in

paleontology has also attracted much attention. Numerous

studies have shown that the performance of machines in

image recognition is comparable to that of humans and

machines become more efficient and accurate as computing

power and data increase (LeCun et al., 2015). Therefore, in

this work, we use theoretical knowledge of machine

learning and deep learning to find an efficient and

accurate intelligent fossil identification model, which can

greatly simplify the traditional fossil identification process and

allow people without paleontological knowledge to identify

fossils.

The most serious biological extinction since the Cambrian

explosion at the end of the Permian period has been studied in

many aspects, and clarifying the boundary between the Permian

and Triassic is the basis of all research work. In this paper, we use

a variety of fine-grained CNNs to automatically identify the

genus Hindeodus, which can help to clarify the boundary

between the Permian and Triassic to some extent. In addition,

although our study is based on conodonts, our research

principles and processes can be used as a reference for the

intelligent identification of other fossils.

2 Related work

2.1 Automatic identification of fossils

Intelligent identification of paleontological fossils mainly

relies on machine learning models and deep learning models

in the field of computer vision. In recent decades, scholars in

different research fields have tried to use various shallow

machine learning models for intelligent image recognition

(Sinha, 1998; de Vel and Aeberhard, 2000; Ryu and Oh,

2001; Dong et al., 2002; Ng and Gong, 2002; Kotropoulos

and Pitas, 2003; Casasent and Wang, 2005; Long et al., 2006;

Inglada, 2007; Shen and Liu, 2008; Suresh et al., 2009; Minhas

et al., 2010; Mohammed et al., 2011). However, the algorithm

in traditional machine learning image feature extraction is

usually designed based on the specific application conditions

and the guidance and suggestions of professionals. The

modeling process is complex and the generalization ability

and robustness of the model are often unsatisfactory (LeCun

et al., 2015). In recent years, thanks to the significant increase

in computing power, deep learning models, especially CNN

models, have been developed rapidly and have exhibited good

performance in multiclass image automatic recognition tasks.

Deep learning has also been applied in some areas previously

dominated by traditional machine learning. In 2012, a

remarkable CNN called AlexNet was proposed in the field

of deep learning and achieved top-1 and top-5 error rates of

37.5% and 17.0% on the ImageNet dataset, respectively

(Krizhevsky et al., 2012). Since then, many classical CNNs

have emerged, such as VGGNet (Simonyan and Zisserman,

2015), GoogLeNet (Szegedy et al., 2015), ResNet (He et al.,

2016), and DenseNet (Huang et al., 2017). These CNNs

generally show a trend of deeper and deeper network layers

and more complex network architectures, all of which play an

important role in image recognition tasks, while the

application of these CNNs in fields such as medicine,

agriculture, and transportation has greatly contributed to

the development of deep learning. Not coincidentally,

increasingly sophisticated CNNs are widely used in various

fields of geology, such as paleontological fossil identification

(Keçeli et al., 2018; de Lima et al., 2019; Hsiang et al., 2019;

Mitra et al., 2019; Bourel et al., 2020; Liu et al., 2020;

Marchant et al., 2020; Pires de Lima et al., 2020; Romero

et al., 2020; An et al., 2022; Liu et al., 2022; Wang et al., 2022),

geological prospecting (Li et al., 2020; Li et al., 2021),

carbonate microfacies analysis (Liu and Song, 2020), and

mineral rock identification (Xu and Zhou, 2018; Zhang

et al., 2018; Baraboshkin et al., 2020; Guo et al., 2020;

Alférez et al., 2021).
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Based on previous research results, the classifiers trained on

the paleontological fossil dataset with deep learning network

models achieved high accuracy. Bourel et al. (2020) used

multiple-CNNs to identify and classify eight modern pollen

grains as well as fossil pollen grains from East Africa,

achieving 100% accuracy on a dataset of all intact pollen

grains and 97.2% and 96.7 accuracy on a dataset containing

damaged pollen grains and a dataset with fossil pollen grains,

respectively. Mitra et al. (2019) performed automatic

identification of six extant planktonic foraminifera extensively

studied by paleoceanographers, and manual screening was

performed by experts and novices in their study; their study

showed that the accuracy of automatic identification was slightly

higher than that of expert identification and much higher than

that of novice identification, but the precision and recall of

manual identification were much lower than those of

automatic identification due to limitations in a priori

knowledge. Keçeli et al. (2018) used a pretrained

VGG16 network model with fine-tuning to achieve an

accuracy of 90.22% on the fossil radiolarian dataset. Hsiang

et al. (2019) trained 27,737 images of modern planktonic

foraminifera using three CNNs, VGG16, DenseNet121 and

Inception V3, and the best performing classifier obtained

correct species names for 87.4% of the images on the test set

(a total of 6,903 images). Pires De Lima et al. (2020) used five

pretrained network models, VGG19 and ResNet50, and fine-

tuned them to train and test a total of 342 fusulinid fossil images

of 8 classes in the late Paleozoic, showing that given sufficient

data for training, the CNNmodel can correctly identify fusulinid

fossils with high accuracy (>80%). Liu et al. (2020) used five

network models, ResNet-18, ResNet-34, ResNet-50, ResNet-101,

and ResNet-152, and employed transfer learning to train on a

dataset of eight Ordovician conodonts with a total of 1761 image

data and tested the models using 205 data points. The results

showed that the accuracy of all models exceeded 80%, but

illustrated that increasing the network depth did not

necessarily improve the accuracy and that transfer learning

was more favorable than training from scratch (Liu et al.,

2020). An et al. (2022) performed hierarchical intelligent

recognition of four Mesozoic ostracoid fossils, Dongyingia

florinodosa, Dongyingia biglobicostat, Phacocypris

guangraoensis, and Berocypris substriala (i.e., fossils were first

target detection for initial classification and then applied CNN

and SVM for more detailed classification on this basis) with a

final recognition accuracy of 95%. Wang et al. (2022) designed a

transpose CNN based on a fully convolutional network (Long

et al., 2015) and U-NET (Ronneberger et al., 2015) for the

automatic identification of brachiopod fossils, which were

compared and analyzed. The network was applied to a small

dataset of brachiopod fossils.

The above research results are exciting and indicate that the

deep learning network model can be applied to the identification

of paleontological fossils. The fossil data used previously for

automatic identification all came from different genera or

families or even higher-level taxonomic units. Due to the large

differences in the characteristics (such as texture, shape, etc.) of

different categories of samples and the small number of

categories, machines can relatively easily and accurately

identify the sample category with a high accuracy rate. Even

ordinary geologists can identify these differences, such as

distinguishing between bivalves and foraminifera. However,

fossil identification in earth science research requires

identification of more closely related species. Since researchers

usually study a particular section of stratigraphy, the collected

fossil samples are inevitably concentrated in several genera or

represent multiple species within a genus, and the identification

of fossils between species within a genus is often the focus and

challenge of the identification task. Based on the above

considerations, we recommend that all fossils whose data is

used for CNN model training be of the same genus, and the

dataset be as complete as possible to include all species belonging

to the genus to maximize the usefulness of the model.

2.2 Fine-grained deep learning

The above problem highlights another Frontier research

hotspot in deep learning image recognition, namely, fine-

grained image recognition (FGIR), also known as subcategory

image recognition. In data settings with limited training data and

highly similar data, the unsatisfactory results obtained using

classical CNN models alone led to the rapid development of

FGIR in computer vision in the last decade (Luo and Wu, 2017;

Wei et al., 2022a). FGIR aims to distinguish numerous visually

similar subordinate categories belonging to the same basic class,

which is extremely challenging [especially the classification of

visually sensory similar objects (Wei et al., 2022a)] but also has

great application prospects, such as for automatic biodiversity

monitoring (Van Horn et al., 2021), intelligent retail (Wei et al.,

2022b), and intelligent transportation (Khan and Ullah, 2019).

Compared with generic image recognition, fine-grained

image recognition objects mainly have two characteristics

(Figure 1): the difference between classes is small, that is, all

data belong to a subclass of the same class; and due to the

influence of object pose, scale and photo angle, there are great

intraclass differences. So, fine-grained image recognition must

capture more subtle differences.

Based on the amount of supervised information used, FGIR

can be divided into strongly supervised and weakly supervised

FGIR. Strongly supervised FGIR algorithms are those that use

additional manual annotation of feature information such as

bounding boxes and part annotation in addition to the basic

image category labels during model training. The detection of

foreground objects can be accomplished with the help of the

bounding box, thus eliminating the interference of background

noise, while part annotation can be used to locate some useful

Frontiers in Earth Science frontiersin.org03

Duan 10.3389/feart.2022.1046327

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1046327


local areas to achieve local feature extraction. Representative

CNN models for strongly supervised information FGIR are deep

convolutional activation feature (DeCAF) (Donahue et al., 2014),

part-based R-CNN (Zhang et al., 2014), pose normalized CNN

(Branson et al., 2014) and mask-CNN based on part

segmentation model (Wei et al., 2018).

The usefulness of strongly supervised models is limited by the

cost of labeling information acquisition, the need for professional

assistance, and the considerable cost in terms of time and effort.

The use of weakly supervised fine-grained models have become

the main trend of fine-grained image research in recent years and

they can achieve good classification performance compared to

that of strongly supervised network models without the help of

manual annotation information and by relying only on category

labels. The principle behind weakly supervised fine-grained

classification models is similar to that of strongly supervised

classification models, and they also require global and local

information to perform fine-grained level classification. The

difference is that weakly supervised fine-grained models

extract this information completely by computer, without

human involvement during the process. Representative models

for fine-grained classification with weakly supervised

information are two-level attention in CNNs (Xiao et al.,

2015), constellations of neural activations (Simon and Rodner,

2015), bilinear CNNs (Lin et al., 2015) and improved models

(Gao et al., 2016; Lin and Maji, 2017).

In summary, in the process of fine-grained image

classification, whether by supervised or unsupervised feature

learning, the effective extraction of key local information is

essential for the model’s ability to achieve good results. As a

result of continuous research on unsupervised classification

models, their accuracy rates are comparable to those of

supervised models, and they have been more widely used in

various fields because they eliminate the need for human

involvement in model training.

3 Materials and methods

3.1 Data collection

The data used for this study were from samples of some

species of the conodont genus Hindeodus, which were deposited

during the Permian‒Triassic transition. Conodonts are jawless

vertebrates found throughout marine strata from the Cambrian

to Triassic, many of which are index fossils for stratigraphic

division and correlation. In addition, the conodont color

alteration index plays an important role in the evolution of

sedimentary environments, interpretation of basin histories,

regional metamorphic studies, and petroleum exploration

(Epstein et al., 1977).

Conodont scanning electron microscopy (SEM) image data

were obtained from published literature (an appendix file

provided for original references) and our own SEM images

obtained from rock samples. When collecting conodont image

data, the quality of the images was strictly controlled, including

the resolution of the images and the intactness of the fossils

themselves, meaning that low-resolution and severely incomplete

fossils were not included in the dataset. In addition, when the

number of a species collected was small, the data were not

included the dataset. Based on the above two conditions for

selecting conodonts, a total of 613 images from only the following

nine species were selected for inclusion in the dataset in this study

(Figure 2): H. changxingensis, H. eurypyge, H. inflatus, H.

julfensis, H. latidentatus, H. parvus, H. praeparvus, H.

sosioensis, and H. typicalis.

For the same conodont sample, the sample provider usually

shows SEM images from three perspectives: lateral view, upper

view and lower view. In this study, only the lateral view image was

selected because it best reflects the characteristics of the fossil.

Before training, we did not do the raw data for offline

enhancement, but used the methods of PyTorch framework

FIGURE 1
Schematic diagram of different grained images. (A)Coarse -grained images, all fossils belong to different classes, fusulinid provided by Arefifard
and Payne (2020), ammonoid provided by Shi et al. (2017). (B) Middle -grained images, all conodonts belong to different genera. (C) Fine-grained
images, all conodonts belong to same genus, these three species of conodont genus Clarkina are provided by Yuan and Shen (2011).
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(e.g., Random Resized Crop and Random Horizontal Flip) for

data enhancement during training.

3.2 Dataset preparation

When performing image classification tasks, the general

practice is to divide the dataset into a training set, validation

dataset and test dataset. The training dataset is used to train

the model and to determine the parameters (i.e., weight and

bias) of the model; the validation dataset is used to adjust the

hyperparameters (e.g., learning rate, epoch, batch size) during

model training and determine when to stop training based on

the convergence of the model; the test dataset contains data

that have never been seen during the model training process

and is not used in the training of the model, but is used for the

final evaluation of the generalization ability of the model. The

above division of datasets is usually feasible when the amount

of data is sufficient. The conodont dataset collected in this

study has two problems: the dataset is small and imbalanced.

In the case of a small dataset, if the above division scheme is

used, feature learning will not use as much data as possible and

the validation results of the model may have a large degree of

randomness; cross-validation can be a good solution to this

problem. There are various forms of cross-validation. In

K-fold cross-validation, the test set is retained, but in the

model training process, instead of setting aside a fixed

validation set, the training set is equally divided into K

blocks. In each iteration, K-1 blocks are used as the

training set, and the remaining block is used as the

FIGURE 2
Example illustrations of each species of the conodont genus Hindeodus in the dataset.

FIGURE 3
Schematic diagram of Stratified K-fold cross validation.
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validation set, so that the CNN model is trained and validated

K times. Then, the average accuracy calculated from the

accuracy of the K iterations is used as the performance

measure of the model. When the dataset is unbalanced in

all classes, the use of stratified sampling as implemented in

stratified K-fold cross-validation is recommended to ensure

that relative class frequencies are approximately preserved in

each training and validation set (Figure 3).

In this paper, we used a stratified K-fold cross-validation

approach for model selection (including hyperparameter

determination) and divided the conodont data into a training

dataset (~85% of the data) and a test dataset (~15% of the data)

without dividing the validation set separately (Table 1). The

division of the dataset was implemented in the following steps: 1)

create two folders on the local disk named the training dataset

and test dataset; 2) create 9 subfolders in the training dataset and

test dataset folders, each with a name corresponding to the names

of the above 9 classes of conodonts; and 3) put 85% of the data of

each class of conodonts into the corresponding subfolder in the

training dataset and the other 15% into the corresponding

subfolder in the test dataset.

3.3 Model training

In feature learning with models of high complexity, if there

is not enough data available for training the models, the

trained models often suffer from overfitting (i.e., they

perform well on the training set but do not generalize well

on the test set and new data). The best way to avoid overfitting

is to obtain more training data; however, in some highly

specialized scenarios, it is often difficult to obtain enough

data. The most common means of preventing model

overfitting is to use model-based migration learning

(i.e., parameter-based migration learning) in addition to

adding data. It can save computational resources and

improve computations, which usually also improves the

accuracy rate. When training new data with a CNN model,

it is possible to use a pretrained model (typically one that has

been trained on a large dataset such as ImageNet) as a feature

extractor and replacing the final output layer of the model

(usually the last fully connected layer). Since the previous

layers in a convolutional neural network extract generic

features, to extract specific features from specialized

data, the previous layers can be frozen while retraining

the last layers of the network in a method known as fine-

tuning.

To further prevent overfitting of the model during

training, weight decay and dropout are used for model

training. Weight decay is like L2 regularization, which

reduces the weight in the neural network and is a common

approach for dealing with overfitting. In the PyTorch

framework, weight decay is represented as a parameter in

the optimizer, and the value of weight decay was set to

0.00001 in the experiment. Dropout refers to an approach

to the training of the model in which the neural network units

are temporarily dropped from the network with a certain

probability (Hinton et al., 2012). The dropout layer is

generally added to the fully connected layer in the CNN,

and the probability of dropout was set to 0.5 in this

experiment.

Five unsupervised fine-grained network models, Bilinear-

VGG16 (Lin et al., 2015), Bilinear-ResNet18 (Lin et al., 2015),

Bilinear-ResNet50 (Lin et al., 2015), CBAM (Convolutional

Block Attention Module) -ResNet50 (Woo et al., 2018), and

SE (Squeeze and Excitation) -ResNet50 (Hu et al., 2020), were

selected for training on the conodont dataset (Figure 4). When

loading pretrained model parameters for transfer learning, all

layers were frozen or most of the layers were frozen to fine-tune

the models before training. During training, the network model

used a weighted loss function to reduce the negative effects

caused by the imbalance of the dataset, and the formula for

calculating the various classes of weights is shown in Eq. 1. Since

stratified K-fold cross-validation with K set to 10 was used in the

TABLE 1 Species of the conodont genus Hindeodus used for the classification and the number of images per species in the constructed dataset.

Class number Species name Training dataset (~85%) Test dataset (~15%) Total Proportion (%)

1 H. changxingensis 35 7 42 7

2 H. eurypyge 44 6 50 8

3 H. inflatus 32 4 36 6

4 H. julfensis 21 4 25 4

5 H. latidentatus 49 7 56 9

6 H. parvus 139 21 160 26

7 H. praeparvus 125 16 141 23

8 H. sosioensis 11 2 13 2

9 H. typicalis 80 10 90 15
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experiment, each network model generated 10 classifiers after

training, and the average accuracy of these 10 classifiers on the

validation set was used as the basis for selecting the optimal

network model (including hyperparameters). After determining

the network model, the complete training dataset was trained

from scratch.

Weighti � 1 − ni/N (1)

Where Weighti represents the weight of each class, ni represents

the number of samples in each class, N represents the sum of all

samples, and the values of i are 1–9, corresponding to the class

number in Table 1.

All models were trained using an NVIDIA GeForce RTX

2070 graphics card, and the operating system version was

Windows 10 Professional. Python version 3.7.0 was used,

along with PyTorch version 1.10.0 and CUDA version 10.2.

3.4 Model evaluation

After the CNN model is trained on the dataset, the next step

is to evaluate the performance of the classifier obtained after

training. Based on a comparison of the predicted classes on the

test set and the true labels, four sets of results are obtained: the

true positive sample, false positive sample, true negative sample

and false negative sample. These four samples can be plotted in a

confusion matrix (Figure 5) for further analysis. The confusion

matrix shows the specific classification and can be used to easily

calculate the values of various evaluation metrics (e.g., accuracy,

precision, recall, and F1-score). These evaluation metrics can be

an objective means of evaluating the generalization performance

of the classifier. However, the application of these evaluation

metrics is limited to balanced datasets; their application is less

straightforward when the dataset is unbalanced and can even lead

to incorrect evaluation results (Branco et al., 2016). Sensitivity

(also called true positive rate, TPR) and specificity (also called

false positive rate, FPR) are evaluation metrics that ignore the

imbalance between positive and negative samples (Figure 5).

Using the FPR as the horizontal coordinate and the TPR as the

vertical coordinate, a receiver operating characteristic (ROC)

curve can be plotted (Fawcett, 2006). When the TPR is large and

the FPR is small, a steep ROC curve is obtained, indicating good

FIGURE 4
Overview of the convolutional neural network used and its procedures in the experiment. Conodont image from Yin et al. (2001).

FIGURE 5
Confusion matrix and other evaluation metrics calculated
from it.
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performance of the classifier. The value of the area under the

curve (AUC) of the ROC curve (Bradley, 1997) is usually between

0.5 and 1.0. The larger the AUC value is, the better the classifier

performance. Therefore, in the case of unbalanced datasets, two

metrics, ROC and AUC, are usually used instead of accuracy

(Branco et al., 2016).

4 Results

4.1 Training results of different models

The five fine-grained CNN models selected for the

experiments were trained on the conodont dataset using

different training strategies and hyperparameters. All models

were trained with the batch size set to 8, Adam was used as the

optimizer, and each model was trained 10 times (each training

round was denoted K1 to K10). The training strategies, other

hyperparameter settings and training results are shown in

Table 2.

Where c1, c2, c3, c4, and c5 are the classifiers obtained after

training with Bilinear-VGG16, c6 is the classifier obtained after

training with Bilinear-ResNet18, c7 is the classifier obtained after

training with Bilinear-ResNet50, c8 is the classifier obtained after

training with CBAM-ResNet50 and c9 classifier obtained after

training with SE-ResNet50. lr = learning-rate; lw = load-weights;

epo = epochs.

The bilinear VGG16 model was trained in three different

ways, with a learning rate set to 0.00001 and 85 iterations per

round, and the resulting classifiers were as follows: 1) in c1,

pretrained weights were not trained on ImageNet and the data

were trained from scratch and after 10 rounds of training, the

accuracy of the classifier on the validation set ranged from

0.44 to 0.68 with a mean value of 0.59; 2) c2 uses pretrained

weights and freezes the first seven convolutional layers, and

the accuracy of the classifier on the validation set ranged from

0.48 to 0.76 with a mean value of 0.608; 3) c3 also freezes the

first seven convolutional layers, but the network model can not

only advance the texture features, but also better extract the

shape features (Geirhos et al., 2019), and the accuracy of the

classifier on the validation set ranged from 0.5 to 0.82 with a

mean value of 0.618; 4) c4 used pretrained weights, but only

the first 26 layers were frozen (i.e., the last convolutional and

fully connected layers were trained), and the accuracy of the

classifier on the validation set ranged from 0.5 to 0.84 with a

mean value of 0.618; 5) c5 used pretrained weights, all

convolutional layers were frozen, only the fully connected

layers were trained, and the accuracy of the classifier on the

validation set ranged from 0.44 to 0.82, with an average value

of 0.614.

Using Bililinear-ResNet18 (c6) with pretraining weights

loaded and all convolutional layers frozen, only the fully

connected layers were trained, the learning rate was set to

0.0001 and 200 iterations per round, and the accuracy of the

classifier on the validation set ranged from 0.56 to 0.78 with an

average value of 0.676.

Using Bilinear-ResNe50 (c7) training with pretraining

weights loaded and all convolutional layers frozen, only fully

connected layers were trained with a learning rate set to

0.00001 and 200 iterations per round. The accuracy of the

classifier on the validation set ranged from 0.54 to 0.8 with a

mean value of 0.642.

Using CBAM-ResNet50 (c8) training with pretraining

weights loaded and all convolutional layers frozen, only the

fully connected layers were trained with a learning rate set to

0.00001 and 200 iterations per round. The accuracy of the

classifier on the validation set ranged from 0.54 to 0.74 with a

mean value of 0.658.

TABLE 2 Analysis of the results of seven classifications obtained by training with five fine-grained CNN models. where c1, c2, c3, c4, and c5 are the
classifiers obtained after training with Bilinear-VGG16, c6 is the classifier obtained after training with Bilinear-ResNet18, c7 is the classifier
obtained after training with Bilinear-ResNet50, c8 is the classifier obtained after training with CBAM-ResNet50 and c9 is the classifier obtained after
training with SE-ResNet50. lr = learning rate; lw = load weights; epo = epochs.

Classifier
number

val acc lr epo lw

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 aver

c1 0.68 0.6 0.62 0.66 0.6 0.58 0.68 0.44 0.54 0.5 0.59 0.00001 85 No

c2 0.76 0.62 0.64 0.7 0.56 0.52 0.56 0.64 0.6 0.48 0.608 0.00001 85 Yes

c3 0.82 0.66 0.62 0.62 0.6 0.58 0.58 0.62 0.58 0.5 0.618 0.00001 85 Yes

c4 0.84 0.64 0.62 0.6 0.62 0.52 0.66 0.62 0.56 0.5 0.618 0.00001 85 Yes

c5 0.82 0.68 0.62 0.58 0.6 0.58 0.68 0.56 0.58 0.44 0.614 0.00001 85 Yes

c6 0.78 0.62 0.68 0.72 0.7 0.62 0.74 0.66 0.68 0.56 0.676 0.0001 200 Yes

c7 0.8 0.64 0.58 0.62 0.68 0.62 0.68 0.64 0.62 0.54 0.642 0.00001 200 Yes

c8 0.74 0.62 0.66 0.66 0.68 0.64 0.7 0.54 0.74 0.6 0.658 0.00001 200 Yes

c9 0.7 0.64 0.64 0.66 0.62 0.56 0.68 0.52 0.64 0.56 0.622 0.00001 200 Yes
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Using SE-ResNet50 (c9) training with pretrained weights

loaded and all convolutional layers frozen and only fully

connected layers trained with a learning rate set to

0.00001 and 200 iterations per round, the accuracy of the

classifier on the validation set ranged from 0.52 to 0.7 with an

average value of 0.622.

Comparing the average accuracy of the above seven classifiers

on the validation set, the results showed that c6 had the highest

average accuracy, followed by c8, and that c1 has the lowest

accuracy, indicating that Bilinear-ResNet18 was the optimal

model for the conodont dataset.

4.2 Evaluation results on the test dataset

After determining the best model, the Bilinear-ResNet18

model was used to retrain all the data in the training dataset

and to evaluate the final generated classifier.

The confusion matrix was generated using the prediction

results of the classifier on the test set (Figure 6). From the

prediction results, only two of the seven samples labeled H.

changxingensis were correctly identified, and the other five were

predicted to be H. eurypyge, H. julfensis, H. parvus, H.

praeparvus, and H. typicalis, with an accuracy of 0.28. Of the

six samples labeledH. eurypyge, five were correctly identified, and

only one was predicted to be H. praeparvus with an accuracy of

0.83. Of the four samples labeled H. inflatus, two were correctly

identified, and the remaining two were predicted to beH. julfensis

with an accuracy of 0.5. Of the four samples labeled H. julfensis,

three were correctly identified, and the remaining sample was

predicted to be H. praeparvus with an accuracy of 0.75. Of the

seven samples labeled H. latidentatus, three were correctly

identified, one was predicted to be H. eurypyge, one was

predicted to be H. julfensis, and the other two were predicted

to be H. parvus, with an accuracy of 0.43. Of the 21 samples

labeled H. parvus, 16 were correctly identified, one was predicted

to be H. eurypyge, and the other four were predicted to be H.

praeparvus with an accuracy of 0.76. Of the 16 samples labeledH.

praeparvus, 9 were accurately identified, 2 were predicted to beH.

changxingensis, 2 were predicted to be H. eurypyge, 2 were

predicted to be H. latidentatus, and 1 was predicted to be H.

typicalis with an accuracy of 0.56. Of the 2 samples labeled H.

sosioensis, 1 was accurately identified, and 1 was predicted to be

H. typicaliswith an accuracy of 0.56. Of the 10 samples labeledH.

typicalis, 5 were correctly identified, 3 were predicted as H.

changxingensis, H. eurypyge, and H. julfensis, and 2 were

predicted as H. praeparvus, with an accuracy of 0.5. Overall,

the classifier was accurate on the test set. Overall, the accuracy of

the classifier on the test set was 0.6.

Based on the confusion matrix (Figure 6), the values of

sensitivity and specificity of each class can be calculated

separately so that the corresponding ROC curves can be

plotted and the corresponding AUC can be obtained.

Hindeodus changxingensis, H. eurypyge, H. inflatus, H.

julfensis, H. latidentatus, H. parvus, H. praeparvus, H.

sosioensis, and H. typicalis had AUC values of 0.84, 0.94, 0.98,

0.89, 0.94, 0.92, 0.78, 0.97, and 0.84, respectively (Figure 7). The

macroaverage AUC value for the classifier on the test dataset

was 0.90.

5 Discussion

5.1 Optimal model and training strategy
for the conodont dataset

Comparing the average accuracy of the three classifiers c1, c2,

c3, c4, and c5 (Table 2), we found that loading pretraining

weights and freezing all layers for training improved the

performance of the model when using the same CNN model.

Compared with c2, in the training process of c3, we let CNN

extract more shape features, but the performance of the two

classifiers is not much different. Our analysis may be due to the

fact that unlike common images (such as cats, dogs, cars, etc.),

almost none of the conodont fossils have strict integrity and are

more or less damaged, thus leading to not very good results even

though we let the network focus more on the extraction of shape

features.

Both c6 and c7 are classifiers generated using the bilinear

algorithm; the difference between them is that the backbone used

in c6 and c7 are ResNet18 and ResNet50, respectively. The

average accuracy of c6 was greater than that of c7 (Table 2),

indicating that increasing the depth of the CNN did not improve

the model performance. This result may be due to the simple

FIGURE 6
The confusion matrix is generated based on the prediction
results of the final classifier on the test dataset.
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image features of the conodonts (Liu et al., 2020); increasing the

depth of the network does not necessarily result in accuracy

improvement. Additionally, c7, c8, and c9 are all classifiers

trained with ResNet50 as the backbone, and the average

accuracy of c7, c8, and c9 on the validation set in descending

order was as follows (Table 2): c8, c7, and c9. This indicated that

the SE algorithm was more suitable for the conodont dataset.

The optimal classifier, c6, obtained an AUC value of 0.9 on

the test set. This was a good result for the classification of a

conodont species, especially considering that the model was

trained in the low data regime, and some conodont images

have natural defects (e.g., some parts of the fossil were

missing and the surface of the fossil was covered by colloid).

5.2 Threats to validity and areas for future
work

As mentioned previously, the dataset in this paper had many

problems that cannot be solved at this time, such as small sample

size and imbalance, and these problems will likely be faced in

other fields (Mikołajczyk and Grochowski, 2018). There were

some conodonts in our dataset that were not well preserved

during the deposition process (Figure 8A), and although experts

can identify them based on their accumulated experience,

identification of the samples is difficult for the machine.

When using SEM to obtain images of the conodont, colloid

must be used to fix the samples, which may cause the conodont

surface to be attached by colloid during this process (Figure 8B).

Studies have shown that CNNs rely more on texture features to

identify objects compared to features such as shape and color (Shi

et al., 2020), and the attached colloid alters the original texture of

the conodont, making intelligent recognition of conodonts more

challenging.

In addition, random neighborhood embedding with t

distribution (t-SNE), a tool for visualizing high-dimensional

data, was used to analyze the similarity of features between

conodont data. The basic principle of t-SNE is to map each

data point to a corresponding probability distribution through

a transformation using a Gaussian distribution to convert

distances to probability distributions in high-dimensional

space and a t-distribution to convert distances to

probability distributions in a low-dimensional (two- or

three-dimensional) space (Van der Maaten and Hinton,

FIGURE 7
The ROC curves are generated based on the prediction results of the final classifier on the Test set.
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2008). After t-SNE processing of the raw conodont data, we

found that all categories are largely clustered together

(Figure 9A). Boytsov et al. (2017) performed a clustering

analysis on the raw data of the MNIST dataset (a

handwritten digit dataset) using t-SNE, and the categories

in the dataset were well distinguished. These two distinct

results are due to the fact that conodont image data are

more similar and thus not easily distinguishable; thus, the

task of classifying conodont species is more difficult, while the

task of distinguishing handwritten digits is less difficult. Using

the same method, after training on the raw data and then

processing the last layer of features with t-SNE, we found that

there were obvious boundaries that could be well distinguished

(Figure 9B), indicating that the classifier obtained after

training was feasible. Some samples were clustered together

(black dashed ellipse box in Figure 9B), indicating that these

samples were difficult to identify accurately and that many

species are indistinguishable from H. eurypyge, which was

consistent with the results shown by the confusion matrix

(Figure 6). In terms of the evolutionary lineage of Hindeodus,

H. parvus is closer to H. latidentatus and H. preparvus than to

H. typicalis (Wang, 1996; Lai, 1998; Perri and Farabegoli,

2003), and therefore these three species (i.e., H. parvus, H.

latidentatus, and H. preparvus) can be seen to have

misclassified samples from each other on the t-SNE plot

(Figure 9B). H. changxingensis and H. typicalis did not

evolve from H. preparvus (Perri and Farabegoli, 2003); they

have a separate evolutionary lineage and therefore have little

intersection with H. parvus, H. latidentatus, and H. preparvus.

Studies have shown that H. sosioensis and H. anterodentatus,

and H. julfensis and Isarcicella changxingensis, are the closest

in affinity (Perri and Farabegoli, 2003; Jiang et al., 2014), so

they can be well distinguished from other species. In addition,

even two species that are very distantly related appear to be

intermixed, and we speculate that the fact that the fossils are

not complete causes the machine to think they are similar.

In general, the intelligent recognition of conodont species

had several challenges: 1) the dataset was small and unbalanced;

2) some conodonts were incomplete, and this natural defect was

not found in common datasets; and 3) the original textures of

some conodont were damaged during the experimental process,

leading them to be missing some key features. These issues

resulted in the difficulty of intelligent recognition for

conodonts at this stage.

To address the above problems, future work can focus on the

following two aspects. The first task will be to augment the data of

conodonts already collected and to collect other conodonts of the

genus Hindeodus that were not included in this study (e.g., H.

FIGURE 8
Some incomplete fossil samples [(A), the part enclosed by the white oval dotted line] and samples with surfaces attached to colloids (B).
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anterodentatus, H. bicuspidatus, H. lobatus, H. magnus, and H.

priscus). The success of deep learning models in the field of

computer vision has largely been attributed to large-scale labeled

data (Sun et al., 2017). When recognizing images, since machines

do not have prior knowledge like people, it is necessary to provide

a large amount of data to the CNN for feature learning. The

process of obtaining conodont image data includes extracting

conodonts from sedimentary rocks and imaging them under

SEM, which is a time-consuming and tedious task. To construct a

dataset of conodonts including various species and large numbers

FIGURE 9
Data features visualized by t-SNE (A), visualize original data features; (B), visualize the last layer of features after training on the original data.
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requires the joint efforts of a large number of geologists.

Establishing a public web platform for collecting and

presenting conodont data and making it available for further

study would be helpful. Second, low-quality data needs to be

preprocessed. Low-quality data resulted mainly from incomplete

conodonts and corrupted original textures, seriously affecting the

performance of the classifier, but it was clearly not wise to discard

these low-quality data when the dataset was already small. Before

training the dataset, high-quality data can be formed by image

restoration (e.g., recovering missing parts and texture

restoration) of these low-quality data. Image restoration is the

task of filling missing pixels in an image to make the finished

image look realistic and suit the real-world context (Yu et al.,

2019). Deep learning-based image restoration techniques have

achieved good results on conventional images (e.g., faces,

buildings) (Iizuka et al., 2017; Liu et al., 2018; Yu et al., 2019),

and although it is not known whether these models will achieve

the same results for conodont restoration, it is still worthwhile to

investigate them.

In this paper, we aimed to perform intelligent identification

of conodont species of the same genus to better serve geoscience

research. For any automatic identification of fossils, the fossil

species trained on the CNN model should belong to the same

genus so that the difficulties in fossil identification work can be

addressed.

6 Conclusion

In this study, we used five fine-grained CNN models to

train nine species of the conodont genus Hindeodus with

different strategies to obtain seven classifiers. By comparing

the accuracy of these classifiers on the validation dataset, we

found that the classifier trained by Bilinear-ResNet18 has the

highest accuracy. We also found that increasing the number of

network layers did not significantly improve the

accuracy, while using transfer learning was effective. The

performance of the classifier obtained by retraining all the

data on the training set using Bilinear-ResNet18 was

evaluated, and the AUC value of the classifier was 0.9,

indicating that the final classifier was satisfactory despite

some deficiencies in the dataset.

Although previous findings suggested that CNN models can

be better applied for intelligent identification of paleontological

fossils, we suggest that the dataset for model training be fine-

grained, which is also more in line with the practical needs of

fossil identification. In the future, we believe that as more and

more high-quality fossil data are made available and shared,

intelligent identification using CNN models will achieve better

and better results, thus effectively pushing the identification of

fossils in the direction of artificial intelligence.
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