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Fluorine (F) is one of the most important environmentally harmful elements

released by volcanic activity, and the bentonite deposits that formed from

volcanic ashes are potentially harmful to the environment. However, the

mechanisms governing F-rich bentonite formation and its F speciation

composition remain enigmatic. The F-rich bentonite deposits are widely

distributed in the Early-Middle Strata of the Sichuan Basin, South China.

Detailed mineralogical and geochemical studies were conducted on the

bentonite deposits from five sections of the Sichuan Basin. X-ray diffraction

(XRD) analyses indicate that the F-rich bentonites mainly contain quartz,

carbonates (calcite and dolomite) or gypsum, and clay minerals, while the

clay minerals are dominated by illite and illite/smectite (I/S). Clay mineralogical

studies suggest that bentonites were transformed from volcanic ashes during

diagenesis by smectite illitization. The major and trace element distribution in

F-rich bentonite deposits altered from volcanic ashes ismost likely derived from

felsic magmas, and alteration of the parent rocks (e.g., rhyolites) to bentonite is

associated with leaching and subsequent removal of F. The total fluorine

content (FTOT ) of the bentonite samples ranged from 1,162 mg/kg to

2,604 mg/kg (average = 1773 mg/kg), well above the average FTOT contents

of soils in the world. The results of the sequential extraction experiments show

that the highest content is residual-fluorine (Fres), followed by carbonate-

fluorine (Fcar) with a mean value of 1,556 mg/kg and 186mg/kg, indicating

carbonate is an important F sink in bentonite deposits. The average fluorine

value of organic fluorine (For), Fe/Mn oxide-fluorine (Ffm) and exchangeable

fluorine (Fex) are relatively low with an average value of 17.5 mg/kg, 6.8 mg/kg

and 4.1 mg/kg, respectively. However, water-soluble fluorine (Fws) has a mean

value of 4.0 mg/kg, which is higher than the corresponding average value in

soils in an area susceptible to endemic fluorosis in China. Based on the

characteristic of fluorine speciation, the fluorine in bentonite deposits may

pose a risk to the environment. This study makes an important contribution to a

better understanding of the characteristic of fluorine speciation in bentonites

and the formation mechanism that governs fluorine enrichment in bentonites.
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1 Introduction

Fluorine (F) is the 13th element found in abundance on

the Earth and one of the most important natural pollutants

receiving increasing attention because of its high toxicity

and reactivity, which are potentially harmful to the

environment and humans (Halmer et al., 2002; Fuge,

2019; Schlesinger et al., 2020). Volcanoes are one of the

most important natural sources of fluorine, and the global

volcanogenic fluorine flux is estimated to range from 50 to

8,600 Gg/yr (Symonds et al., 1988; Halmer et al., 2002;

Schlesinger et al., 2020). Volcanic eruptions are

associated with the release of magmatic fluorine in the

form of hydrogen fluoride through volcanic degassing

and the huge volume of volcanic ash that likely delivers

fluorine large distances from its source (Rubin et al., 1994).

Although fluorine has been assumed to move rapidly from

volcanic ash to water through dissolution of the glass

fraction and mineral coatings precipitated on glass

surfaces (Rubin et al., 1994; Bia et al., 2020), volcanic ash

may be largely enriched in total fluorine relative to the

original magmatic contents, e.g., a 6 − fold increase in

volcanic ash from Ruapehu volcano (Cronin et al., 2003).

Bentonite is an important type of clay deposit commonly

formed from the alteration of volcanic ash (Altaner et al.,

1984; Huff, 2016). Therefore, the bentonite deposits formed

from volcanic ash in the marine and continental basins

always had high fluorine concentrations (Starkey, 1982;

Haamer and Karro, 2006), which may be potential long-

term sinks or sources of fluorine in the environment.

Water-soluble fluorine in the sediments is most important

for groundwater toxicity and contamination, making it a key

factor in the retention and mobility of F in sediments (i.e., soil)

(Wenzel and Blum, 1992; Deng et al., 2022). The environmental

hazard of fluorine in volcanic ash is generally assessed by

analyzing the content of water-soluble fluoride in the ash

(Bellomo et al., 2007; Delmelle et al., 2021). However, the

fluoride in volcanic ash also occurs in the form of poorly

water-soluble compounds (Delmelle et al., 2021). Fluorine can

likely be released under a variety of environmental conditions,

which should be considered when evaluating the input and

potential environmental hazards from F-rich volcanic

eruptions (Bellomo et al., 2007). Few studies have been

conducted on the bentonite deposits with high total fluorine

concentrations regarding its F speciation, which complicates

appropriate risk management for fluoride-rich altered volcanic

ash (Starkey, 1982; Haamer and Karro, 2006). In addition, the

material source of the F-rich bentonite deposits and their

formation conditions remain enigmatic (Bellomo et al., 2007).

Distribution and development of bentonite in Early-Middle

Triassic strata in the Sichuan Basin, South China, resulting in

significant fluorine accumulation in the marine basin (Yan et al.,

2015; Lin et al., 2020; Feng M. S. et al., 2021), making it an ideal

field site to constrain the process of F-rich bentonite formation.

In this study, we aim to characterize the fluorine speciation of

bentonite deposits in the Sichuan Basin, South China using

mineralogical methods and batch leaching experiments to

decipher the formation process of F-rich bentonite deposits.

This study is useful to evaluate appropriate risk management

for F-rich bentonite deposits and improve our understanding of

the behavior of volcanic fluorine accumulating in altered

volcanic ash.

2 Geological setting

The Sichuan Basin was a stable craton basin located in the

western region of the Yangtze block, northwest South China,

bounded by the Qinling-Dabie orogen to the north, the Jiangnan

orogen to the southeast, Songpan-Ganzi Terrance to the west,

and the Sanjiang orogen to the southwest (Cawood et al., 2018;

Liu et al., 2021) (Figure 1). The Yangtze Platform was stable and

formed shallow-water carbonates from the Late Proterozoic to

Middle Triassic (Lehrmann et al., 2005). The Early-Middle

bentonite deposits are widely distributed in the Upper

Yangtze Platform, South China. These bentonites are so-called

“mung bean rock” (or “green bean rock”) which contains a high

concentration of lithium and fluorine and has an area of about

7 × 106 km2 and a thickness of several tens of centimeters to tens

of meters (Lin et al., 2020; Feng M. S. et al., 2021; Li et al., 2021).

These altered volcanic ashes were believed to originate from the

eruption of episodic volcanism caused by Large Igneous Province

(Ma et al., 2019; Ju et al., 2020), and the extensive volcanic

eruption caused by amalgamation and collision of terranes and

continents during the closure of the Paleo-Tethys Ocean (Feng

M. S. et al., 2021; Li et al., 2021), and the Indosinian movement

(Xiao and Hu, 2005; Wang et al., 2019).

3 Materials and methods

3.1 Sampling

Five bentonite samples were collected from outcrops in

five sections in South China, including the Yongchuan section,

the Pinghong section, the Xiejiacao section, the Pianyazi

section and the Kai section (Figure 1). The bentonite

samples exhibit light yellowish, consolidated, and locally
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contain elliptical siliceous particles. It occurs as a stratified bed

ranging from 30 cm to 2 m thick with no discernible

stratification features in the layers. In the Pianyazi section,

the altered volcanic ash occurs near the bottom of the Middle

Triassic Leikoupo Formation, which is underlain and overlain

by anhydrite (Figure 2). In other sections, the altered volcanic

ashes usually occur at the bottom of the Middle Triassic

Leikoupo Formation, which is underlain by the Lower

Triassic Jialingjiang Formation in a shallow-water

carbonate basin setting. The lower part of Leikoupo

Formation consists of dolomite and the upper part of

Jialingjiang Formation consists of limestone in the study

area (Li et al., 2021).

3.2 Sample characterization

Clay minerals (<2 μm) were separated from bentonite

samples according to the methods of Köster et al. (2021a).

The mineralogy of bentonite samples was confirmed by XRD

using an X-ray diffractometer (TTR-3, Rigaku Crop, Tokyo,

Japan), and Cu Kα radiation (λ � 1.54056�A) generated at

45 kV and 30 mA. To constrain the clay mineralogy, XRD

was performed on the clay mineral fractions (<2 μm) of

bentonite powers, on the air-dried oriented clay sample (N),

on the ethylene glycol solvated (EG), and on the 550°C heated

(T) states. The XRD patterns calculations were performed

using the Clayquan program (version 2016) with Rietveld

refinement methods. The relative analysis error is ±5%. The

major and trace element compositions of the bentonites were

analyzed using X-ray fluorescence spectrometry (XRF). Fusion

glasses were prepared by mixing the sample with lithium

borate flux at a ratio of 1:10. Loss on ignition (LOI) was

determined by weighing the samples before and after

heating to 1,075 ± 25°C for 1 h. Fluorine in the altered

volcanic ash samples was analyzed using a pyrohydrolysis-

ion-selective electrode (ISE). The relative analytical error was

better than 5% for repeated analyses. The chemical index of

FIGURE 1
(A) Schematic geological map for South China and the distribution of Early-Middle Triassic bentonite deposits (based on the 1:
5,000,000 geology map of China); (B) Insert map showing the location of the study area in China.
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alteration (CIA) was used to assess the degree of weathering

and alteration in altered volcanic ashes, which can be

calculated using the following formulae (Nesbitt and Young,

1984):

CIA � Al2O3/ Al2O3 + CaO* + Na2O + K2O( )[ ] × 100 (1)

In this formula, CaO* is the CaO residing only in the silicate

fraction. In absence of carbonate and apatite, the CaO

concentration of the silicate fraction was defined as the CaO

content of the bulk samples. However, carbonates are observed in

our studied samples, so the CaO value was defined as the content

of Na2O when CaO >Na2O.

3.3 Sequential chemical extraction
experiments

Fluorine species in bentonite samples were determined separately

in six categories: water-soluble fraction (Fws), exchangeable fraction
(Fex), fraction bound to carbonates (Fcar), fraction bound to Fe-Mn

oxides (Ffm), fraction bound to organic matter (For) and a residual

fraction (Fres). Sequential chemical extraction experiments were

performed following a improved method based on the methods of

Tessier et al. (1979), to study the speciation of fluorine in bentonites

by soaking samples in different solutions: 1) water soluble fraction,

50 ml of H2O (20°C, bentonites: DI water = 1:25, 30 min); 2)

FIGURE 2
Generalized stratigraphy of the Early-Middle Triassic in the study area, South China (modified from Zhao et al. (2020)) and the representative
photography showing outcrop of altered volcanic ashes; (A) Pianyazi section; (B) Pinghongcun section; (C) Kai section.
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exchangeable fraction, 1M MgCl2 (pH = 7.0, 20°C, bentonites:

solution = 1:25, 1 h); 3) fluorine bound to carbonates, 1M

NaOAc (pH = 5.0, 20°C, bentonites: solution = 1:25; 5 h); 4)

fluorine bound to Fe-Mn oxides, 25 ml 0.2M NH4OAc (pH =

3.25, 20°C in a water batch, bentonites: solution = 1:25; 30 min);

5) fluorine fraction bound to organic matter, 50 ml of 0.02MHNO3

+ 30% H2O2 (bentonites: solution = 1:25); and 6) residual fluorine

fraction, the fluorine concentration in this step was determined by

subtracting the other five fractions from the total fluorine content.

4 Results

4.1 Mineralogical and chemical
composition of bentonites

The XRD data of the bulk bentonite samples show that the

bentonites in the Pianyazi section consist of clay minerals (46%),

quartz (36%), gypsum (10%), and K-feldspar (8%) (Figures 3A;

Table 1). In other sections, the mineral compositions are variable

and mainly consist clay minerals (1%–37%), quartz (2%–34%),

K-feldspar (0%–19%), dolomite (7%–79%) and calcite (3%–63%).

The clay minerals are composed of illite (0%–99%), I/S (0%–86%),

smectite (0%–13%) and C/S (0%–27%) (Figures 3B; Table 2). The

dominance of I/S in bentonites could be an indication of the

digenetic transformation of smectite into illite. The relative

proportion of smectite in the I/S of the bentonite is around 15%

in Xiejiacao and Yongchuan, indicating R3 ordered I/S, and is

around 65% in other sections, indicating R1 ordered I/S.

The chemical compositions of the bentonites are different in the

study sections, which is consistent with the XRD results (Table 3). In

Xiejiacao and Pianyazi sections, the most abundant major

constituent of the bentonite was SiO2 (67.73% and 58.96%),

followed by K2O (10.04% and 9.47%). In the other sections, the

bentonite samples mainly consist of CaO (36.22%, 31.74%, and

42.86%) and volatiles, measured as LOI (33.51%, 41.82% and

FIGURE 3
XRD pattern of bulk bentonites samples in Sichuan Basin, South China; (A) Bulk samples; (B) The diffraction pattern of clay minerals in
representative samples (K1 and D2). N, Air-dried oriented clay samples; EG, Ethylene glycol-saturated clay samples; T, clay samples post heating to
550°C.
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41.6%). The geochemical characteristic of the bentonites was partly

derived from the parental volcanic ashes but was probably also

influenced by post-depositional alteration under various

sedimentary environments.

4.2 Speciation of fluorine

The total F content (FTOT) of bentonite ranges from 1,162 to

2,604 mg/kg with a mean value of 1773 mg/kg, which is higher than

the average FTOT content of soils in China (478 mg/kg) (Yi et al.,

2013) and that of average FTOT content of soils in the world

(329 mg/kg) (Kabata-Pendias, 2000). Fws is the fluoride extracted

with distilled water, ranging from 2.911 to 6.548 mg/kg with a mean

value of 4.035 mg/kg, which is higher than the corresponding

average value in soils in Chinese endemic fluorosis areas. Fex is

the fluoride adsorbed by electrostatic attraction to positively charged

clay, organic particles, and hydrated oxides. Fex content in

bentonites ranged from 1.715 to 4.082 mg/kg with an average of

2.535 mg/kg. Ffm is the fluorine absorbed by Fe, Mn, and Al oxides,

oxyhydroxides, and hydrated oxides and precipitated with these

chemicals, and ranged from 2.497 to 11.052 mg/kg with an average

of 6.767 mg/kg. Fcar is the fluorine bound to precipitated calcite in

the samples and ranged from 46.383 to 497.893 mg/kg with an

average value of 185.893 mg/kg. For is the fluorine bound to the

organic matter in the samples and ranges from 3.803 to

33.711 mg/kg with an average value of 17.496 mg/kg. Fres is the

residual fluorine present in the mineral lattice of the samples (e.g.

clay minerals), ranging from 934.538 to 2,509.532 mg/kg with an

average value of 1,556.296 mg/kg. Overall, the order of the six-

fluorine species from smallest to largest is that

Fex <Fws <Ffm <For <Fcar <Fres (Figure 4; Table 4).

4.3 Risk assessment of F-rich bentonites

Li et al. (2005) proposed a method for assessing the risk of

fluorine in soil based on the statistical relationship between the

TABLE 1 Mineralogical compositions of bulk bentonites.

Sample Location Quartz K-feldspar Calcite Dolomite Gypsum Clay minerals

P3 Pinghong section 5 4 72 15 0 5

X1 Xiejiacao section 34 19 3 7 0 37

Y4 Yongchuan section 3 0 17 79 0 1

K1 Kai section 2 0 63 33 0 3

D2 Pianyazi section 36 8 0 0 10 46

TABLE 2 Clay mineralogical compositions of bentonites.

Sample Location Smectite Illite/Smectite Illite Kaolinite Chlorites Chlorites/Smectite

P3 Pinghong section 0 22 43 0 8 27

X1 Xiejiacao section 13 86 0 1 0 15

Y4 Yongchuan section 0 24 32 0 17 27

K1 Kai section 0 46 33 0 6 15

D2 Pianyazi section 0 0 99 0 1 0

TABLE 3 Major element (%) and selected trace element (ppm) compositions of bentonites.

Sample SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O MnO TiO2 P2O4 FeO LOI Nb Y Zr

P3 17.23 4 1.59 5.29 36.22 0.011 1.74 0.027 0.28 0.073 0.72 33.51 6.54 18 73.8

X1 67.73 12.41 0.944 4.18 0.418 0.015 10.04 0.009 0.238 0.029 0.21 3.74 9.63 22.3 102

Y4 10.43 1.65 0.717 12.88 31.74 0.015 0.593 0.016 0.123 0.006 0.4 41.82 1.49 2.7 12.5

K1 5.58 1.42 0.444 7.49 42.86 0.01 0.428 0.009 0.07 0.025 0.24 41.6 1.52 2.52 12.8

D2 58.96 11.41 0.422 2.91 3.26 0.089 9.47 <0.004 0.186 0.019 0.35 7.16 11.3 27.8 158
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geochemical characteristics of fluorine in soils with high fluorine

content and the local occurrence of endemic fluorosis in China,

which were described as follows:

Ci < S1 → soil deficient in F (2)
S1 ≤Ci < S2 → soil normal in F (3)

Ci > S2 → soil excessive F (4)

where Ci (mg/kg) is the analyzed content of fluorine in the

samples; S1 and S2 (mg/kg) are the lower and upper limits,

respectively, of the standard concentrations of fluorine for the

assessment.Ci denotes the measured concentrations of Fws in the

samples when the pH of samples is alkaline (pH>7). S1 was

defined as 0.5 mg/kg, which is the average Fws content in the

world’s uncontaminated surface soils (National Soil Pollution

Survey of China, CNEMC, 1990). The S2 was defined as

2.5 mg/kg, which is the equivalent in soils in areas with

fluorosis prevalence in China. Then, a soil health index for

fluorine (Pi) was also defined as follows:

Pi � Ci

S2
(5)

If the Pi is greater than 1, it means that the evaluated soil has

high-fluorine content and its health quality related to fluorine is

inferior. To assess the health quality of the altered volcanic ash,

Fws content in the altered volcanic ash was taken as the Ci since

the pH of all the altered volcanic ash is alkaline. All bentonite

samples were assessed as having excessive F in their soils.

FIGURE 4
F speciation of bentonite samples in Sichuan Basin, South China.

TABLE 4 Contents of F speciation (mg/kg) in bentonite deposits in Sichuan Basin, South China.

Sample no. Fws Fex Fcar Ffm For Fres FTOT

P3 3.264 2.697 142.851 5.718 18.538 1359.644 1532.712

X1 2.911 1.715 46.383 9.843 33.711 2509.535 2604.098

Y4 6.548 4.082 497.893 2.497 3.803 1244.036 1758.859

K1 3.512 2.015 211.405 4.725 6.109 934.538 1162.304

D2 3.939 2.166 28.450 11.052 25.320 1733.727 1804.654
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Furthermore, the water-extractable F contents in altered volcanic

ash generally have higher concentrations than those of soils in

fluorosis areas in China.

5 Discussion

5.1 The formation process of F-rich
bentonites

Bentonites are volcanic ashes that have undergone significant

devitrification to dioctahedral smectite, and volcanic ashes are a

precursor material for bentonites (Altaner et al., 1984; Huff, 2016;

Namayandeh et al., 2020). Generally, smectite formed in marine

subaqueous environments during diagenetic alteration of volcanic

glass shards, releasing alkalis and alkaline Earth elements after initial

hydration and cation exchange between the fluids and volcanic glass

shards (De La Fuente et al., 2000; Huff, 2016; Hong et al., 2019).

Under these conditions, the pH and salinity increased, favoring

smectite formation (Hong et al., 2019; Milesi et al., 2019). In this

study, the clay minerals of bentonites are composed of illite and I/S.

The I/S in bentonites were derived from the illitization of smectite in

subaqueous environments (McCarty et al., 2009; Gong et al., 2018).

The transformation of smectite to illite by a mixed-layer I/S is a

commonmineralogical reaction that occurs during the diagenesis of

altered volcanic ashes, with temperature and potassium availability

being the main controlling factors (Nesbitt and Young, 1984;

Cuadros, 2006; McCarty et al., 2009). The simplest form of

smectite illitization can be described as the following reaction

pathway (Bethke et al., 1986):

smectite + Al3+ + K+ → illite + Si4+ + Fe2+ + Na+ +Mg2+ (6)
smectite + K+ → illite + Si4+ + Fe2+ + Na+ +Mg2+ (7)

However, smectite illitization starts at about 70 ~ 80 °C and lead to a

decrease in smectite content according to the following reaction

pathway: smectite → random I/S → ordered I/S → illite (e.g.,

Altaner and Ylagan, 1997; Cuadros, 2006; Abedini and Calagari,

2012; Gong et al., 2018). In this study, the mineralogy and

geochemical composition of the bentonite are variable, which

were probably controlled by the depositional environments

(Hong et al., 2019). In the Pianyazi section, the presence of

gypsum suggests that the bentonites at this site were probably

formed in a restricted, subaqueous environment. In other

sections, however, the presence of calcite and the absence of

gypsum indicate that the bentonite at this site was probably

formed in a subaqueous environment. Alteration of volcanic ash

releases bicarbonate and cations drive precipitation of authigenic

carbonate and clay minerals (Köster et al., 2021b). Furthermore, the

high field strength elements (e.g., Nb, Zr) and TiO2 are indicative of

magmatic origin due to their immobile behavior during diagenesis

andweathering (Berry, 1999;He et al., 2014; Hong et al., 2019, 2020).

The Al2O3/TiO2 ratio is generally considered a useful indicator of

the provenance because the concentrations of Al and Ti in the

materials remain constant during diagenesis and weathering

(Nesbitt and Young, 1982; Sugitani, 1996; Abedini and Calagari,

2012; Abedini, 2017; Abedini and Calagari, 2017; Abedini et al.,

2018; Abedini et al., 2019a; Abedini et al., 2019b; Abedini et al.,

2020a; Abedini et al., 2020b; Kiaeshkevarian et al., 2020;

Leontopoulou et al., 2021; Abedini and Khosravi, 2022).

According to the classification model, the volcanic ashes

corresponding to the bentonite deposits are classified as felsic

magmas in all sections and in the fields of rhyolite (Figure 5).

Volcanoes emit a variety of gases that include hydrogen fluoride

and hydrogen chloride, which are the main components of high-

temperature volcanic gas (Cronin et al., 2003; Bia et al., 2020;Delmelle

et al., 2021). The volcanic gases interact rapidly with volcanic ash

particles and especially with atmospheric water to form acidic aerosols

(Gutmann et al., 2018; Zelenski et al., 2020). The smaller volcanic ash

particles have a large surface area relative to their mass, which can

transport significant amounts of soluble fluorine to pastures far

downwind from an erupting volcano. Total fluorine in volcanic

ash can be enriched by many factors compared to the original

magmatic content, for example, by a factor of six relative to the

original magmatic content in Ruapehu volcano (Cronin et al., 2003).

Another important source of Early-Middle Triassic altered volcanic

ash is the chemical weathering of F-rich volcanic rocks in the vicinity

of the basin. High fluorine concentrations have always been found in

felsic igneous rocks (Chowdhury et al., 2019; Liu et al., 2020;

Amézaga-Campos et al., 2022). In this study, the altered volcanic

ashes were considered to be derived from the eruption of episodic

volcanism (e.g., Xiao and Hu, 2005; Lin et al., 2020; Feng M. S. et al.,

2021). F is removed from minerals by chemical weathering at almost

the same rate as other elements (Jacks et al., 2005). The CIA values in

the collected samples vary between 54 and 76with an average value of

65, which is lower than the PAAS value of 70 but higher than the

UCC value of 48 (Taylor andMcLennan, 1985). The presence of clay

minerals (e.g., I/S and illite) in the samples is also evidence of chemical

weathering and alteration of volcanic ash. Bentonites show Ca

enrichment compared to the probable source rocks, most likely

due to precipitation of the Ca-carbonate precipitation by alteration

of volcanic ashes. The F contents in the samples show a strong

negative correlation with the CIA values, which is most likely due to

the fixation of fluorine in clay and secondary minerals in altered

volcanic samples (Figure 6).

5.2 Enrichment mechanism of fluorine
speciation

5.2.1 Adsorption of fluorine by clay minerals
Most of the F in bentonites was stored in residual silicates. Fres is

the residual fluorine present in the mineral lattice of the samples (e.g.,

clay minerals), ranging from 934.538 to 2509.532 mg/kg, with an

average value of 1556.296 mg/kg. The percentage of clay minerals in

the bulk rock shows a positive correlationwith Fres (R2 � 0.71). Clay
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minerals are an important component of bentonites. Volcanic ash is

an important precursor material of clays in marine environments

with a diagenetic process. The K, Mg, and Ca in the past seawater are

readily available for the formation of smectite, and the bentonite layers

are generally dominated by smectite and subsequently consist of illite

due to the smectite illitization (Cuadros, 2006; Hong et al., 2019).

Alteration of volcanic ash releases bicarbonate and cations that drive

precipitation of authigenic carbonate and clay minerals (Calagari

et al., 2015; Köster et al., 2021a). The fluorine in seawater and volcanic

ash could be removed from seawater by authigenic clay minerals. In

this process, the fluorine in seawater can be taken up by clay minerals

which transfer the fluorine from seawater to the solid phase by

physical and chemical adsorption and surface precipitation (Du et al.,

2010). The fluorine ion is crystal chemically very similar to the

hydroxyl ion and replaces hydroxy in 2:1 layer silicates, such as illites

and smectites (Chipera and Bish, 2002).

FIGURE 5
(A) Plot of TiO2 and Al2O3 (B) Bulk rocks ratios of Nb/Y and Zr/TiO2 for bentonite samples and the source fields defined byWinchester and Floyd
(1977).

FIGURE 6
Conceptual model of bentonite deposits formation in Sichuan Basin, South China.
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5.2.2 Adsorption of fluorine by carbonates
In this study, bentonites have high Fcar concentrations, ranging

from46.383 to 497.893mg/kg,with an average value of 185.893mg/kg,

and Fcar shows a positive relationship with carbonate contents in bulk

rocks (R2 � 0.63). Alteration of volcanic ash releases bicarbonate and
cations that drive precipitation of authigenic carbonate and clay

minerals (Köster et al., 2021a). Ca-carbonate precipitation is

thought to dominate the removal of dissolved fluorine from

seawater (Carpenter, 1969; Schlesinger et al., 2020). Greater removal

of fluorine from seawater by authigenic carbonates is 0.94 Tg/yr

(Schlesinger et al., 2020), which will be higher during the period

when there is additional fluorine input, e.g., volcanic eruptions. Calcite

in altered volcanic ash is another important F sink. Due to the strong

affinity of fluorine to calcite, calcite is often used as an adsorbent in

wastewater-treatment technologies (Budyanto et al., 2015). F in parent

solutions promotes calcite formation, and magnesium in parent

solutions is thought to cause the co-precipitation of F with calcium

carbonate. The amount of fluoride coprecipitated with calcite increases

with increasing concentration of magnesium ions in parent solutions

(Kitano and Okumura, 1973). Feng X. et al. (2021) used first-principle

calculations to show the incorporationmechanisms of F into crystalline

calcite, and suggest that a fluorine atom is most strongly favored as a

substituent of twofluorine ions for a carbonate, forming aCaF2 defect.

5.2.3 Adsorption of fluorine by Fe (hydr)oxides
In this study, Ffm ranges from 2.497 mg/kg to 11.052 mg/kg

with an average value of 6.767 mg/kg. The adsorption of F on Fe/

Mn-(hydr)oxides has been extensively studied and is mainly

based on electrostatic attraction and ion exchange (Farrah

et al., 1987; Hiemstra and Riemsdijk, 2000; Rathore and

Mondal, 2017). The kinetics of adsorption by Fe (hydr)oxides

is relatively fast and the process is pH dependent, as higher

adsorption occurs at lower pH values. Hiemstra and Riemsdijk

(2000) suggested that the absorption of F in Fe (hydr)oxides can

be described as an exchange reaction for OH of surface groups,

where the main reaction can be described as follows:

FeOH−1
2 + F− aq( ) � FeF−1

2 +OH− aq( ) (8)

Farrah et al. (1987) confirmed the capacity of Al(OH)3 to

scavenge F− from aqueous phases from pH 4 to 7, and the

oxides dissolve and form F–Al complexes under strongly acidic

conditions. Ren et al. (2021) suggested that F uptake by layered

double hydroxides is enhanced under alkaline conditions.

6 Conclusion

The Early-Middle Triassic bentonite deposits in the Sichuan

Basin, South China have anomalous high F contents that pose a

major potential environmental hazard. In this work, the F speciation,

mineralogical, and chemical composition of bentonites were studied

in detail. The detailed mineralogical and geochemical composition

of the bentonites suggests that the bentonites were transformed

during diagenesis from volcanic ash by smectite illitization, and

volcanic ashes are most likely derived from felsic magmas. The FTOT

of bentonites ranged from 1,162 to 2,604 mg/kg (average =

1773 mg/kg), and the order of six-fluorine species from smallest

to the largest is that Fex <Fws <Ffm <For <Fcar <Fres. The highest

content was Fres and followed by Fcar with a mean of 1,556 mg/kg

and 186 mg/kg, suggesting F was mainly trapped by clay minerals

and carbonates. The bentonites have high Fcar concentrations,

which were controlled by the removal of fluorine from seawater

by authigenic carbonates precipitation, suggesting carbonate (e.g.,

calcite) is an important F sink in bentonite deposits. In addition, the

Fws have an average value of 4 mg/kg, which is higher than the

corresponding average in soils in Chinese endemic fluorosis-prone

areas. The F of bentonites in this study may pose a potential risk to

the environment. This study provides an improved understanding of

the modes of sediment deposition and environmental conditions at

the time of F-rich bentonite deposition.
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