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The fractional Laplacians constant-Q (FLCQ) viscoelastic wave equation can

describe seismic wave propagation accurately in attenuating media. A

staggered-grid pseudo-spectral (SGPS) method is usually applied to solve

this wave equation but it is of only second-order accuracy in time, due to a

second-order finite-difference (FD) time differentiation. Visible time dispersion

and numerical instability could appear in the case of a large timestepping size.

To resolve this problem, we develop a more accurate low-rank temporal

extrapolation scheme for the FLCQ viscoelastic wave equation. We realize

this goal by deriving an analytical time-marching formula from the general

solution of the FLCQ wave equation. Compressional (P) and shear (S) wave

velocities dependent k-space operators are involved in the formula and they

can compensate for the time dispersion errors caused by the FD time

differentiation. To implement the k-space operators efficiently in

heterogeneous media, we adopt a low-rank approximation of these

operators, which reduces the computational cost at each time step to

several fast Fourier transforms (FFTs). Another benefit of the low-rank

extrapolation is explicit separation of P and S waves, which is helpful for

further developing vector wavefield-based seismic migration methods.

Several numerical examples are presented to verify the higher accuracy and

the less restrictive stability condition of the low-rank temporal extrapolation

than the traditional SGPS extrapolation.
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Introduction

Numerical simulation of viscoelastic wave equation is a useful tool to analyze seismic

attenuation. It also plays a key forward engine in seismic imaging and inversion methods. The

time-domain constant-Q (CQ) viscoelastic wave equations are preferred in the context of seismic

modeling, because of their high efficiency and accuracy in simulating seismic wavefields in

frequency-independentQ attenuatingmedia (Kjartansson, 1979; Blanch et al., 1995). Among the

existing CQ wave equations, the newly developed viscoacoustic/viscoelastic wave equations

featuring a few fractional Laplacians have been verified highly accurate in describing seismic

attenuation (Zhu and Carcione, 2014; Zhu and Harris, 2014; Yang and Zhu, 2018; Mu et al.,
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2022; Wang et al., 2022). This kind of CQ wave equation also brings

accuracy improvements in Q-compensated reverse-time migration

(Q-RTM) methods, due to approximately decoupling the amplitude

loss and phase distortion operators (Zhu et al., 2014; Sun et al., 2015;

Li et al., 2016; Wang Y. et al., 2018; Chen et al., 2020a). Another

benefit of the FLCQ wave equations is the explicit Q term in the

equations, which facilitates developing full waveform inversion

methods (Chen et al., 2017; 2020b; Xing and Zhu, 2020; Yang

et al., 2020; Xing and Zhu, 2022).

The introduction of fractional derivatives to describe the

dissipation of seismic waves is pioneered by Caputo (1967) in

geophysical community. Later, Carcione et al. (2002) used a

simple fractional time derivative to represent the dispersion

relation of the CQ model and derived a CQ viscoacoustic wave

equation in terms of a (2 − 2γ)-order time derivative (0 ≤ γ < 0.5).

Considering the globality of fractional derivatives, numerical

approximation of the fractional time derivative demands storing

all historical wavefields in theory, which is unrealistic for large-scale

problems. By contrast, the fractional spatial derivatives can be

calculated conveniently in the Fourier domain and the switch

from the fractional time derivatives to the fractional spatial

derivatives gives rise to the FLCQ formulations (Carcione, 2010;

Zhu and Harris, 2014). With the help of FFT, the computational

efficiency for solving the FLCQ wave equations can be ensured.

Recently, Xue et al. (2018) and Zhao et al. (2020) used a domain

decomposition method to improve the computational efficiency of

the FFT simulation scheme further.

A key aspect in numerical simulation of FLCQwave equations is

the treatment to the space variable-order fractional Laplacians. The

space average strategy by Zhu and Harris (2014) only offers

reasonable accuracy in the case of a smooth Q model but

introduces large simulation errors in the case of a sharp Q

variation. Several different approximations have been developed

to transform the variable-order fractional Laplacians into constant-

order fractional Laplacians (Chen et al., 2016; Yang and Zhu, 2018;

Xing and Zhu, 2019; Mu et al., 2021), which facilitates the FFT

simulations, significantly. Although the FFT differentiation achieves

a spectral accuracy in space, the tradtional pseudo-spectral (PS)

method uses a second-order FD operator to approximate the time

derivative, which limits the temporal extrapolation accuracy to

second-order. When a relatively large timestepping size is used,

the traditional PS temporal extrapolation suffers from visible time

dispersion and a strict Courant-Friedrichs-Lewy (CFL) stability

condition. Koene et al. (2018) applied a pair of pre- and post-

propagation filters to correct the time dispersion and this method

almost does not introduce any computational cost. However it is

only valid for elastic media, where the time dispersion is

independent of the wave propagation.

Several endeavors have been done to enhance the temporal

extrapolation accuracy in seismic modeling, including accurate

acoustic/elastic time-marching formulae based on the formal

solutions of wave equations (Etgen and Dellinger, 1989). This

scheme is later generalized to anisotropic wave equations where

it is reffered to as a pseudo-analytical method (Chu and Stoffa, 2010;

Yan and Liu, 2016). Zhang and Zhang (2009) developed one-step

temporal extrapolation schemes that are free of numerical

dispersion. Pestana and Stoffa (2010) adopted the Chebyshev

polynomials to approximate the cosine operator involved in an

analytical time-marching formula, resulting in a highly accurate

temporal extrapolation. Fomel et al. (2013) and Fang et al. (2014)

presented low-rank temporal extrapolation schemes for scalar wave

equation and it is later generalized to elastic wave equation (Sun

et al., 2017;Huang and Liu, 2020). Although thementionedmethods

improve the time approximation accuracy, they are limited to elastic

media. Sun et al. (2015) and Chen et al. (2016) presented low-rank

temporal extrapolation schemes for the FLCQ viscoacoustic wave

equation. Recently, Chen et al. (2021) developed an efficient fourth-

order PS temporal extrapolation method for viscoacoustic modeling

and Q-RTM. Even so, further extension of the low-rank or the

fourth-order extrapolation schemes to the FLCQ viscoelastic wave

equation has not been reported.

The goal of this work is to develop an efficient low-rank

temporal extrapolation scheme for the FLCQ viscoelastic wave

equation to provide a highly accurate elastic modeling approach

in attenuating media.

Methods

In this section, wefirst introduce the general solution of theCQFL

viscoelastic wave equation and deduce an analytical three-step time-

marching formula. Then, we reformulate the time-marching scheme

into a first-order system in terms of particle velocity and stress to

incorporate the well-establised perfectly matched layer (PML) as

absorbing boundary conditions. Next, we introduce the principle

of the low-rank approximation and evaluate the overall

computational cost of the viscoelastic low-rank modeling scheme.

A general solution of viscoelastic wave
equation

The isotropic FLCQ viscoelastic wave equation in terms of

velocity and stress can be expressed as (Zhu and Carcione, 2014):

zϕ

zt
� Lϕ, (1)

L �

0 0 zx zz 0
0 0 0 zx zz

Dp +Ap( )zx Dp +Ap − 2 Ds +As( )[ ]zz 0 0 0
Ds +As( )zz Ds +As( )zx 0 0 0

Dp +Ap − 2 Ds +As( )[ ]zx Dp +Ap( )zz 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (2)

where

ϕ � ρvx, ρvz, ρ
−1σxx, ρ−1σxz, ρ−1σzz( )T, (3)

Dl � ηl −∇2( )γl ,Al � τ l
z

zt
−∇2( )γl−1

2, (4)
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ηl � ω−2γl
o c2γl+2l cos2

πγl
2

( )cos πγl( ),
τ l � ω−2γl

o c
2γl+1
l cos2

πγl
2

( )sin πγl( ), (5)

γl �
1
π
arctan

1
Ql

( ), (6)

where l ∈ p, s{ } denotes P- and S-wave respectively, (vx, vz) are

particle velocities, (σxx, σxz, σzz) are stress components, z(.) represents

the first-order space derivatives, ρ is density, ωo denotes a reference

frequency where the wave speeds cl are defined.

Eq. 1 is previously solved by a SGPS method where the spatial

variable-order of the fractional Laplacian is replacedby an average value.

Wang N. et al. (2018) adopted the approximation proposed by Chen

et al. (2016) to transform the spatial variable-order Laplacians to fixed-

order Laplacians and improved the simulation accuracy. However, the

simulation scheme is only second-order accurate in time.

In this case of a homogeneous medium, Eq. 1 can be

reformulated into a second-order form in terms of

displacements (u, w):

z2 u

zt2
− Dp +Ap( ) z2u

zx2 − Ds +As( ) z
2u

zz2
− Dp +Ap −Ds −As( ) z2w

zxzz
� 0,

z2w

zt2
− Ds +As( ) z

2w

zx2 − Dp +Ap( ) z2w
zz2

− Dp +Ap −Ds −As( ) z2u

zxzz
� 0.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(7)

By transforming Eq. 7 into the wavenumber domain, we obtain a

second-order ordinary differential equations system (ODES):

z2 ~U
zt2

+ A
z ~U
zt

+ B ~U � 0, (8)

A � e
ap 0
0 as

[ ]eT,B � e
bp 0
0 bs

[ ]eT, (9)

e � 1
k

kx −kz
kz kx

[ ], (10)

where ~U � (~u, ~w) with the tilde denoting the wavefield variables

in the wavenumber domain, (kx, kz) represents discrete

wavenumbers, k �
������
k2x + k2z

√
, and

al � τ lk
2γl+1, bl � ηlk

2γl+ 2, l ∈ p, s{ }. (11)

We derive a general solution of Eq. 8 as follows:

~U t( ) � e−
A
2 t cos Ht( )c1 + sin Ht( )c2[ ], (12)

where

H �
�������
4B − A2

√
2

, (13)

and c1 and c2 are two undetermined vectors depending on specific

initial and boundary conditions. Since Eq. 12 is established with the

homogeneous model parameters and ignorance of any sources, it is

inapplicable for inhomogeneousmedia or injection of a source term.

To resolve this problem, we further derive an analytical three-step

time-marching formula from Eq. 12:

e
A
2 Δt ~U

n+1 + e−
A
2 Δt ~U

n−1 − 2 cos HΔt( ) ~Un � 0, (14)

whereΔt represents a timestepping size and the superscripts n+ 1, n,

n − 1 denote three adjacent time steps. A source term can be injected

into Eq. 14 and the temporal extrapolation is unconditionally stable

without numerical dispersion in homogeneous media.

However, Eq. 14 is not a friendly formulation to welcome

heterogeneous model parameters and any absorbing boundary

conditions. Therefore, we rewrite Eq. 14 as:

~U
n+1 − 2 ~U

n + ~U
n−1

Δt2 � 2e−
Δt
2 A

Δt2 cos HΔt( ) − 1
2

e
Δt
2 A + e−

Δt
2 A( )[ ] ~Un

− I − e−ΔtA

Δt
~U
n − ~U

n−1

Δt ,

(15)
where I denotes an identity matrix. Considering Δt is usually
small (in milliseconds), we use the following

approximations:

e−
ΔtA
2 ≈ I − Δt

2
A, e−ΔtA ≈ I − ΔtA, (16)

to change Eq. 15 into

~U
n+1 − 2 ~U

n + ~U
n−1

Δt2 � I − 1
2
ΔtA( ) 2 cos HΔt( ) − I[ ]

Δt2
~U
n − A

~U
n − ~U

n−1

Δt .

(17)
The subsequent numerical examples will demonstrate the

negligible effects of the approximations on the simulation

accuracy.

The eigenvalue decomposition of H results in

H � e
βp 0
0 βs

[ ]eT, (18)

where

βl �
���������������
ηlk

2γl+ 2 − 1
4
τ2l k

4γl+ 2
√

, l ∈ p, s{ }. (19)

Based on Eq. 18, one can easily derive the detailed expression of

the functional matrix,

cos HΔt( ) � e
cos βpΔt( ) 0

0 cos βsΔt( )[ ]eT. (20)

By substituting Eqs. 9, 20 into Eq. 17 and introducing

intermediate wavefield variables, we can transform the

second-order time-marching system in Eq. 17 into an

equivalent first-order time-marching system. After that, we

finally transform the time-marching equation system back to

the space domain, which gives.

z−t v
n+1

2
x � zxP

n + zxσ
n
xx + zzσ

n
xz, (21a)

z−t v
n+1

2
z � zxσ

n
xz + zzP

n + zzσ
n
zz, (21b)

z+t σ
n
xx � −2 c2+2γss z s( )

z vn+
1
2

z + τs −∇2( )γs−1
2z−t zzv

n+1
2

z[ ], (21c)

z+t σ
n
zz � −2 c2+2γss z s( )

x vn+
1
2

x + τs −∇2( )γs−1
2z−t zxv

n+1
2

x[ ], (21d)
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z+t ~P
n � c

2+2γp
p z p( )

x vn+
1
2

x + z
p( )

z vn+
1
2

z( )
+ τp −∇2( )γp−1

2z−t zxv
n+1

2
x + zzv

n+1
2

z( ), (21e)
z+t σ

n
xz � c2+2γss z s( )

x vn+
1
2

z + z s( )
z vn+

1
2

x( )
+ τs −∇2( )γs−1

2z−t zxv
n+1

2
z + zzv

n+1
2

x( ), (21f )

Where the time differencing operators are defined as:

z+t f
n � fn+1 − fn

Δt , z−t f
n � fn − fn−1

Δt , (22)

and the Fourier responses of the pseudo-differential operators

(PSDO) are defined as:

F z l( )
r( ) � ~ikrξl, r ∈ x, z{ }, (23)

ξ l �
2 1 − Δt

2 τ lk
2γl+1( ) 1 − cos βlΔt( )[ ]
c
2+2γl
l k2Δt2

, l ∈ p, s{ }, (24)

where F denotes the forward Fourier transform and ~i is the

imaginary unit.

The PSDO in Eq. 24 can compensate for the errors caused

by the FD approximations of the time derivatives, which

FIGURE 1
Comparison of low-rank numerical solutions with analytical solutions where (A, C, E) depict vx, (B,D,F) show vz. The timestepping sizes used for
the low-rank temporal extrapolation aremarked in the panels. The arrows in (A,C)mark slight amplitude differences caused by the approximations in
Eqs 16, 29. The abbreviation RMSE represents the root-mean-square error.
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produces a highly accurate temporal extrapolation. Note that

zx and zz in Eq. 21a, Eq. 21b, Eq. 21c, Eq. 21d, Eq. 21e, Eq. 21f

denote the traditional first-order derivatives and their Fourier

spectra correspond to the traditional spectra (ignoring the

operators ξl in Eq. 23). We provide the detailed derivations of

Eq. 21a, Eq. 21b, Eq. 21c, Eq. 21d, Eq. 21e, Eq. 21f from Eq. 17

in the Appendix. The density can be incorporated into the

time-marching equation system by multiplying the left-hand

side of Eq. 21a, Eq. 21b by ρ and multiplying the left-hand side

of Eq. 21c, Eq. 21d, Eq. 21e, Eq. 21f by ρ−1.

FIGURE 2
Comparison of traditional SGPS numerical solutions with analytical solutions where (A,C,E) depict vx, (B,D,F) show vz. The arrows mark visible
amplitude differences caused by time dispersion.
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FIGURE 3
Snapshots of vx: (A,C,E), and vz: (B,D,F) at t = 1 s by low-rank scheme with Δt = 2.5 ms (A,B), SGPS with Δt = 1 ms (C,D), SGPS with Δt = 0.5 ms
(E,F). The symbol ‘PS’ denotes reflection or transmission Swaves with incident Pwaves. The physical meanings of ‘PP’, ‘SS’ and ‘SP’ can be understood
in the same way. The arrows in (C,D) indicate the time dispersion.
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Low-rank approximations to pseudo-
differential operators

The Fourier spectra of PSDO in Eq. 23 involve

heterogeneus model parameters ηl, τl and γl and this

brings difficulty to numerical calculations of PSDO. A

pointwise FFT scheme following the locality principle can

be used theoretically. The computational cost is proportional

to Nc,Q, where Nc,Q denotes the total number of different

velocity and Q values in a specific model. Consider the model

parameters could vary quickly in space, the computational

cost is unaffordable. To resolve this problem, we adopt the

low-rank approximation (Fomel et al., 2013) to treat the

mixed-domain operators ξl, which keeps the numerical

calculations of PSDO efficiently.

For simplicity, we ignore the subscript l and express ξ as a k-

space domain matrix:

W x, k( ) � ξ xi, kj( ) ∣∣∣∣∣ 0≤ i<N, 0≤ j<N{ }, (25)

where xi � (ηi, τi, γi) denotes the model parameters at ith grid

index of the space-domain vector x, kj �
�����������
(kx)2j + (kz)2j

√
denotes

the jth element of the wavenumber-domain vector k, kx, kz
represent x- and z-axis wavenumber vectors, and N is the

total number of space/wavenumber domain grid nodes. Then,

we apply a low-rank decomposition to the mixed-domain matrix:

FIGURE 4
Wave mode decoupled snapshots of (A,B) vx and (C,D) vz, corresponding to the snapshots in Figures 3A,B. (A,C) show the decoupled P waves
and (B,D) show the decoupled S waves.
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W x, k( )N×N ≈ W1 x, km( )N×mGm×nW2 xn, k( )n×N, (26)

whereW1, G andW2 are three smaller matrices with their sizes

indicated in Eq. 26, m and n are refferred to as ranks. km is a

subset of k containingm representative wavenumber elements

and xn is a subset of x containing n representative space

elements. Algorithm 1 describes the low-rank

decomposition process.

FIGURE 5
A modified Marmousi-II model consisting of 600 × 280 grid
points with the grid spacing of 12.5 m: (A) P-, (B) S-wave velocities,
and (C) density. The Q model is generated from velocity using an
empirical formula Ql � 10(cl/1000)2.2 , l ∈ p, s{ }.

FIGURE 6
Demonstration of low-rank decomposition accuracy: (A)
exact ξp at (x, z) = (4125, 1125) mwhere cp = 2073m/s andQp = 50,
low-rank decomposition errors with ranks of (B)m= n= 6, (C)m =
n = 5, and (D) m = n = 4.
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Algorithm 1. Low-rank decomposition of a mixed-domain

matrix of W(x, k).

After the low-rank decomposition, numerical calculations of

PSDO can be expressed as:

z l( )
r P x( ) ≈ ∑m

j�1
W1 x, kj( )⊙x ∑n

i�1
Gj,iF −1 ~ikr⊙kW2 xi, k( )⊙kF P x( )[ ]{ },

(27)

where l ∈ p, s{ }, r ∈ x, z{ },F−1 denotes inverse FFT (IFFT) and

⊙x, ⊙k represent the elementwise multiplications in the space

and wavenumber domains, respectively. Eq. 27 indicates that

the low-rank differentiation requires one time of FFT and n

times of IFFT. The actual values of n depend on the

timestepping size Δt and the spatial complexity of the

model parameters.

The fractional Laplacians (−∇2)γl−1
2 in Eq. 21a, Eq. 21b, Eq.

21c, Eq. 21d, Eq. 21e, Eq. 21f mainly control the amplitude loss

and they can also be calculated using the low-rank

approximation. However, we use a more efficient zero-order

Taylor approximation to simplify the numerical calculations of

these fractional Laplacians. The conducted approximations are

described as follows:

τ lF −∇2( )γl−1
2[ ] � cl cos

2 πγl
2

( )sin πγl( ) ωd

ωo
( )2γl

k−1
k

kl,d
( )2γl

≈ cl cos
2 πγl

2
( )sin πγl( ) ωd

ωo
( )2γl

k−1,

(28)
τ l −∇2( )γl−1

2 ≈ τal −∇2( )−1
2, (29)

where ωd represents the dominant frequency of the source

wavelet, kl,d = ωd/cl denotes the dominant wavenumber and

τal � cl cos
2 πγl

2
( )sin πγl( ) ωd

ωo
( )2γl

. (30)

The zero-order Taylor approximation is feasible for three

reasons: a) injection of a band-limited wavelet as the source

indicates k/kl,d ≈ 1, b) 2γl is very closed to zero, c) the effects of

the fractional orders γl on the amplitude loss are much weaker

than the coefficients τal .

FIGURE 7
Demonstration of low-rank decomposition accuracy: (A)
exact ξs at (x, z) = (1250, 2925) mwhere cs = 1627 m/s andQs = 29,
low-rank decomposition errors with ranks of (B)m= n= 6, (C)m =
n = 5, and (D) m = n = 4.
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Concluding Eq. 21a, Eq. 21b, Eq. 21c, Eq. 21d, Eq. 21e, Eq.

21f and the approximations in Eq. 29 reveals that the proposed

first-order time-marching scheme requires 18 + 2np + 4ns
times of FFT at each time step, where np and ns denote the

ranks in the low-rank decompositions of P- and S-wave

parameters dependent mixed-domain operators,

respectively. Additionally, the computational cost of the

low-rank decomposition is linear in N and it is finished

before wave propagation. Thus, the cost for the low-rank

decomposition in Eq. 26 is negligible.

Wang N. et al. (2018) developed a constant-order FLCQ

viscoelastic wave equation that can be solved by the

traditional SGPS method directly, which requires 24 times

of FFT per time step. Although the low-rank temporal

extrapolation usually involves more FFTs, its higher time

approximation accuracy and more relaxed CFL stability

condition enable a larger timestepping size for temporal

extrapolation. Consequently, the low-rank modeling

scheme can be more efficient than the traditional SGPS

scheme, as verified by Chen et al. (2016) in FLCQ

viscoacoustic modeling.

Another benefit of the time-marching scheme in Eqs. 21a,

Eqs. 21b, Eqs. 21c, Eqs. 21d, Eqs. 21e, Eqs. 21f is

explicit separation of P and S waves. P represents a scalar

wavefield like the pressure in the acoustic wave equation

and it only contains P waves. Therefore, a direct

FIGURE 8
Simulated snapshots for vx (A,C), for vz (B,D) at t = 1.26 s (A,B) show the snapshots in ealstic media, (C,D) are the viscoelastic snapshots
computed by the low-rank schemewith the ranks ofm = n = 6. (E,F) show the differences between the results withm= n = 4 and those withm= n =
6. (G,H) show the differences between m = n = 3 and m = n = 6.
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splitting of vx and vz as follows can generate separated P and S

waves:

z−t v
n+1

2
x,p � zxP

n, vn+
1
2

x,s � vn+
1
2

x − v
n+1

2
x,p ,

z−t v
n+1

2
z,p � zzP

n, vn+
1
2

z,s � vn+
1
2

z − v
n+1

2
z,p ,

⎧⎪⎨⎪⎩ (31)

where v
n+1

2
r,p and v

n+1
2

r,s , r � (x, z) denote the decoupled P and S

wavefields, respectively. The explicit decoupling of P and

S wavefields is helpful for developing elastic migration methods.

Numerical results

We use three numerical examples to demonstrate the feasibility

of the viscoelastic low-rank modeling scheme. In the first example,

the numerical solutions by the low-rank scheme in a homogeneous

model are compared with the analytical solutions calculated by a

Green function approach Carcione et al. (1988). A two-layer model

with a sharp velocity contrast is then used in the second example to

show the stability of the low-rank modeling scheme. Finally, a

modified Marmousi-II model (Martin et al., 2006) is used to

demonstrate the accuracy of the low-rank modeling scheme in

complex models.

Comparison with analytical solutions

We first use the low-rank temporal extrapolation scheme to

simulate wave propagation in a homogeneous model with cp =

3 km/s, cs = 2 km/s, Qp = 50, ωo = 188.50 rad/s, and Qs = 20. The

model consists of 820 × 820 grid points with the grid spacing of

h = 10 m. A Ricker wavelet with the dominant frequency of 30 Hz

is placed at the center of the model and is applied to vz to mimic a

vertical source. A receiver is located at (x, z) = (6110, 6110) m

with an offset of 3 km. We use three different timestepping sizes

of Δt = 4 ms, 2.3 ms and 2 ms for the low-rank temporal

extrapolation with the same ranks of m = n = 1. Note that

with such large time steps, the CFL stability condition of the

traditional SGPS temporal extrapolation (cpΔt/h<
�
2

√
/π ≈ 0.45

in elastic media) is severely broken.

Because the low-rank temporal extrapolation scheme is derived

analytically, it is highly accurate even if a large timestepping size is

FIGURE 9
Observed seismic traces at (x, z) =(2375, 12.5) m (A,B), at (6125, 12.5) m (C,D). Panels (A,C) for vx and (B,D) for vz.
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used, as shown in Figure 1, where the low-rank solutions match the

analytical solutions well. The low-rank solutions only exhibit slight

errors at peaks and troughs in the case of Δt = 4ms, as shown in

Figure 1A. This is caused by the approximations in Eqs. 16, 29. For

the traditional SGPS modeling scheme, we first test a much smaller

step Δt = 1 ms. Even so, the SGPS solutions especially the P

waveforms exhibit visible differences from the analytical

solutions, as marked by the arrows in Figure 2A, which is caused

by time dispersion. When Δt reduces by half, the time dispersion of

SGPS is still visible, as shown in Figures 2C,D. By trial and error, we

observe that application of a much smaller step of Δt = 0.3 ms to

SGPS can output similar numerical solutions (Figures 2E,F) to the

low-rank solutions with Δt = 2.3 ms. This comparison indicates that

the low-rank temporal extrapolation enables a nearly 7.6 times larger

timestepping size than the traditional SGPS scheme, while keeping a

similar simulation accuracy. For a quantitative evaluation, we

calculate the root-mean-square errors (RMSE) between the

numerical and analytical solutions and mark them in Figures 1, 2.

Regarding the computational time for a maximum simulation

time of 5.4 s, the low-rank extrapolation with Δt = 2.3 ms and the

traditional SGPS extrapolation with Δt = 0.3 ms take 322.55 s and

915.68 s, respectively, which means an approximate efficiency gain of

2.8 achieved by the low-rank scheme. All the codes are programming

using the MATLAB language and run with a hardware of Intel(R)

Xeon(R) Silver-4210 CPU @2.20GHz/2.19 GHz.

A two-layer model with sharp velocity
contrasts

Next, we use a two-layer model with sharp velocity contrasts to

observe the stability and accuracy of the low-rank temporal

extrapolation. The model has 820 × 820 grid points with the grid

interval of 10 m. A horizontal interface at z = 4100m splits the model

into two parts: cp = 2 km/s, cs = 1.6 km/s, ρ = 1.5 g/cm3,Qp = 30,Qs =

15 for the upper layer and cp = 4 km/s, cs = 2.5 km/s, ρ = 2.0 g/cm3,

Qp = 60, Qs = 30 for the lower layer. A Ricker wavelet with the

dominant frequency of 30 Hz is located at (x, z) = (4100, 3600)m and

is imposed to vz. The reference frequency is set to wo = 188.50 rad/s

and the ranks ofm=n=2 are used.A timestepping size ofΔt=2.5 ms

is used for the low-rank temporal extrapolation, which corresponds to

cpΔt/h = 1.0, far beyond the CFL stability condition of SGPS.

Although such a large timestepping size is used, the low-rank

temporal extrapolation is still stable, as shown by the wavefield

snapshots at t = 1 s in Figures 3A,B. We also display the computed

snapshots by the traditional SGPS scheme with a smaller

timestepping size Δt = 1 ms in Figures 3C,D, where visible

waveform distortion caused by time dispersion can be observed.

When Δt further reduces to 0.5 ms, the time dispersion becomes

FIGURE 10
Demonstration of low-rank decomposition accuracy: (A)
exact ξs at (x, z) = (4125, 1125) m where cs = 1200 m/s andQs = 15,
low-rank decomposition errors with ranks of (B)m = n = 4, and (C)
m = n = 3. These results form comparisons with Figure 6D.
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weaker, as shown in Figures 3E,F. The pointwise FFT scheme is used

in the traditional SGPS simulations to account for the spatially

variable fractional orders, which means the fractional Laplacians in

the top and lower layers are calculated separately. The low-rank

decomposition of the P- and S-wave parameters dependent k-space

operators takes 74.41 s and the temporal extrapolation for a

maximum recording time of 5 s takes 3496.80 s. In comparison,

the traditional SGPS extrapolation with Δt = 0.5 ms for the same

recording time takes 11,488.52 s, which means the low-rank scheme

saves the computational time approximately by 69%. Figure 4

further displays the decoupled P and S wavefields corresponding

to the snapshots in Figures 3A,B, which shows a clear separation of P

and S waves, despite of some weak noise at the interface.

Wave propagation in complex models

We finally demonstrate the accuracy of the low-rank

temporal extrapolation scheme by simulating wave

propagation in a modified Marmousi-II model in Figure 5,

which is obtained by modifying the shallow part of the

original model (Martin et al., 2006) and doing smoothing.

The Q model is generated from the velocity model using an

empirical formula Ql � 10(cl/1000)2.2, l ∈ p, s{ }, which results

in a minimum Qp of 24.4 and a minimum Qs of 15. The grid

spacing is 12.5 m. A Ricker wavelet with a dominant frequency

of 10 Hz is placed at (x, z) = (3750, 125) m and is applied to vz as

a source. We set Δt = 1.8 ms corresponding to cpΔt/h = 0.6768,

which is beyond of the maximum CFL number required by the

traditional SGPS scheme. To demonstrate the low-rank

decomposition accuracy in such complex models, we use the

ranks of m = n = 6, 5, and 4, respectively. The decomposition

using m = n = 6 introduces small errors, with the error

magnitudes 106–107 times smaller than the exact operators,

as shown in Figures 6B, 7B. As the ranks reduce to 5 and 4, the

decomposition errors increase, however they are still much smaller

than the exact operators (approximately four orders of magnitude

smaller than the latter), as depicted in Figures 6, 7. The subsequent

snapshots comparison indicate that the ranks of m = n = 4 can

ensure a sufficient accuracy for wave propagation in this model.

Regarding the computational cost of the low-rank decomposition,

the decompositions with the ranks of 6, 5, and 4 take 218.28 s,

137.77 s and 79.85 s, respectively.

Considering the low-rank decomposition with m = n = 6 is

highly accurate, the simulated wavefield snapshots by this

method are used as references (Figures 8C,D) to evaluate the

simulated results using smaller ranks. Figures 8E,F indicate that

the differences from the references caused by m = n = 4 are

approximately 104 times smaller in magnitude than the

references. When the ranks decrease to m = n = 3, the

differences become larger, however still 100 times smaller in

magnitude than the references, as displayed in Figures 8G,H. For

a complete comparison, Figures 8A,B display the elastic wavefield

snapshots at the same time, showing stronger amplitudes due to

the absence of Q effects. Figure 9 further compares the seismic

traces recorded at (x, z) = (2375, 12.5) m and (x, z) = (6125, 12.5)

m, showing a good match between the calculated traces with the

ranksm = n = 4 and the references. The results imply that setting

m = n = 4 is sufficient to ensure the wavefield temporal

extrapolation accuracy in the Marmousi model.

Discussion

The above numerical examples verify the accuracy of the

viscoelastic low-rank temporal extrapolation scheme. This

scheme can be used as a highly accurate forward modeling

tool in viscoelastic media. However, when applying the low-

rank temporal extrapolation forQ-RTM, one needs tomodify Eq.

21c, Eq. 21d, Eq. 21e, Eq.21f slightly by reversing the plus signs in

front of τp and τs to minus and reversing the minus in front of τl
in Eq. 24 to a plus. This is actually equavilent to changing the

exponential decay term in the analytical solution in Eq. 12 to an

exponential growth term. This realizes amplitude compensation

only, while preserving the phase unchanged, which is a key point

in Q-RTM (Zhu et al., 2014).

Another aspect deserving to address is the choice of the ranks in

the low-rank decomposition. Generally, it is difficult to give a strict

formula to guide the choice of the ranks, because low-rank

decomposition accuracy depends on the timestepping size Δt,
velocity and Q spatial structures. As Δt and the model

complexity increase, one should increase the ranks to ensure the

wave propagation accuracy. According to the Marmousi example

and more conducted tests but not shown here, we observe that a

desirable choice of ranks should guarantee the relative error of the

low-rank decomposition approximately smaller than 1 × 10–4. This

implies that an iterative process can be used to determine the ranks.

After setting a threshold and initial ranks, one can do the low-rank

decomposition repeatedly and increase the ranks gradually, until the

low-rank decomposition error becomes smaller than the threshold.

At each time of low-rank decomposition, one only needs to calculate

the decomposition errors at several representative positions, such as

the positions where the maximum or minimum velocities appear.

Considering the low-rank decomposition is conducted before

wavefield temporal extrapolation, the computational cost for

determining the ranks is negligible.

Note that in the first homogeneousmodel example, we set ranks

ofm = n = 1 in the low-rankmodeling scheme. In fact, the low-rank

calculations in Eq. 27 is not required for homogeneous media,

because the wavenumber response does not depend on the space

and it can be implemented directly in the Fourier domain. Even so,

the low-rank temporal extrapolation with m = n = 1 still works

correctly, which means the low-rank decomposition algorithm lets

W1 ≡I and G1,1 ≡ 1 automatically in Eq. 26.

Finally, we discuss the possibility to set different ranks in

low-rank decomposition of the P- and S-wave dependent
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PSDO. Considering the S-wave velocity is smaller than the P-wave

velocity, we try to use smaller ranks in low-rank approximation of

the S-wave dependent k-space operator. To form a comparison with

the results in Figure 6D, we show the exact ξs and the low-rank

approximation errors at the same position. Comparison of Figures

10A, 6D indicates the same magnitude order of exact ξs and ξp.

However, when the same ranks of 4 are applied, the low-rank

decomposition of ξs introduces a smaller error than that of ξp, as

shown in Figure 10B. When the ranks of ξs decrease to 3, the

error magnitude is similar to that of the low-rank decomposition of

ξpwith the ranks of 4, as shown in Figure 10C. These results indicate

that when approximating the wave mode dependent k-space

operators, smaller ranks can be used in the low-rank

decomposition of S-wave dependent operators, which helps to

reduce the overall computational cost.

Conclusion

We have developed a highly accurate temporal extrapolation

scheme for a novel fractional Laplacians constant-Q viscoelastic

wave equation that can be used to describe seismic attenuation in

the earth. The temporal extrapolation formula is derived from the

general solution of the viscoelastic wave equation system, which

makes the extrapolation free of numerical dispersion and

instability in homogeneous media. A low-rank approximation

of the k-space operators is further applied to implement the

temporal extrapolation efficiently in heterogeneous media. The

computational cost of the low-rank scheme at each extrapolation

step is proportional to the ranks involved in the low-rank

decomposition. Numerical results with the Marmousi model

indicate that application of the ranks of m = n = 4 can provide

sufficient accuracy in the case of a CFL number of 0.67 (beyond the

value required by the traditional stability condition). Another two

benefits of the low-rank temporal extrapolation is automatical

treatment to the spatial variable-order fractional Laplacians and

separation of compressional and shear waves. In general, the

developed low-rank temporal extrapolation scheme can be used

as a highly accurate seismic modeling tool in attenuating media

and can also act as a forward engine in attenuation compensated

reverse-time migration algorithms.
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Appendix: First-order time-marching
equation system

Inserting Eqs. 9, 20 into Eq. 17 gives

~un+1 − 2~un + ~un−1

Δt2 � −2 ikx( ) c2+2γss ikzξs( ) ~wn + τsk
2γs−1

Δt ikz( ) ~wn − ~wn−1( )[ ]
× ikx( ) c

2+2γp
p ikxξp( )~un + ikzξp( ) ~wn[ ] + τpk

2γp−1

Δt ikx( ) ~un − ~un−1( ) + ikz( ) ~wn − ~wn−1( )[ ]{ }
+ ikz( ) c2+2γss ikxξs( ) ~wn + ikzξs( )~un[ ] + τsk

2γs−1

Δt ikx( ) ~wn − ~wn−1( ) + ikz( ) ~un − ~un−1( )[ ]{ },
(A − 1)

~wn+1 − 2 ~wn + ~wn−1

Δt2 � −2 ikz( ) c2+2γss ikxξs( )~un + τsk
2γs−1

Δt ikx( ) ~un − ~un−1( )[ ]
+ ikx( ) c2+2γss ikxξs( ) ~wn + ikzξs( )~un[ ] + τsk

2γs−1

Δt ikx( ) ~wn − ~wn−1( ) + ikz( ) ~un − ~un−1( )[ ]{ }
+ ikz( ) c

2+2γp
p ikxξp( )~un + ikzξp( ) ~wn[ ] + τpk

2γp−1

Δt ikx( ) ~un − ~un−1( ) + ikz( ) ~wn − ~wn−1( )[ ]{ },
(A − 2)

where ξp and ξs are defined in Eq. 24.

We further introduce the following intermediate variables:

~vn+
1
2

x � ~un+1 − ~un

Δt , ~vn+
1
2

z � ~wn+1 − ~wn

Δt , (A − 3)

~σnxx � −2 c2+2γss ikzξs( ) ~wn + τsk2γs−1

Δt ikz( ) ~wn − ~wn−1( )[ ],
(A − 4)

~σnzz � −2 c2+2γss ikxξs( )~un + τsk2γs−1

Δt ikx( ) ~un − ~un−1( )[ ] (A − 5)

~σnxz � c2+2γss ikxξs( ) ~wn + ikzξs( )~un[ ]
+ τsk2γs−1

Δt ikx( ) ~wn − ~wn−1( ) + ikz( ) ~un − ~un−1( )[ ],
(A − 6)

~P
n � c

2+2γp
p ikxξp( )~un + ikzξp( ) ~wn[ ]
+ τpk

2γp−1

Δt ikx( ) ~un − ~un−1( ) + ikz( ) ~wn − ~wn−1( )[ ].
(A − 7)

Using these new wavefield variables, one can readily rewrite Eq.

A-1and Eq. A-2 as the first-order time-marching system in Eq.

21a, Eq. 21b, Eq. 21c, Eq. 21d, Eq. 21e, Eq. 21f.
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