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Variable-grid methods have the potential to save computing costs andmemory

requirements in forward modeling and least-squares reverse-time migration

(LSRTM). However, due to the inherent difficulty of automatic grid

discretization, conventional variable-grid methods have not been widely

used in industrial production. We propose a variable-grid LSRTM (VG-

LSRTM) method based on an adaptive sampling strategy to improve

computing efficiency and reduce memory requirements. Based on the

mapping relation of two coordinate systems, we derive variable-grid

acoustic wave equation and its corresponding Born forward modeling

equation. On this basis, we develop a complete VG-LSRTM framework.

Numerical experiments on a layered model validate the feasibility of the

proposed VG-LSRTM algorithm. LSRTM tests on a modified Marmousi model

demonstrate that our method can save computational costs and memory

requirements with little accuracy loss.
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Introduction

Migration technologies play an increasingly significant role in seismic data processing

(Yilmaz, 2001). Reverse time migration (RTM) (Baysal et al., 1983; Whitmore, 1983),

which uses two-way wave equations for wavefield propagation, is regarded as the most

effective method for imaging steep dip and complex structures. Compared with one-way

wave-equation migration (Claerbout, 1971; Xie and Wu, 2005) and ray-based migration

methods (Schneider, 1978; Hill, 1990), RTM has no dip limitation and can correctly image

prism and overturned waves. RTM has been widely studied and developed by many

scholars because of its advantage in providing high-accuracy subsurface images (Sun and

McMechan, 2001; Rocha et al., 2016; Du et al., 2017). However, RTM images usually suffer

from artifacts (Zhang and Sun, 2009), incomplete illumination (Buur and Kühnel, 2008)

and low-frequency noise (Díaz and Sava, 2016) because conventional RTM algorithm uses

the adjoint of the linearized wave equation rather than its inverse (Nemeth et al., 1999).
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Inverse theory-based least-squares migration (LSM) (Lailly

and Bednar, 1983) aims to obtain images with fewer artifacts and

acquisition marks by approximating the exact inverse of the wave

equation modeling operator (Lambaré et al., 1992; Kühl and

Sacchi, 2003; Hu et al., 2016). Using the RTM operator to

perform migration procedure under the framework of LSM

leads to least-squares reverse-time migration (LSRTM) (Dai

et al., 2012; Dong et al., 2012). The data-domain LSRTM

method seeks to iteratively update the subsurface reflectivity

by minimizing the residual between the simulated data and

observed data (Dai and Schuster, 2013; Zhang et al., 2015;

Wang et al., 2017). It has been extended to elastic (Feng and

Schuster, 2017; Ren et al., 2017; Gu et al., 2018), viscoacoustic

(Dutta and Schuster, 2014; Sun et al., 2016; Chen et al., 2017;

Yang and Zhu, 2019) and anisotropic cases (Qu et al., 2017; Yang

et al., 2019; Mu et al., 2020) due to its superiority in balancing

amplitude, suppressing artifacts, and improving image

resolution. However, limited by large computing costs (Dai

and Schuster, 2013), the sensitivity to migration velocity (Tan

andHuang, 2014; Li et al., 2017), and themismatch of amplitudes

(Zhang et al., 2015), conventional LSRTM is not extensively used

in large-scale field data processing.

Many researchers have done valuable work to accelerate

LSRTM. Dai et al. (2012) used multi-source strategy to

improve the computing efficiency of LSRTM. After that, Dai

and Schuster (2013), Li et al. (2018), Liu and Liu (2018), Zhao

and Sen (2019), and Li et al. (2020) successively applied plane-

wave theory and encoding technologies to LSRTM to reduce the

computational costs. However, the crosstalk noise often occurs in

LSRTM images when using the multi-source encoding

algorithms, which seriously degrades the inversion quality.

Speeding up the convergence rate of LSRTM is another way

to save production costs. Duprat and Baina (2016) introduced a

preconditioning factor into LSRTM and achieved fast

convergence results. Rocha et al. (2018) developed an energy-

based LSRTM algorithm to speed up the convergence of LSRTM.

Thanks to the development of high-performance computer, the

GPU/CPU parallel LSRTM algorithm has been developed to

improve the efficiency (Xue and Liu, 2017; Zhang et al., 2018). In

recent reports, some deep-learning frameworks have been used

to alleviate the computing burden (Vamaraju et al., 2021) and

reduce the number of iterations (Kristian and Mauricio, 2022) of

conventional LSRTM.

Another promising application to speed up LSRTM is

using the model-driven variable-grid methods. The use of

irregular spatial grid interval can be traced back to Moczo’s

(1989) finite-difference modeling for SH-waves. Jastram and

Behle (1992) proposed variable-grid spacing algorithm in

depth domain and applied it to solve two-dimensional

acoustic wave equation. Then, Jastram and Tessmer (1994)

developed this method into elastic cases. Falk et al. (1996)

used varying grid spacing to simulate the tube wavefield

successfully. The variable-grid algorithms mentioned above

usually use different finite-difference coefficients in the

transition region between coarse and fine grids. Wang and

Schuster (1996) proposed an interpolation-based variable-

grid method for elastic and acoustic wave equation

modeling. Wang (2001) further developed interpolation

strategy into viscoelastic wave simulation. The variable-grid

strategy has been successfully applied to waveform inversion

and RTM. Ha and Shin (2012) developed an axis

transformation method to speed up Laplace-domain full-

waveform inversion (FWI). Li et al. (2014) proposed an

efficient dual-variable algorithm and applied it to RTM.

Sun et al. (2017) introduced the variable-grid technique

into cross-well seismic data imaging. Wang et al. (2017)

developed an adaptive FWI algorithm based on the

variable-grid strategy to reduce the computational costs.

FIGURE 1
Principle of the adaptive sampling.

FIGURE 2
Flowchart of the proposed VG-LSRTM.
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Since wavefield simulation and RTM are the basic units of

LSRTM, these variable-grid methods mentioned above have

the potential to accelerate LSRTM. However, there are many

difficulties in applying them to LSRTM. First, conventional

variable-grid algorithms always sample a specified area, the

edge of which generates strong spurious reflections because

the grid size in this area is much smaller than that in other

areas. Such spurious reflections are hard to eliminate in

seismic wave propagation, and is likely to reduce the

quality of LSRTM images. Second, it is necessary to

change the finite-difference scheme or coefficients of the

transition regions between spatial grids of different sizes to

achieve successful wavefield extrapolation, which poses

challenges of accuracy and stability for the

implementation of variable-grid LSRTM (VG-LSRTM).

Finally, due to the difficulty inherent in automatically

gridding complex velocity model, conventional variable-

grid methods are not so practical and they are hardly

applied to LSRTM. The pseudo-time domain method

(Alkhalifah, 2003; Ma and Alkhalifah, 2013) provides a

global grid discretization strategy to overcome these

problems, which can be considered as a special variable-

grid method. Li et al. (2017) developed a cross-correlation

LSRTM algorithm in pseudo-time domain (PT-LSRTM) to

improve the computing efficiency and reduce the sensitivity

of velocity errors to imaging results. However, the

demigration operator in pseudo-time domain is more

complicated than that in depth domain. Therefore, PT-

LSRTM cannot significantly reduce the computational costs.

To improve the computing efficiency of LSRTM without

precision loss, we propose an adaptive VG-LSRTM

algorithm based on a global sampling strategy in this

paper. Our variable-grid approach is efficient and

convenient, which does not require changing the finite-

difference scheme and its coefficients, adding the

transition region between grids of different sizes, and

manually gridding the velocity model. We first derive a

variable-grid first-order acoustic wave equation and the

corresponding demigration equation based on a mapping

relationship. Then, two numerical tests on synthetic data

demonstrate the advantages of our method. After that, we

discuss the possible risks of the proposed method in terms of

stability and accuracy. Finally, we summarize the paper in

the conclusion section.

FIGURE 3
Layered model: (A) regular-grid model and (B) variable-grid model.

TABLE 1 Modeling parameters of FG-LSRTM, CG-LSRTM and VG-
LSRTM tests.

Tests Methods Nx Nz dx (m) dz

1 FG-LSRTM 601 301 5 5 m

2 CG-LSRTM 601 201 5 7.5 m

3 VG-LSRTM 601 197 5 Variable

FIGURE 4
Comparison of vertical grid interval.
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Methodology

Adaptive sampling method and variable-
grid acoustic wave equation

The 2D first-order velocity-stress acoustic wave equation in

an inhomogeneous isotropic media is written as:

ρ
zu

zt
� zp

zx

ρ
zw

zt
� zp

zz

1

ρv2
zp

zt
� zu

zx
+ zw

zz
+ S(t)

(1)

where u and w are the particle velocity, p is acoustic pressure

field, ρ is medium density, v is acoustic velocity, and S(t) is the
source term.

Eq. 1 has been widely used in forward modeling and

LSRTM (Virieux, 1986; Li et al., 2017). It is easier to

obtain better results by using finer spatial grid than

coarser one when applying the finite-difference technique

to solve Eq. 1. However, for those high-velocity zones, the

use of fine grid leads to a waste of computing resources. In

this section, we introduce an adaptive sampling method to

solve the above problem based on the assumption that the

formation velocity varies with depth and properties of the

underground media.

Given an initial velocity model whose number of grid points

and spatial grid spacing are already known. We use Eq. 2 to

calculate its optimal vertical grid spacing along the depth

direction:

dz(z) � v min(z)
fdk

(2)

where dz(z) denotes the optimal vertical grid spacing in

depth z, v min(z) is the minimum velocity of each layer

along z-axis, k denotes the number of vertical grid points

per wavelength, and fd denotes the maximum frequency of

the source. Obviously, dz(z) decreases as k and fd increase.

To ensure that the grid dispersion never occur, k is set to ten

in this paper.

FIGURE 5
Wavefield snapshots computed by: (A) fine-grid method, (B) coarse-grid method, (C) variable-grid method, and (D) variable-grid method with
linear interpolation.
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In order to keep the total depth of the initial model

constant, we resample it using an adaptive sampling

method. The process is illustrated in Figure 1. The

horizontal axis in Figure 1 denotes depth of the initial

model and the black dashed line in Figure 1 denotes the

optimal vertical grid spacing. First, we take a small trial step

from the surface of the model and gradually increase it to

obtain the first grid point z1, where z1 � dz(z1). Then we use

the same way to get the next grid point z2, where

z2 − z1 � dz(z2). Next, we repeat this process to the

maximum depth of the model and get all of the grid

points. In high-velocity zone, the grid interval is larger

than that in low-velocity zone, and the grid points are

sparser, which makes grid discretization more reasonable

compared with regular-grid implementation. Now we obtain

a new model, which has variable vertical grid interval. We

keep the horizontal grid interval constant because the

formation velocity varies mainly along the depth direction

and our adaptive sampling method is not applicable to areas

where the medium velocity changes slowly.

The initial model is located in Cartesian coordinate system

M(x, z) while the new model is located in a new rectangular

coordinate system N(ξ, η). There is a mapping relationship

between the coordinate variables of the two coordinate

systems. We use Eq. 3 to express this relation:

ξ � x

zη

zz
� φ(z)

(3)

where the ξ and η are the coordinate variables inN(ξ, η), x and z

are the coordinate variables in M(x, z), and φ(z) denotes the
mapping relationship. It is important to note that the based on

the adaptive sampling shown in Figure 1, η does not depend on x.

Thus, Eq. 1 can be rewritten as:
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1
φ(z) + S(t)

(4)

Eq. 4 is the variable-grid acoustic wave equation, which

can be solved in M(x, z) by means of the mapping relation.

Its computational complexity is not much different from

that of Eq. 1. φ(z) in Eq. 4 is obtained when resampling the

initial model and it can be solved by the finite-difference

method.

The principle of variable-grid LSRTM

Based on the superposition principle of the wavefield, the

velocity model can be expressed as:

s2 � s20 + Δs2 (5)

where s denotes slowness, which is the reverse of velocity. s0
denotes the background slowness fields and Δs is the

perturbation. Similarly, the seismic wavefield can be separated

into the background wavefield p0 and the perturbation

wavefield ps:

p � p0 + ps (6)

The background wavefield p0 obeys Eq. 4:

ρ
zu0

zt
� zp0

zx

ρ
zw0

zt
� zp0

zz

1
φ(z)

1

ρv2
zp0

zt
� zu0

zx
+ zw0

zz

1
φ(z) + S(t)

(7)

Substitute Eq. 5 and Eq. 6 into Eq. 4, subtract Eq. 7, and

perform Born approximation (Dai et al., 2012), we get the control

equation of ps:

ρ
zus

zt
� zps

zx

ρ
zws

zt
� zps

zz

1
φ(z)

s2
zps

zt
� ρ(zus

zx
+ zws

zz

1
φ(z)) − Δs2zp0

zt

(8)

Eq. 8 is the Born forwarding modeling equation, which can

be rewritten as a matrix:

FIGURE 6
Comparison of the snapshots at a distance of 1.3 km for
different forward modeling methods.
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ps � Lm (9)
where L denotes the Born (linearized) forwarding modeling

operator, and m � s2 is model parameter. The goal of LSRTM

is to reconstruct the optimal reflectivity image of the earth

(Dutta and Schuster, 2014). The objective function J is

defined as:

J � 1
2
‖Lm − dobs‖22 (10)

where ‖ · ‖22 is the L2-norm of a vector and dobs is the observed

data.We use a gradient-based algorithm (Dai et al., 2011) to solve

Eq. 10 as follows:

g � L*(Lm − dobs) (11)

where g is the gradient and * denotes the conjugate transpose of a

matrix. The process of the steepest descent method to solve the

objective function can be expressed as:

p

mk+1 � mk − αkgk

gk � L*(Lmk − dobs)
αk � (gk)pgk

(Lgk)pLgk

(12)

where k denotes the iteration index and αk denotes the step

length.

We summarize complete VG-LSRTM workflow in Figure 2.

When “Yes” is output in the diamond box, we obtain the VG-

LSRTM imaging result with irregular vertical grid interval. Then

FIGURE 7
Single shot record: (A)observed data, (B) Born-modeled data at the first iteration of the fine-grid test, (C)Born-modeled data at the first iteration
of the coarse-grid test, and (D) Born-modeled data at the first iteration of the variable-grid test.
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we use linear interpolation technique to transform the variable-

grid image into a regular-grid one based on the mapping relation.

Numerical examples

In this section, we demonstrate the feasibility and advantages

of the proposed method with synthetic data. The numerical tests

FIGURE 8
LSRTM images after 20 iterations: (A) FG-LSRTM image, (B) CG-LSRTM image, (C) VG-LSRTM image, and (D) VG-LSRTM image after linear
interpolation.

FIGURE 9
Normalized data residual convergence curves of the three
LSRTM tests.

TABLE 2 Model parameters of FG-LSRTM, CG-LSRTM and VG-LSRTM
tests.

Tests Methods Nx Nz dx (m) dz

1 FG-LSRTM 681 701 10 5 m

2 CG-LSRTM 681 351 10 10 m

3 VG-LSRTM 681 360 10 Variable
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are for two models: 1) a layered model and 2) a modified

Marmousi model.

Layered model

First, we use a layered model shown in Figure 3A to illustrate

the implementation process of VG-LSRTM in detail. The model

is 3 km wide and 1.5 km deep, which has three horizontal layers

with velocity of 1,500 m/s, 2,500 m/s and 4,500 m/s, respectively.

Three comparative tests shown Table 1 are designed to

demonstrate the effectiveness of our method. In Test 1, the

size of the fine-grid model grids is 601 × 301 with a 5 m grid

spacing. 601 × 201 grid points are used in coarse-grid model

(Test 2), with grid interval of dx � 5 m and dz � 7.5 m. The

variable-grid model is displayed in Figure 3B, which is resampled

from the fine-grid model. Compared with the fine-grid model,

the number of vertical grid points of the variable-grid model is

reduced by 34.6%.

Figure 4 shows the vertical grid spacing of these models. The

blue dashed line denotes the theoretical optimal value of the fine-

grid model, which is calculated by Eq. 2. The red dashed line

displays the vertical grid spacing of the variable-gird model. It

varies more smoothly between two layers than the blue line. For

conventional variable-grid methods (Jastram and Tessmer, 1994;

Wang and Schuster, 1996; Ha and Shin, 2012; Fan et al., 2015), it

is inevitable to add a transition area between two layers with

different velocity, change the finite-difference scheme of the

seismic wave equation, or modify the finite-difference

coefficients. When the modeling parameters are not

reasonable, strong spurious reflections will occur in the

transition area. Our adaptive variable-grid method is much

easier to implement and can effectively avoid the spurious

reflections.

Next, we test our method using forward modeling. A Ricker

wavelet source with dominant frequency of 30 Hz is used. The

time step is 0.5 ms. Figures 5A–C show the wavefield snapshots

at 0.65 s, which are computed by the fine-grid, coarse-grid and

variable-grid methods, respectively. The variable-grid snapshot

(Figure 5C) is irregular in depth direction. For comparison

purposes, we apply linear interpolation to it to get a regular-grid

one, as shown in Figure 5D. As indicated by the red arrows,

numerical dispersion in Figure 5B is stronger than that in

Figures 5A,D. As shown in Figure 6, we extract a single

trace from these snapshots at a distance of 1.3 km for

further comparison. The black arrows indicate the

dispersion. From Figure 6, we find that the blue line and the

red line almost coincide but they are different from the

black line.

In LSRTM tests, the recording time is 1.5 s. In total, 21 shots

are evenly distributed on the surface and the shot interval is

150 m. Each shot has 601 receivers and the receiver interval is

FIGURE 10
Modified Marmousi model: (A) regular-grid model, and (B) variable-grid model.

FIGURE 11
Comparison of vertical grid interval.
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5 m. Figure 7A shows the synthetic single shot record using the

fine-grid model, which is regarded as the observed data. Figures

7B–D show the Born-modeled data at the first iteration of the

fine-grid method, coarse-grid method and variable-grid method,

respectively. Obviously, the numerical dispersion in Figure 7C is

strong (see the red arrow). Figures 8A–C show the FG-LSRTM,

CG-LSRTM and VG-LSRTM images after 20 iterations,

respectively. Figure 8D shows the linear interpolation profile

of the image in Figure 8C. As indicated by the red arrows in

Figure 8, the FG-LSRTM and VG-LSRTM images show fewer

FIGURE 12
LSRTM images using different migration velocity model after 30 iterations: (A) FG-LSRTM image, (B) CG-LSRTM image, (C) VG-LSRTM image,
and (D) VG-LSRTM image after linear interpolation.

FIGURE 13
Magnified views of the dashed red boxes shown in Figure 12: (A) FG-LSRTM image, (B) CG-LSRTM image, and (C) VG-LSRTM image after linear
interpolation.
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imaging artifacts, higher resolution, and better balance of

reflector amplitudes compared with the CG-LSRTM image.

Figure 9 shows the convergence curves of the normalized data

residual. The convergence curves of FG-LSRTM method and the

VG-LSRTM method almost coincide after 15 iterations, which

means that the proposed algorithm converges as fast as

conventional LSRTM.

These LSRTM tests are performed on a cluster using twenty-one

server nodes. The CPU is a 2.20 GHz Intel Xeon Silver 4,214, which

has forty-five compute nodes. The computing time of FG-LSRTM,

CG-LSRTM and VG-LSRTM is 93 min, 62 min and 64min,

respectively. The VG-LSRTM method saves about 34.6% of

memory compared to the FG-LSRTM method because the

number of vertical grid of the variable-grid model is 34.6% of

that of the fine-grid model. From the layered model tests, we

conclude that the VG-LSRTM method can improve computing

efficiency, reduce memory consumption, and provide high-

resolution image with little accuracy loss.

Modified Marmousi model

Similar to the previous section, we use the coarse-grid, fine-

grid, and variable-grid Marmousi models to further verify the

advantages of the proposed method. The model parameters are

shown in Table 2. Figure 10A shows the regular-grid model.

Figure 10B displays the variable-grid model, which is resampled

from the fine-grid model. From Table 2, the number of vertical

grid points of the variable-grid model is 360, decreasing by

48.6%. The comparison of vertical grid interval is presented in

Figure 11. We can see that the variable-grid grid interval (the red

line) varies smoothly with model velocity.

In imaging tests, the time interval is 0.3 ms, and the recording

time is 3 s. In total, 35 sources are distributed laterally from 0 to

6.65 km, and the shot interval is 200 m. Each shot has 681 receivers,

and the receiver interval is 10 m. The dominant frequency of the

Ricker wavelet source is 30 Hz. Figure 12 shows the images after

FIGURE 14
Vertical slices of Figure 13 at: (A) 3.5 km and (B) 4.25 km.

FIGURE 15
Normalized data residual convergence curves of CG-LSRTM,
FG-LSRTM and VG-LRSRTM methods.
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30 iterations. Figure 12A displays the FG-LSRTM image, Figure 12B

shows the CG-LSRTM image, Figure 12C shows the VG-LSRTM

image, and Figure 12D shows the VG-LSRTM image after linear

interpolation. Figure 13 shows the magnified views of the dashed red

boxes shown in Figure 12. Obviously, the images in Figures 13A,C

show better imaging resolution than that in Figure 13B. To

demonstrate that the VG-LSRTM method has high accuracy and

low errors, we extract two traces from the images in Figures 13A,C (see

the red and blue lines). Figures 14A,B show the single trace

comparison at the distance of 3.5 km and 4.25 km, respectively.

We can see that there is almost no amplitude and phase error between

the FG-LSRTM and the VG-LSRTM image.

Figure 15 shows the normalized data residual convergence

curves of these tests. We can see that the curves of the FG-

LSRTM method and the VG-LSRTM method almost coincide,

and they converge faster than that of the CG-LSRTM method.

Each LSRTM test uses thirty-five nodes on a 2.20 GHz Intel Xeon

Silver 4214 CPU. The computing time of FG-LSRTM, CG-LSRTM

andVG-LSRTM is 25.6 h, 13.1 h and 13.8 h, respectively. Compared

with the FG-LSRTM method, our VG-LSRTM method can save

46% of the computation time. From the numerical example of the

modified Marmousi model, we conclude that the proposed VG-

LSRTM method can greatly improve computing efficiency.

Discussion

Numerical tests on the layered model and the modified

Marmousi model have shown that the proposed method is

efficient and accurate. Nevertheless, the final effect that our

method can achieve depends on initial spatial grid interval, the

velocity structure of the model, and the maximum frequency of the

source. Severe vertical velocity variation, small spatial grid interval,

and the use of low-frequency source are favorable factors for the

proposed VG-LSRTM algorithm. In addition, the accuracy loss of

VG-LSRTM images mainly originates from the sampling process

shown in Figure 1 because model velocity varies continuously while

the grid points are obtained by discrete sampling. Other factors that

may reduce the accuracy of the imaging results, such as the use of

linear interpolation technology and the order of the finite-difference

scheme for approximating φ(z), have negligible effects on the final

results. The stability condition of Eq. 4 is worth discussing. By

analyzing the results of a large number of numerical tests, we find

that the stability condition of Eq. 4 is slightly more stringent than

that of Eq. 1.

Conclusion

Conventional variable-grid methods are difficult to implement

and apply to LSRTM.We presented a VG-LSRTM algorithm based

on an adaptive sampling strategy to accelerate LSRTM in this paper.

We derived a variable-grid first-order stress-velocity acoustic wave

equation and its corresponding Born forward modeling operator

based on a mapping relationship between two coordinate systems.

We developed a complete VG-LSRTM workflow and proved its

feasibility using two numerical examples. Forward modeling tests

for a layered model demonstrated that the proposed variable-grid

method has high wavefield simulation accuracy. LSRTM tests for

the layered model and a modified Marmousi model validated that

our VG-LSRTM can save large computing costs and provide high-

resolution imaging results as well as FG-LSRTM.
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