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Pore pressure (PP) is one of the essential and very critical parameters in the oil

and gas industry, especially in reservoir engineering, exploitation, and

production. Forecasting this valuable parameter can prevent huge costs

incurred by the oil and gas industry. This research aims to develop a

algorithm to better predict PP in subsurface -formations. Based on this,

information from three wells (F1, F2, and F3) representing one of the Middle

East oil fields was used in this research. The input variables used in this research

include; laterolog (LLS), photoelectric index (PEF), compressional wave velocity

(Vp), porosity (NPHI), gamma ray (spectral) (SGR), density (RHOB), gamma ray

(corrected) (CGR), shear wave velocity (Vs), caliper (CALI), resistivity (ILD), and

sonic transit time (DT). Based on the results presented in the heat map

(Spearman’s correlation), it can be concluded that the pairs of parameters

RHOB-PEF, CGR-SGR, RHOB-CALL, DT-PEF, PP-RHOB, Vs-RHOB, ILD-LLS,

DT-CGR, and DT-NPHI are connected. In this research the GS-GMDHmethods

is used for modeling which is based on the Group method of data handling

(GMDH). The results of this research show that this algorithm has an average

error of RMSE = 1.88 Psi and R2 = 0.9997, indicating its high-performance

accuracy. The difference between this method and the conventional GMDH

method is that it can use three or more variables instead of two, which can

improve prediction accuracy. Furthermore, by using the input of each neuron

layer, the proposed model can communicate with other adjacent and non-

adjacent layers to solve complex problems in the simplest possible way.
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Introduction

Pore pressure (PP) is one of the most prominent and widely

used parameters in various petroleum fields, from the start of

drilling to determining and optimizing the production of oil and

gas flow as well as reservoir planning (Ma et al., 2015). The high

importance of this parameter in reservoir engineering,

exploitation, and drilling has sparked the interest of several

authors in researching such an important parameter (Peng

et al., 2021). This very important parameter is measured and

reported through direct measurement of PP using the Modular

Formation Dynamics Tester (MDT) (Carnegie et al., 2002;

Baouche et al., 2020). Another tool that measures formation

pressure is the Repeat Formation Tester (RFT), which is a routine

tool in the petroleum industry (MacArthur et al., 2000; Matar

et al., 2019; Jafarizadeh et al., 2022). But one of the reasons that

has made the use of these tools problematic is that they are

expensive and time-consuming to drive (Ma et al., 2018). As a

result of such reports, which are generated using expensive tools,

the determination and estimation of PP for specific depths are

limited. Various methods have been proposed to predict PP,

including its determination through petrophysical logs and

seismic data (Rajabi et al., 2022b). One of the most important

good features in a drilling operation is the safety of the drilling

path. Once the PP is determined, drilling engineers can drill a safe

well trajectory and reach the target easily. One of the primary

causes of the blowout event was the inability to accurately

identify PP at various reservoir points and well trajectories.

Because blowout events cause irreparable damage to the

hydrocarbon fluids inside the reservoir, preventing them can

be of great benefit to the oil and gas industry, environmental

safety, as well as oil and gas reserves (Hassanpouryouzband et al.,

2020).

Literature review

Given the important and constructive role of the PP in

drilling, production, and reservoir planning, it can also play a

useful role in its prediction. Several authors have developed

methods to predict the PP in the last few decades. Among

them, we can mention the Eaton model in 1975, which is one

of the oldest methods for determining this important parameter.

The model used in this method includes the determination of

overburden pressure using structural pressure and structural

matrix (Eaton, 1975). Following this method, Ethen attempted

to modify his method to improve prediction accuracy, and by

incorporating porosity and shear wave velocity (Vs), he was able

to present a newmodel (Zhang, 2011). In 1995, Bowers presented

a model based on the difference in pressure wave speed and mud

wave speed that was able to demonstrate effective stress analysis

in this model (Bowers, 1995). In order to examine and analyze

this model, two coefficients are needed, which can be examined

and analyzed through these two coefficients of the Bowers model

(Bowers, 1995; Zhang, 2011). Based on this model, by drawing

the measurement point between the effective stress and shear

wave speed, a correlation relationship can be created to generate

the code and the final model. The model’s ambiguity is that the

variety of lithology can have a positive effect on the model’s

uncertainty and provide acceptable results (Zhang, 2011). In

2012, Atashbari and Tingay (2012) presented a model based on

Eaton’s 1957 model. In this model, the porosity and

compressibility parameters of the rock are related to the PP,

which generates an analytical model. In this model, porosity

intensity is dependent on PP. This model is one of the models

that is much more practical than other models and is highly

dependent on porosity and shows compressibility pressure

(Atashbari and Tingay, 2012). Many researchers have used

empirical equations to predict PP, which is based on Eaton’s

model. The research results of these researchers show that the

error presented in this model increases, especially when it is used

in different sedimentary basins with different lithologies

(Hutomo et al., 2019; Radwan et al., 2019).

Many researchers have recently been able to forecast the

value of PP and fracture pressure using artificial intelligence

algorithms in order to better predict the PP and FP in

subsurface reservoirs. This is certainly relevant if the model

is independent of the normal velocity trend and depends on the

porosity (Rabbani and Babaei, 2019; Galkin et al., 2021;

Ponomareva et al., 2021; Zakharov, 2021; Martyushev et al.,

2022; Ponomareva et al., 2022). In 2000, Sadiq and Nashawi

(2000) used artificial intelligence methods to predict formation

failure pressure, which is the last point of formation PP. The

networks used include the back propagation neural network

(BPNN) and the generalized regression neural network

(GRNN). The results of this research show that GRNN has a

higher performance accuracy than other algorithms (Sadiq and

Nashawi, 2000). In the same year, Murakami et al. (2000)

predicted PP using the BPNN algorithm. The results

demonstrated that this model has a high level of

performance accuracy (Murakami et al., 2000). Six years

later, Siruvuri et al. (2006) proposed a model employing a

neural network algorithm for predicting PP in one of the fields

located in the Gulf of Mexico (Siruvuri et al., 2006). Four years

later, proposed a model employing a neural network algorithm

to predict PP in two of the large oil fields located in Iran. The

results of this article are better than the results presented in

previous articles (Ashena et al., 2010). Three years later, in

2013, Hu et al. (2013) studied drilling pressure prediction and

structure optimization. In this research, three algorithms,

BPNN, multilayer perceptron (MLP), and GRNN, have been

used to predict PP in one of Iran’s oil reservoirs. In this study,
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they used four input data sets, including permeability (K), depth

(MD), density (RHOB), and porosity (NPHI). The results

presented in this article show that the BPNN performance

accuracy is higher than that of GRNN and MLP models (Hu

et al., 2013). In the same year, Keshavarzi and Jahanbakhshi

(2013) used the combined FF-BPNN algorithm to predict PP

for one of the fields in southwest Iran. In this research, four

input parameters are used to predict this important parameter.

The parameters used in this research included RHOB, MD,

gamma-ray (GR), and compressive wave (DTCO). The results

shown in this research demonstrate the high-performance

accuracy of this algorithm (Keshavarzi and Jahanbakhshi,

2013). Six years later, in 2019, Ahmed et al. (2019) used the

MLP-NN hybrid algorithm to predict PP using drilling

parameters (weight on bit (WOB), rotational speed (ROP),

and mud weight (MW)), as well as general logs of NPHI,

RHOB, and DTCO. After reviewing the results presented in

this article, we came to the conclusion that the performance

accuracy of this algorithm was high (Ahmed et al., 2019). Two

years later, used three algorithms with the combination of

multilayer extreme learning machine model hybridized

(MELM), MLP, and least squares support vector machine

(LSSVM) with the combination of a particle swarm

optimization (PSO) algorithm to predict PP for one oil field

in the south of Iran. In this article, petrophysical data were used

for this purpose. The results show that the combined MELM-

PSO algorithm has a higher performance accuracy than other

algorithms. A year later, in 2022, used 9 ML, and four had the

best accuracy for predicting PP. Out of the nine algorithms, four

algorithms gave more accurate results: decision tree (DT),

adaboost (ADA), random forest (RF), and transparent open

box (TOB). After examining the results presented in this

research, it is clear that the DT algorithm has higher

performance accuracy than other algorithms. Photoelectric

absorption factor (PEF), GR, temperature (T), RHOB, sonic

shear-wave (DS), and compressional shear-wave (DC) were

used as input data in this study.

This study aims to determine PP using petrophysical logs

(12 petrophysical logs) using a GS-GMDH artificial intelligence

algorithm that has not been used previously to predict this key

parameter. This algorithm, which is an advanced version of the

GMDH algorithm, was able to solve the problems and

shortcomings of the GMDH algorithm and was able to

provide an accurate prediction for PP. This method differs

from the conventional GMDH (GS-GMDH) method in that it

can use three or more variables instead of two. Also, this

algorithm has been able to communicate with other adjacent

and non-adjacent layers by using the input of each neuron layer

and can solve complex problems in the simplest possible way.

One of the features that distinguishes this article from other

articles is that no article has used this algorithm so far, and the

capability of this algorithm is that it has the ability to increase the

accuracy of performance for small and large data sets at every

level.

Methodology

In the past, in order to determine the key and important

parameters of the oil and gas industry, oldmethods, experimental

equations, and laboratory methods were used. Among these

methods are those that can be used to determine reservoir key

parameters; nano-polymer (Khodaeipour et al., 2018;

Mohamadian et al., 2022); drilling (Darvishpour et al., 2019);

preventing blow out (Abdali et al., 2021); formation damage

(Mohammadian and Ghorbani, 2015; Mohamadian et al., 2022);

experimental equations for production and reservoir parameters

(Tehrani et al., 2022). However, today, with the advancement of

technology and a set of artificial intelligence algorithms that are

accessible, cheap, and fast, it is possible to replace the old

methods that are sometimes full of bugs. Among the articles

that used artificial intelligence to determine and predict key

parameters, the following can be mentioned: key parameters

for reservoirs (Naveshki et al., 2021; Alakbari et al., 2022; Rajabi

et al., 2022a; Ayoub Mohammed et al., 2022; Hassan et al., 2022;

Jafarizadeh et al., 2022); drilling (Beheshtian et al., 2022; Rajabi

et al., 2022c); petrophysics (Ayoub et al., 2022; Gao et al., 2022;

Kamali et al., 2022).

Flow diagram

The flow diagram presented in Figure 1 shows the

determination and prediction of PP value using the GS-

GMDH algorithm. As it is clear in this flow diagram, first the

data are collected for the wells of an oil field. Later, by using the

normalization method (Eq. 1) (Hazbeh et al., 2021; Beheshtian

et al., 2022), the input and output variables are normalized. After

that, by using the heat map matrix, it is possible to detect the

effect of the parameters on each other, and then, by using

technical analysis, a comparison was made between the

experimental models and this method. Finally, according to

the comparison of the error parameters, the results of this

method and its GS-GMDH were evaluated and obtained the

most acceptable results.

dnorm � 2( d − d min

d max − d min
) (1)

GMDH for determination of PP

One of the most useful and self-organizing methods is the

group data processing method (GMDH). This method is one of
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the ANN methods and is widely used to predict PP (Ahmadi

et al., 2007; Nasir et al., 2019; Kamali et al., 2022). This method is

among the methods that act like the human brain (Rahman et al.,

2012). This method works in such a way that it uses a multiple

input D = [d1i, d2i and .... dni] and after passing through the

hidden layers (N) to the output Si [i=1, 2 and .. .] will arrive with

complex networks (Nguyen et al., 2019). In this method, the

analytical functions are transferred to the quadratic nodes and

using complex mathematical methods to solve the equations with

the quadratic method, they are connected together and new

nodes are created, as well as a new way of communicating with

the nodes (Nariman-Zadeh et al., 2002). Using the analytical

method and finding the f function, a solution to reach the desired

output can be found. The function f can be used as a function

close to the output and a number close to the number of the

output function (Jafarian et al., 2017). Therefore, the output

function (Si) can be shown as follows (Eq. 2):

Si � f[d1i, d2i, , d2i, . . . , , dni], i � 2, 3 , . . . n (2)

In order to determine the training related to GMDH, the

difference between the least squares estimate and its actual value

should be calculated (Armaghani et al., 2022). This equation is

shown as Eq. 3:

δ min � ∑n
i

(f[d1i, d2i, , d2i, . . . , , dni] − Si)2 (3)

In order to optimize and find several inputs and pairs of

outputs, the following function is used for this purpose

(Eq. 4):

S � q(ti, tj) � t0 +∑n
i

tidi +∑n
i

∑n
j

tididj + . . . (4)

In order to express the form of polynomial equation, Eq. 5 is

used:

S � t0 + t1di + t2dj + t3didj + t4di
2 + t5dj

2 (5)

In order to create a general mathematical relationship

between limited inputs and individual outputs, this can be

done by drawing a quadratic equation and groups related to

the neuron (Atashkari et al., 2007). The form of Equation 6 can

be obtained by determining andminimizing the coefficients from

the relationship between Eqs 3 and 4 (Elbaz et al., 2021). In order

to minimize the RMSE, the quadratic equation (δmin) can be

expressed as binary [0,1] to obtain and create the values with the

highest R value and the lowest RMSE, respectively (Naderpour

et al., 2020). Combined Eq. 6 is shown in the following form:

δ min � 1
n
∑n
i

(Si − q(di, dj))2 (6)

In order to solve and reach the least squared error value, we

must use Eq. 7. In this equation, a parameter is defined as a

matrix, which is defined as follows:

r � 1

(WTW) × WTS

W � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1 t1di t1dj

1 t2di t2dj

. . . . . . . . .

t1didj t1di
2 t1dj

2

t2didj t2di
2 t2dj

2

. . . . . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

FIGURE 1
Flow diagram for PP prediction.
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The processes shown previously have been used to determine

the hidden layer connectivity for neurons (Kordnaeij et al., 2015).

Therefore, in order to determine the accuracy, the following

equation is used (Eq. 8):

e � q × δ min + (1 − q) × δ max (8)

GS-GMDH for determination of PP

One of the problems and disadvantages of GMDH is that this

algorithm can hardly solve nonlinear problems with high input

variables in sentences with only two neurons in each polynomial

(Bonakdari et al., 2020). Since the problems related to

determining PP using petrophysical variables are non-linear

and complex. As a result, in this study, a type of artificial

intelligence algorithm called GS-GMDH is investigated, which

can solve non-linear problems easily (Tsai and Yen, 2017;

Shahbazbeygi et al., 2021). Among the other limitations of

this algorithm is that it has only two variables as input for

each neuron, and this algorithm has not been able to analyze

patterns with complex nonlinear polynomial equations (López-

Belchí et al., 2018). In order to solve these problems with this

algorithm, a method called GS-GMDH has been used. In order to

code this algorithm, MATLAB R2012b software was used. For

the suggested method more variables can be used instead of two

variables. Also, this algorithm has been able to create

communication with other adjacent and non-adjacent layers

by using the input of each neuron layer and can solve

complex problems in the simplest possible way (Jahed

FIGURE 2
GS-GMDH flowchart for PP prediction.

Frontiers in Earth Science frontiersin.org05

Gao et al. 10.3389/feart.2022.1043719

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1043719


Armaghani et al., 2020). In this method, two adjacent layers and

one non-adjacent layer can be selected for each light, and at the

end, by using the following equation, the optimal structure can be

formed and the problem solved by the Akaike information

criterion (AIC). The flowchart of this method is presented in

Figure 2 which adapted from Jahed Armaghani et al., 2020.

AIC � n × log⎛⎝ ������������
1
n
∑n
i

(Si − Si)2
√ ⎞⎠ + 2 × k (9)

Figure 3 shows the structure of GS-GMDH for predicting PP

with three layers and a dip. As shown in this figure, the

connection of the input variables (i.e., SGR, PEF, NPHI, ILD,

LLS, DT, RHOB, CGR, CALI, Vs. and Vp) to neurons (i.e., N1,

N2 and N3) and the network is introduced in this figure.

Accordingly, a model for predicting PP has been established

and developed.

Error parameters

To determine and validate the results of the GS-GMDH

model with predictive empirical methods to predict PP based on

laterolog (LLS), PEF, compressional wave velocity (Vp), porosity

(NPHI), gamma ray (spectral) (SGR), density (RHOB), gamma

ray (corrected) (CGR), Vs, caliper (CALI), resistivity (ILD), sonic

transit time (DT), the following statistical methods are used for

this purpose: root mean square error (RMSE), Nash–Sutcliffe

model (EN–S), R-square (R2), mean square error (MSE), and

scatter index (SI).

Mean square error (MSE):

MSE � 1
n
∑n

i�1(∅Measuredi −∅Predictedi)2 (10)

Root means square error (RMSE):

RMSE � �����
MSE

√
(11)

Nash–Sutcliffe model (EN–S):

EN−S � 1 − ∑n
i�1(∅Measuredi −∅Predictedi)2∑N

i�1(∅Predictedi − ∑n

I�1∅Measuredi

n )2 (12)

R-square (R2):

R2 � 1

−
[∑N

i�1(∅Predictedi − ∑n

I�1∅Measured i

n )2] − [∑n
i�1(∅Measuredi −∅Predicted i)2]

∑N
i�1(∅Predictedi − ∑n

I�1∅Measured i

n )2

(13)

Scatter index (SI):

SI �
������
RMSE

√
n

(14)

Data description

The data used in this article includes three wells (F1, F2 and

F3) related to one of the oil fields located in the Middle East. In

FIGURE 3
GS-GMDH flowchart for PP prediction.
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order to build this algorithm, data related to two wells, F1 and F2

(1511 data points), has been used, and in order to test this

algorithm, data related to well F3 (1237 data points) has been

used. Some data points in this study were outliers, and with

outlier detection, they were removed from the main data

collection. The input and output variables used in this

research include: laterolog (LLS), PEF, Vp, porosity (NPHI),

SGR, density (RHOB), CGR, Vs, caliper (CALI), resistivity (ILD),

DT, PP. The statistical information related to the data related to

this article is presented in Table 1.

Among the equations that can be used to obtain relationships

between variables is Spearman’s correlation coefficient (R).

Spearman’s relationship is mentioned as Eq. 10:

R �
∑n

i�1(∅Predictedi − ∑n

I�1∅Measuredi

n ) × (θPredictedi − ∑n

I�1θMeasuredi

n )���������������������������������������������������∑N
i�1(∅Predictedi − ∑n

I�1∅Measuredi

n )2

× ∑N
i�1(θPredictedi − ∑n

I�1θMeasuredi

n )2
√

(10)

Figure 4 shows the heat map diagram for input and output

variables to determine and predict PP based on Spearman’s

correlation. As the information in this figure shows, the pairs

of variables RHOB-PEF, CGR-SGR, RHOB-CALL, DT-PEF, PP-

RHOB, Vs-RHOB, ILD-LLS, DT-CGR, and DT-NPHI are

dependent on each other. The results depicted in this figure

show the relationship between the variables, which determines

the closeness and relationship between the parameters.

Result and discussion

Twowells, F1 and F2, with a total of 2151 data sets, were used to

obtain and develop the GS-GMDH algorithm. During theT
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FIGURE 4
Heat map diagram for relationship between input variables.
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algorithm’s development, 1511 data sets (70% of the total data) were

utilized as training data sets. This algorithm was validated using

320 data sets (15% of the total data) and tested using 320 data sets

(15% of the total data). In order to obtain the performance accuracy

of this algorithm (GS-GMDH), the error parameters mentioned in

this article have been used. The results of the training, testing, and

validation of the data are presented in Table 2.

The results in Table 2 demonstrate this algorithm’s high-

performance accuracy for training, testing, validation, and

total data. As shown in Table 2, the error value for this

algorithm for test data is MSE = 3.35 Psi, RMSE = 1.83 Psi,

R2 = 0.9994, and SI = 0.04.

The results shown in Figure 5 demonstrate the accuracy of

this algorithm. As it is well shown in this figure, the output of

training, testing, validation, and total data has been shown with

good performance accuracy. The results of R2 of the data shown

in this algorithm for the whole data are about 0.9995.

Based on the results presented in Figure 6 and Table 3, which

are reported from the information related to well F3 (1200 data

points) and by using this algorithm (GS-GMDH), it can be

concluded that this algorithm has high performance accuracy.

This algorithm has the capability to show high performance

accuracy even with low and high data sets, and it can also be used

to determine and predict PP for other models. According to the

results presented in this article, this algorithm can even be used to

determine other key parameters of the reservoir.

Recommendation for future work

The PP parameter is one of the most critical elements that

has many applications in drilling engineering, reservoir,

operation, and petrophysics. Because the industry must pay

a large fee to obtain this critical parameter, the best (low-cost

and fast) way to determine this method is to use other

optimizer and network algorithms, or their hybrids.

Among the suggestions that can be made to predict this

important parameter, the following articles can be

mentioned: teaching-learning-based optimization

algorithms (TLBO) (Choubineh et al., 2017; Ponomareva

et al., 2022); firefly algorithm (FF) (Ghorbani et al., 2017c;

Rao and Krishna, 2019; Zakharov et al., 2022); multilayer

perceptron’s (MLP), ANN and genetic optimization

TABLE 2 Prediction of PP based on GS-GMDHmodel for train (70% of
total data), test (15% of total data), validation (15% of total data)
and total data (100% of total data) based on two wells F1 and F2
(1511 data points).

Models MSE RMSE SI R2 EN-S

Units Psi Psi Psi – –

Train data 3.77 1.94 0.05 0.9996 0.9964

Test data 3.35 1.83 0.04 0.9994 0.9978

Validation data 3.53 1.88 0.04 0.9995 0.9967

Total data 3.55 1.88 0.04 0.9995 0.9970

FIGURE 5
Cross plot for PP prediction by GS-GMDH based on two wells F1 and F2 data points (1511 data points).
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algorithm (GA) (Zaranezhad et al., 2019; Ghorbani et al.,

2020a; Ghorbani et al., 2020b; Abad et al., 2021a; Ranaee et al.,

2021); multiple hidden layers extreme learning machine

algorithms (MELM) (Hazbeh et al., 2021a; Rajabi et al.,

2021; Abad et al., 2022); distance-weighted K-nearest-

neighbor (DWKNN) (Rashidi et al., 2020; Farsi et al.,

2021); deep learning and fuzzy algorithm (Abad et al.,

2021b; Barjouei et al., 2021).

Conclusion

Pore pressure is one of the important and key parameters

directly related to drilling and drilling engineers. This parameter

is also indirectly related to production, petrophysics, and reservoir

engineering. To determine this key parameter, it is necessary to

spend a lot of money and time and use special tools, which makes

the work difficult for petroleum engineering and the petroleum

industry. Therefore, researchers have started to think of a solution to

determine this key parameter using artificial intelligence algorithms.

The GS-GMDH method was used to predict PP using data from

three wells F1, F2, and F3 (2711 data points) associated with an oil

field in theMiddle East. The developedmodel was built using 70% of

the data related to wells F1 and F2 (1511 data points), then using

15% of the data as test (320 data points) and 15% of the data as

validation (320 data points). Input variables to predict PP consist of

laterolog (LLS), PEF, Vp, porosity (NPHI), SGR, density (RHOB),

CGR, Vs, caliper (CALI), resistivity (ILD), andDT. For this purpose,

the coding of a GMDH method called GS-GMDH has been used.

This method differs from the traditional GMDH method in that it

can use three or more variables instead of two. Furthermore, this

algorithm has been able to communicate with other adjacent and

non-adjacent layers by using the input of each neuron layer and can

solve complex problems in the simplest possible way. Based on the

results presented in the heat map (Spearman’s correlation), it can be

concluded that the pairs of parameters RHOB-PEF, CGR-SGR,

RHOB-CALL, DT-PEF, PP-RHOB, Vs-RHOB, ILD-LLS, DT-CGR,

and DT-NPHI have been connected. In order to check this method

for predicting PP, data from well F3 (1200 data points) has been

used. After checking the results, it is clear that the error of this

method is RMSE = 1.88 psi and R2 = 0.9997, which shows the high

accuracy of this algorithm. It is suggested to use this method in

determining other widely used reservoir parameters that have many

input variables. The reason for using this method for these key

parameters with many input variables is that the best outcome can

be achieved by connecting the variables.

Data availability statement

Data can be available upon reasonable requests for the

academic purposes through the corresponding authors.

Author contributions

Author Contributions, Conceptualization, HG, AM, RS,

OH, and GG; methodology, MR, GG, and HG; software, AM,

GG, and HG; validation, HG, GG, and RS; formal analysis,

MR, GG, and HG; investigation, ST, RS, GG, AM, and HG.;

resources, OH, ST, GG, and HG; data curation, AM, GG, and

HG; writing—original draft preparation, SD, GG, MR, HG,

AR, and ST; writing—review and editing, AR, GG, HG, and

RS; visualization, MR, ST, GG, HG, and AR; supervision, GG

and HG; project administration, GG, HG, and AM All authors

have read and agreed to the published version of the

manuscript.

Acknowledgments

The authors would like to thank Yangtze University to

provide the financial support to conduct the research work

presented in this paper.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

FIGURE 6
Cross plot for PP prediction by GS-GMDH based on wells F1
and F2 data points (1511 data points) for well F3 (1200 data points).

TABLE 3 Prediction of PP based on GS-GMDH model for well F3
(1200 data point) based on wells F1 and F2 data points.

Models MSE RMSE SI R2 EN-S

Units Psi Psi Psi – –

Train data 3.24 1.8 0.04 0.9997 0.9964

Frontiers in Earth Science frontiersin.org09

Gao et al. 10.3389/feart.2022.1043719

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1043719


Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abad, A. R. B., Mousavi, S., Mohamadian, N., Wood, D. A., Ghorbani, H.,
Davoodi, S., et al. (2021a). Hybrid machine learning algorithms to predict
condensate viscosity in the near wellbore regions of gas condensate reservoirs.
J. Nat. Gas Sci. Eng. 95, 104210. doi:10.1016/j.jngse.2021.104210

Abad, A. R. B., Tehrani, P. S., Naveshki, M., Ghorbani, H., Mohamadian, N., Davoodi, S.,
et al. (2021b). Predicting oil flow rate through orifice plate with robust machine learning
algorithms. Flow Meas. Instrum. 81, 102047. doi:10.1016/j.flowmeasinst.2021.102047

Abad, A. R. B., Ghorbani, H., Mohamadian, N., Davoodi, S., Mehrad, M.,
Aghdam, S. K.-Y., et al. (2022). Robust hybrid machine learning algorithms for
gas flow rates prediction through wellhead chokes in gas condensate fields. Fuel 308,
121872. doi:10.1016/j.fuel.2021.121872

Abdali, M. R., Mohamadian, N., Ghorbani, H., and Wood, D. A.Department of
engineering, Najafabad branch, Islamic Azad University, Najafabad, Iran (2021).
Petroleumwell blowouts as a threat to drilling operation and wellbore sustainability:
Causes, prevention, safety and emergency response. J. Constr. Materials| Special
Issue Sustain. Petroleum Eng. ISSN 2652, 3752. doi:10.36756/jcm.si1.1

Ahmadi, H., Mottaghitalab, M., and Nariman-Zadeh, N. (2007). Group method
of data handling-type neural network prediction of broiler performance based on
dietary metabolizable energy, methionine, and lysine. J. Appl. Poult. Res. 16,
494–501. doi:10.3382/japr.2006-00074

Ahmed, A., Elkatatny, S., Ali, A., Mahmoud, M., and Abdulraheem, A. (2019).
New model for pore pressure prediction while drilling using artificial neural
networks. Arab. J. Sci. Eng. 44, 6079–6088. doi:10.1007/s13369-018-3574-7

Alakbari, F. S., Mohyaldinn, M. E., Ayoub, M. A., Muhsan, A. S., and Hussein, I.
A. (2022). A reservoir bubble point pressure prediction model using the Adaptive
Neuro-Fuzzy Inference System (ANFIS) technique with trend analysis. PloS one 17,
e0272790. doi:10.1371/journal.pone.0272790

Armaghani, D. J., Harandizadeh, H., Momeni, E., Maizir, H., and Zhou, J. (2022).
An optimized system of GMDH-ANFIS predictive model by ICA for estimating pile
bearing capacity. Artif. Intell. Rev. 55, 2313–2350. doi:10.1007/s10462-021-10065-5

Ashena, R., Moghadasi, J., Ghalambor, A., Bataee, M., Ashena, R., and Feghhi, A.
(2010). Neural networks in BHCP prediction performed much better than
mechanistic models. Beijing, China: OnePetro.

Atashbari, V., and Tingay, M. (2012). Pore pressure prediction in carbonate
reservoirs. Mexico City, Mexico: OnePetro.

Atashkari, K., Nariman-Zadeh, N., Gölcü, M., Khalkhali, A., and Jamali, A. (2007).
Modelling and multi-objective optimization of a variable valve-timing spark-ignition
engine using polynomial neural networks and evolutionary algorithms. Energy Convers.
Manag. 48, 1029–1041. doi:10.1016/j.enconman.2006.07.007

Ayoub, M. A., Elhadi, A., Fatherlhman, D., Saleh, M. O., Alakbari, F. S., and
Mohyaldinn, M. E. (2022). A new correlation for accurate prediction of oil
formation volume factor at the bubble point pressure using Group Method of
Data Handling approach. J. Petroleum Sci. Eng. 208, 109410. doi:10.1016/j.petrol.
2021.109410

Ayoub Mohammed, M. A., Alakbari, F. S., Nathan, C. P., and Mohyaldinn, M. E.
(2022). Determination of the gas–oil ratio below the bubble point pressure using the
adaptive neuro-fuzzy inference system (ANFIS). ACS Omega 7, 19735–19742.
doi:10.1021/acsomega.2c01496

Baouche, R., Sen, S., and Boutaleb, K. (2020). Distribution of pore pressure and
fracture pressure gradients in the Paleozoic sediments of Takouazet field, Illizi
basin, Algeria. J. Afr. Earth Sci. 164, 103778. doi:10.1016/j.jafrearsci.2020.103778

Barjouei, H. S., Ghorbani, H., Mohamadian, N., Wood, D. A., Davoodi, S.,
Moghadasi, J., et al. (2021). Prediction performance advantages of deep machine
learning algorithms for two-phase flow rates through wellhead chokes. J. Pet.
Explor. Prod. Technol. 11, 1233–1261. doi:10.1007/s13202-021-01087-4

Beheshtian, S., Rajabi, M., Davoodi, S., Wood, D. A., Ghorbani, H., Mohamadian,
N., et al. (2022). Robust computational approach to determine the safe mud weight
window using well-log data from a large gas reservoir. Mar. Petroleum Geol. 142,
105772. doi:10.1016/j.marpetgeo.2022.105772

Bonakdari, H., Binns, A. D., and Gharabaghi, B. (2020). A comparative study of
linear stochastic with nonlinear daily river discharge forecast models.Water Resour.
manage. 34, 3689–3708. doi:10.1007/s11269-020-02644-y

Bowers, G. L. (1995). Pore pressure estimation from velocity data: accounting for
overpressure mechanisms besides undercompaction. SPE Drill. Complet. 10, 89–95.
doi:10.2118/27488-pa

Carnegie, A., Thomas, M., Efnik, M. S., Hamawi, M., Akbar, M., and Burton, M.
(2002). An advanced method of determining insitu reservoir stresses: Wireline
conveyed micro-fracturing. Abu Dhabi, United Arab Emirates: OnePetro.

Choubineh, A., Ghorbani, H., Wood, D. A., Moosavi, S. R., Khalafi, E., and
Sadatshojaei, E. (2017). Improved predictions of wellhead choke liquid critical-flow
rates: Modelling based on hybrid neural network training learning based
optimization. Fuel 207, 547–560. doi:10.1016/j.fuel.2017.06.131

Darvishpour, A., Seifabad, M. C., Wood, D. A., and Ghorbani, H. (2019).
Wellbore stability analysis to determine the safe mud weight window for
sandstone layers. Petroleum Explor. Dev. 46, 1031–1038. doi:10.1016/s1876-
3804(19)60260-0

Eaton, B. A. (1975). The equation for geopressure prediction from well logs. Dallas,
Texas: OnePetro.

Elbaz, K., Shen, S.-L., Zhou, A., Yin, Z.-Y., and Lyu, H.-M. (2021). Prediction of
disc cutter life during shield tunneling with AI via the incorporation of a genetic
algorithm into a GMDH-type neural network. Engineering 7, 238–251. doi:10.1016/
j.eng.2020.02.016

Farsi, M., Barjouei, H. S., Wood, D. A., Ghorbani, H., Mohamadian, N., Davoodi,
S., et al. (2021). Prediction of oil flow rate through orifice flow meters: Optimized
machine-learning techniques. Measurement 174, 108943. doi:10.1016/j.
measurement.2020.108943

Galkin, V. I., Ponomareva, I. N., and Martyushev, D. A. (2021). Prediction of
reservoir pressure and study of its behavior in the development of oil fields based on
the construction of multilevel multidimensional probabilistic-statistical models.
Gas 2, 17–15. doi:10.18599/grs.2021.3.10

Gao, G., Hazbeh, O., Davoodi, S., Tabasi, S., Rajabi, M., Ghorbani, H., et al.
(2022). Prediction of fracture density in a gas reservoir using robust computational
approaches. Front. Earth Sci., 1831. doi:10.3389/feart.2022.1023578

Ghorbani, H., Moghadasi, J., and Wood, D. A. (2017c). Prediction of gas flow
rates from gas condensate reservoirs through wellhead chokes using a firefly
optimization algorithm. J. Nat. Gas Sci. Eng. 45, 256–271. doi:10.1016/j.jngse.
2017.04.034

Ghorbani, H., Wood, D. A., Choubineh, A., Mohamadian, N., Tatar, A.,
Farhangian, H., et al. (2020a). Performance comparison of bubble point
pressure from oil PVT data: Several neurocomputing techniques compared.
Exp. Comput. Multiph. Flow. 2, 225–246. doi:10.1007/s42757-019-0047-5

Ghorbani, H.,Wood, D. A., Choubineh, A., Tatar, A., Abarghoyi, P. G.,Madani,M., et al.
(2020b). Prediction of oil flow rate through an orifice flow meter: Artificial intelligence
alternatives compared. Petroleum 6, 404–414. doi:10.1016/j.petlm.2018.09.003

Hassan, A. M., Ayoub, M. A., Mohyadinn, M. E., Al-Shalabi, E. W., and Alakbari,
F. S. (2022). A new insight into smart water assisted foam SWAF technology in
carbonate rocks using artificial neural networks ANNs. Malaysia: OnePetro.

Hassanpouryouzband, A., Joonaki, E., Farahani, M. V., Takeya, S., Ruppel, C.,
Yang, J., et al. (2020). Gas hydrates in sustainable chemistry. Chem. Soc. Rev. 49,
5225–5309. doi:10.1039/c8cs00989a

Hazbeh, O., Aghdam, S. K.-Y., Ghorbani, H., Mohamadian, N., Alvar, M. A., and
Moghadasi, J. (2021). Comparison of accuracy and computational performance
between the machine learning algorithms for rate of penetration in directional
drilling well. Petroleum Res. 6, 271–282. doi:10.1016/j.ptlrs.2021.02.004

Hu, L., Deng, J., Zhu, H., Lin, H., Chen, Z., Deng, F., et al. (2013). A new pore
pressure prediction method-back propagation artificial neural network. Electron.
J. Geotech. Eng. 18, 4093–4107.

Hutomo, P. S., Rosid, M. S., and Haidar, M. W. (2019). Pore pressure prediction
using eaton and neural network method in carbonate field “X” based on seismic
data. Mater. Sci. Eng. 546, 032017. doi:10.1088/1757-899X/546/3/032017

Jafarian, H., Sayyaadi, H., and Torabi, F. (2017). Modeling and optimization of
dew-point evaporative coolers based on a developed GMDH-type neural network.
Energy Convers. Manag. 143, 49–65. doi:10.1016/j.enconman.2017.03.015

Frontiers in Earth Science frontiersin.org10

Gao et al. 10.3389/feart.2022.1043719

https://doi.org/10.1016/j.jngse.2021.104210
https://doi.org/10.1016/j.flowmeasinst.2021.102047
https://doi.org/10.1016/j.fuel.2021.121872
https://doi.org/10.36756/jcm.si1.1
https://doi.org/10.3382/japr.2006-00074
https://doi.org/10.1007/s13369-018-3574-7
https://doi.org/10.1371/journal.pone.0272790
https://doi.org/10.1007/s10462-021-10065-5
https://doi.org/10.1016/j.enconman.2006.07.007
https://doi.org/10.1016/j.petrol.2021.109410
https://doi.org/10.1016/j.petrol.2021.109410
https://doi.org/10.1021/acsomega.2c01496
https://doi.org/10.1016/j.jafrearsci.2020.103778
https://doi.org/10.1007/s13202-021-01087-4
https://doi.org/10.1016/j.marpetgeo.2022.105772
https://doi.org/10.1007/s11269-020-02644-y
https://doi.org/10.2118/27488-pa
https://doi.org/10.1016/j.fuel.2017.06.131
https://doi.org/10.1016/s1876-3804(19)60260-0
https://doi.org/10.1016/s1876-3804(19)60260-0
https://doi.org/10.1016/j.eng.2020.02.016
https://doi.org/10.1016/j.eng.2020.02.016
https://doi.org/10.1016/j.measurement.2020.108943
https://doi.org/10.1016/j.measurement.2020.108943
https://doi.org/10.18599/grs.2021.3.10
https://doi.org/10.3389/feart.2022.1023578
https://doi.org/10.1016/j.jngse.2017.04.034
https://doi.org/10.1016/j.jngse.2017.04.034
https://doi.org/10.1007/s42757-019-0047-5
https://doi.org/10.1016/j.petlm.2018.09.003
https://doi.org/10.1039/c8cs00989a
https://doi.org/10.1016/j.ptlrs.2021.02.004
https://doi.org/10.1088/1757-899X/546/3/032017
https://doi.org/10.1016/j.enconman.2017.03.015
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1043719


Jafarizadeh, F., Rajabi, M., Tabasi, S., Seyedkamali, R., Davoodi, S., Ghorbani, H.,
et al. (2022). Data driven models to predict pore pressure using drilling and
petrophysical data. Energy Rep. 8, 6551–6562. doi:10.1016/j.egyr.2022.04.073

Jahed Armaghani, D., Hasanipanah, M., Bakhshandeh Amnieh, H., Tien Bui, D.,
Mehrabi, P., and Khorami, M. (2020). Development of a novel hybrid intelligent
model for solving engineering problems using GS-GMDH algorithm. Eng. Comput.
36, 1379–1391. doi:10.1007/s00366-019-00769-2

Kamali, M. Z., Davoodi, S., Ghorbani, H., Wood, D. A., Mohamadian, N.,
Lajmorak, S., et al. (2022). Permeability prediction of heterogeneous carbonate
gas condensate reservoirs applying group method of data handling.Mar. Petroleum
Geol. 139, 105597. doi:10.1016/j.marpetgeo.2022.105597

Keshavarzi, R., and Jahanbakhshi, R. (2013). Real-time prediction of pore
pressure gradient through an artificial intelligence approach: A case study from
one of Middle East oil fields. Eur. J. Environ. Civ. Eng. 17, 675–686. doi:10.1080/
19648189.2013.811614

Khodaeipour, M., Moqadam, D. L., Dashtbozorg, A., and Ghorbani, H. (2018).
Nano clay effect on adsorption of benzene, toluene and xylene from aqueous
solution. Am. J. Oil Chem. Technol, 228–236.

Kordnaeij, A., Kalantary, F., Kordtabar, B., and Mola-Abasi, H. (2015). Prediction
of recompression index using GMDH-type neural network based on geotechnical
soil properties. Soils Found. 55, 1335–1345. doi:10.1016/j.sandf.2015.10.001

López-Belchí, A., Illan-Gomez, F., Cano-Izquierdo, J. M., and García-Cascales, J.
R. (2018). GMDH ANN to optimise model development: Prediction of the pressure
drop and the heat transfer coefficient during condensation within mini-channels.
Appl. Therm. Eng. 144, 321–330.

Ma, T., Chen, P., and Han, X. (2015). Simulation and interpretation of the
pressure response for formation testing while drilling. J. Nat. Gas Sci. Eng. 23,
259–271. doi:10.1016/j.jngse.2015.01.044

Ma, T., Peng, N., Chen, P., Yang, C., Wang, X., and Han, X. (2018). Study and
verification of a physical simulation system for formation pressure testing while
drilling. Geofluids 2018, 1–18. doi:10.1155/2018/1731605

Macarthur, J., Vo, D. T., Palar, S., Terry, A., Brown, T., and May, R. (2000).
Integrating pressure data from Formation Tester tool and DST to characterize
deepwater fields. Indonesia, East Kalimantan: OnePetro.

Martyushev, D. A., Ponomareva, I. N., and Filippov, E. V. (2022). Studying the
direction of hydraulic fracture in carbonate reservoirs: Using machine learning to
determine reservoir pressure. Petroleum Res. doi:10.1016/j.ptlrs.2022.06.003

Matar, O., Al Janahi, A., Engineer, Y., and Ali, E. (2019). Integrating production
and formation pressure testers analysis for field development in complicated
carbonate reservoir. Manama, Bahrain: OnePetro.

Mohamadian, N., Ghorbani, H., Bazrkar, H., and Wood, D. A. (2022). “Carbon-
nanotube-polymer nanocomposites enable wellbore cements to better inhibit gas
migration and enhance sustainability of natural gas reservoirs,” in Sustainable
natural gas reservoir and production engineering (Netherland: Elsevier), 243–268.

Mohammadian, N., and Ghorbani, H. (2015). An investigation on chemical
formation damage in Iranian reservoir by focus on mineralogy role in shale swelling
potential in Pabdeh and Gurpi formations. Adv. Environ. Biol. 9, 161–166.

Murakami, T., Ueda, Y., and Ohkuma, H. (2000). Field application of multi-
dimensional diagnosis of reservoir rock stability against sanding problem. Brisbane,
Australia: OnePetro.

Naderpour, H., Eidgahee, D. R., Fakharian, P., Rafiean, A. H., and Kalantari, S. M.
(2020). A new proposed approach for moment capacity estimation of ferrocement
members using Group Method of Data Handling. Eng. Sci. Technol. Int. J. 23,
382–391. doi:10.1016/j.jestch.2019.05.013

Nariman-Zadeh, N., Darvizeh, A., Darvizeh, M., and Gharababaei, H. (2002).
Modelling of explosive cutting process of plates using GMDH-type neural network
and singular value decomposition. J. Mater. Process. Technol. 128, 80–87. doi:10.
1016/s0924-0136(02)00264-9

Nasir, V., Cool, J., and Sassani, F. (2019). Intelligent machining monitoring using
sound signal processed with the wavelet method and a self-organizing neural
network. IEEE Robot. Autom. Lett. 4, 3449–3456. doi:10.1109/lra.2019.2926666

Naveshki, M., Naghiei, A., Soltani Tehrani, P., Ahmadi Alvar, M., Ghorbani, H.,
Mohamadian, N., et al. (2021). Prediction of bubble point pressure using new
hybrid computationail intelligence models. J. Chem. Petroleum Eng. 55, 203–222.
doi:10.22059/jchpe.2021.314719.1341

Nguyen, T. N., Lee, S., Nguyen-Xuan,H., and Lee, J. (2019). A novel analysis-prediction
approach for geometrically nonlinear problems using group method of data handling.
Comput. Methods Appl. Mech. Eng. 354, 506–526. doi:10.1016/j.cma.2019.05.052

Peng, N., Ma, T., Chen, P., and Liu, Y. (2021). Pore pressure evaluation of
formation testing while drilling under supercharged conditions. J. Petroleum Sci.
Eng. 203, 108689. doi:10.1016/j.petrol.2021.108689

Ponomareva, I. N., Galkin, V. I., and Martyushev, D. A. (2021). Operational
method for determining bottom hole pressure in mechanized oil producing wells,
based on the application of multivariate regression analysis. Petroleum Res. 6,
351–360. doi:10.1016/j.ptlrs.2021.05.010

Ponomareva, I. N., Martyushev, D. A., and Govindarajan, S. K. (2022). A new
approach to predict the formation pressure using multiple regression analysis: case
study from Sukharev oil field reservoir–Russia. J. King Saud University-Engineering
Sci. doi:10.1016/j.jksues.2022.03.005

Rabbani, A., and Babaei, M. (2019). Hybrid pore-network and lattice-Boltzmann
permeability modelling accelerated by machine learning. Adv. water Resour. 126,
116–128. doi:10.1016/j.advwatres.2019.02.012

Radwan, A. E., Abudeif, A. M., Attia, M. M., and Mohammed, M. A. (2019). Pore
and fracture pressure modeling using direct and indirect methods in Badri Field, Gulf
of Suez, Egypt. J. Afr. Earth Sci. 156, 133–143. doi:10.1016/j.jafrearsci.2019.04.015

Rahman, S. M., Khondaker, A. N., and Abdel-Aal, R. (2012). Self organizing ozone
model for Empty Quarter of Saudi Arabia: Group method data handling based modeling
approach. Atmos. Environ. 59, 398–407. doi:10.1016/j.atmosenv.2012.05.008

Rajabi, M., Beheshtian, S., Davoodi, S., Ghorbani, H., Mohamadian, N., Radwan,
A. E., et al. (2021). Novel hybrid machine learning optimizer algorithms to
prediction of fracture density by petrophysical data. J. Pet. Explor. Prod.
Technol. 11, 4375–4397. doi:10.1007/s13202-021-01321-z

Rajabi, M., Ghorbani, H., and Aghdam, K.-Y. (2022a). Prediction of shear wave
velocity by extreme learning machine technique from well log data. J. Petroleum
Geomechanics 4, 18–35. doi:10.22107/JPG.2022.298520.1151

Rajabi, M., Ghorbani, H., and Aghdam, K.-Y. (2022b). Sensitivity analysis of
effective factors for estimating formation pore pressure using a new method: The
LSSVM-PSO algorithm. J. Petroleum Geomechanics 4, 19–39. doi:10.22107/JPG.
2022.298551.1152

Rajabi, M., Hazbeh, O., Davoodi, S., Wood, D. A., Tehrani, P. S., Ghorbani, H.,
et al. (2022c). Predicting shear wave velocity from conventional well logs with deep
and hybrid machine learning algorithms. J. Pet. Explor. Prod. Technol., 1–24. doi:10.
1007/s13202-022-01531-z

Ranaee, E., Ghorbani, H., Keshavarzian, S., Abarghoei, P. G., Riva, M., Inzoli, F.,
et al. (2021). Analysis of the performance of a crude-oil desalting system based on
historical data. Fuel 291, 120046. doi:10.1016/j.fuel.2020.120046

Rao, Y. K. S. S., and Krishna, B. B. (2019). Modeling diesel engine fueled with
tamanu oil-Diesel blend by hybridizing neural network with firefly algorithm.
Renew. Energy 134, 1200–1212. doi:10.1016/j.renene.2018.08.091

Rashidi, S., Mohamadian, N., Ghorbani, H., Wood, D. A., Shahbazi, K., and Alvar,
M. A. (2020). Shear modulus prediction of embedded pressurized salt layers and
pinpointing zones at risk of casing collapse in oil and gas wells. J. Appl. Geophys.
183, 104205. doi:10.1016/j.jappgeo.2020.104205

Sadiq, T., and Nashawi, I. S. (2000). Using neural networks for prediction of
formation fracture gradient. Calgary, Alberta, Canada: OnePetro.

Shahbazbeygi, E., Yosefvand, F., Yaghoubi, B., Shabanlou, S., and Rajabi, A.
(2021). Generalized structure of group method of data handling to prognosticate
scour around various cross-vane structures. Arab. J. Geosci. 14 (12), 1–16. doi:10.
1007/s12517-021-07483-8

Siruvuri, C., Nagarakanti, S., and Samuel, R. (2006). Stuck pipe prediction and
avoidance: A convolutional neural network approach. Miami, Florida, USA:
OnePetro.

Tehrani, P. S., Ghorbani, H., Lajmorak, S., Molaei, O., Radwan, A. E., Ghaleh, S.
P., et al. (2022). Laboratory study of polymer injection into heavy oil
unconventional reservoirs to enhance oil recovery and determination of optimal
injection concentration. AIMS Geosci. 8, 579–592. doi:10.3934/geosci.2022031

Tsai, T. M., and Yen, P. H. (2017). GMDH algorithms applied to turbidity
forecasting. Appl. Water Sci. 7 (3), 1151–1160.

Zakharov, L. A., Martyushev, D. A., and Ponomareva, I. N. (2022). Predicting
dynamic formation pressure using artificial intelligence methods. J. Min. Inst. 253,
23–32.

Zakharov, L. A. (2021). Application of machine learning for forecasting formation
pressure in oil field development, 148. Russia: Bulletin Of the tomsk polytechnic
university geo assets engineering.

Zaranezhad, A., Mahabadi, H. A., and Dehghani, M. R. (2019). Development of
prediction models for repair and maintenance-related accidents at oil refineries
using artificial neural network, fuzzy system, genetic algorithm, and ant colony
optimization algorithm. Process Saf. Environ. Prot. 131, 331–348. doi:10.1016/j.
psep.2019.08.031

Zhang, J. (2011). Pore pressure prediction fromwell logs: Methods, modifications,
and new approaches. Earth-Science Rev. 108, 50–63. doi:10.1016/j.earscirev.2011.
06.001

Frontiers in Earth Science frontiersin.org11

Gao et al. 10.3389/feart.2022.1043719

https://doi.org/10.1016/j.egyr.2022.04.073
https://doi.org/10.1007/s00366-019-00769-2
https://doi.org/10.1016/j.marpetgeo.2022.105597
https://doi.org/10.1080/19648189.2013.811614
https://doi.org/10.1080/19648189.2013.811614
https://doi.org/10.1016/j.sandf.2015.10.001
https://doi.org/10.1016/j.jngse.2015.01.044
https://doi.org/10.1155/2018/1731605
https://doi.org/10.1016/j.ptlrs.2022.06.003
https://doi.org/10.1016/j.jestch.2019.05.013
https://doi.org/10.1016/s0924-0136(02)00264-9
https://doi.org/10.1016/s0924-0136(02)00264-9
https://doi.org/10.1109/lra.2019.2926666
https://doi.org/10.22059/jchpe.2021.314719.1341
https://doi.org/10.1016/j.cma.2019.05.052
https://doi.org/10.1016/j.petrol.2021.108689
https://doi.org/10.1016/j.ptlrs.2021.05.010
https://doi.org/10.1016/j.jksues.2022.03.005
https://doi.org/10.1016/j.advwatres.2019.02.012
https://doi.org/10.1016/j.jafrearsci.2019.04.015
https://doi.org/10.1016/j.atmosenv.2012.05.008
https://doi.org/10.1007/s13202-021-01321-z
https://doi.org/10.22107/JPG.2022.298520.1151
https://doi.org/10.22107/JPG.2022.298551.1152
https://doi.org/10.22107/JPG.2022.298551.1152
https://doi.org/10.1007/s13202-022-01531-z
https://doi.org/10.1007/s13202-022-01531-z
https://doi.org/10.1016/j.fuel.2020.120046
https://doi.org/10.1016/j.renene.2018.08.091
https://doi.org/10.1016/j.jappgeo.2020.104205
https://doi.org/10.1007/s12517-021-07483-8
https://doi.org/10.1007/s12517-021-07483-8
https://doi.org/10.3934/geosci.2022031
https://doi.org/10.1016/j.psep.2019.08.031
https://doi.org/10.1016/j.psep.2019.08.031
https://doi.org/10.1016/j.earscirev.2011.06.001
https://doi.org/10.1016/j.earscirev.2011.06.001
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1043719


Nomenclature

AIC Akaike information criterion

BPNN Back propagation neural network

CALI Caliper

CGR Gamma ray (corrected)

d Input variable datapoint

dmin Minimum input variable datapoint

dmin Maximum input variable datapoint

DC Compressional shear-wave

DS Sonic shear-wave

DT Sonic transit time

DTCO Compressive wave

EN–S Nash–Sutcliffe model

GR Gamma-ray

GRNN Generalized regression neural network

HS Hole size

ILD Deep Induction Log

K Permeability

LLS Shallow Laterolog

MD Measured Depth

MDT Modular Formation Dynamics Tester

MLP Multilayer perceptron

MSE Mean square error

MW Mud weight

NPHI Neuron Porosity

PEF Photoelectric absorption factor

PP Pore pressure

q Quadratic function

R Spearman’s correlation coefficient

R2 R-square

RFT Repeat Formation Tester

RHOB Bulk Density

RMSE Root mean square error

ROP Rotational speed

S Output variable

SGR Gamma ray (spectral)

SI Scatter index

T Temperature

t Bayas

Vp Compressional wave velocity

Vs Shear wave velocity

WOB Weight on bit

TLBO Teaching-learning-based optimization

DWKNN Distance-weighted K-nearest-neighbor

MELM Multiple hidden layers extreme learning machine

algorithms

MLP Multilayer perceptron’s

FF Firefly algorithm

GA Genetic optimization algorithm

ANN Artificial neural network

Greek Nomenclature

δmin Minimum rout means square error
Ø Datapoint
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