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The identification of karst caves in seismic imaging profiles is a key step for

reservoir interpretation, especially for carbonate reservoirs with extensive

cavities. In traditional methods, karst caves are usually detected by looking

for the string of beadlike reflections (SBRs) in seismic images, which are

extremely time-consuming and highly subjective. We propose an end-to-

end convolutional neural network (CNN) to automatically and effectively

detect karst caves from 2D seismic images. The identification of karst caves

is considered as an image recognition problem of labeling a 2D seismic image

with ones on caves and zeros elsewhere. The synthetic training data set

including the seismic imaging profiles and corresponding labels of karst

caves are automatically generated through our self-defined modeling and

data augmentation method. Considering the extreme imbalance between

the caves (ones) and non-caves (zeros) in the labels, we adopt a class-

balanced loss function to maintain good convergence during the training

process. The synthetic tests demonstrate the capability and stability of our

proposed network, which is capable of detecting the karst caves from the

seismic images contaminated with severe random noise. The physical

simulation data example also confirms the effectiveness of our method. To

overcome the generalization problem of training the neural network with only

synthetic data, we introduce the transfer learning strategy and obtain good

results on the seismic images of the field data.
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Introduction

Carbonate reservoir plays an important role in oil and gas exploration due to its

characteristics of high yield, large scale, and high quality of crude oil and gas (Gao et al.,

2016). Many efforts have been made to study the prediction and characterization of the

carbonate-karst reservoirs (Loucks 1999; Qi and Yun, 2010; Chen et al., 2011; He et al.,
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2019). Traditional methods such as seismic attributes are

generally applied to detect carbonate-karst reservoirs. Trani

et al. (2011) present a 4D seismic inversion scheme of AVO

and time-shift analysis to predict the pressure and fluid

saturation changes in reservoirs. Ma et al. (2014) propose a

strategy to estimate the stable elastic parameters from prestack

seismic data and demonstrate its application by making

predictions of the carbonate gas reservoir in the Sichuan

Basin. Li et al. (2014) apply the residual signal matching

tracing method to improve the lateral resolution of the top

boundary of small-scale carbonate reservoirs, restore the shape

of the SBRs, and help to identify small-scale reservoirs in

limestone. Liu and Wang (2017) use seismic discontinuities,

seismic facies classification, stochastic inversion, and

lithofacies classification to detect faults and karst fractures in

the carbonate reservoir. Lu et al. (2018) apply the discrete

frequency coherence attributes to detect the fractured-vuggy

bodies in carbonate rocks. Dai et al. (2021) propose a high-

precision multi-scale curvature attribute to detect carbonate

fractures. The improvement of the traditional curvature

solving algorithm improves the accuracy of curvature

calculation. These studies only focus on the prediction of the

entire carbonate reservoirs, rather than the characterization and

prediction of the karst caves. However, accurate cave detection is

extremely important for finding high-quality reservoirs and well

placement since they are rich in oil and gas.

Complex diagenesis usually makes the karst cave structures

extremely developed in carbonate rocks. He et al. (2019) propose

an accumulation energy difference method to directly identify

karst caves using the seismic reflection energy in trace or between

traces. Sun (2018) develops a multi-scale karst cave detection

method based on prestack frequency division and migration

imaging and then demonstrates its application with the field data

in Tahe oilfield. However, the direct detection of karst caves in

carbonate fracture-cavern reservoirs is challenging, since the

troditional methods do not treat the caves separately, but

identify them together as part of the oil and gas reservoir

collective. These reservoir identification methods are less

accurate for identifying caves. Generally, the dissolution caves

appear as string of beadlike reflections (SBRs) on the seismic

migration profiles, which are considered as an indicator for high-

quality reservoirs (Wang et al., 2017). Correct detection and

extraction of SBRs from seismic imaging profiles are helpful for

quantitative description of karst cave reservoirs. Wang et al.

(2017) propose a tensor-based adaptive mathematical

morphology to extract the SBRs from seismic images and

remove the effects of seismic events and noise. These

conventional methods cannot cleanly extract the SBRs from

seismic images nor accurately depict the karst cave positions.

Besides, they are computationally expensive and rely heavily on

human intervention. Therefore, there is an interest to develop a

more efficient, robust, and accurate karst cave detection

technique.

Recently, deep learning has been widely used in geophysics

to solve some practical problems, such as velocity model

building (Yang and Ma, 2019), denoising (Yu et al., 2019;

Wang et al., 2022), first arrival picking (Yuan et al., 2018; Hu

et al., 2019; Yuan et al., 2022), and seismic trace interpolation

(Wang et al., 2020). Wu et al. (2019) propose an end-to-end

neural network for automatic fault detection, which is

regarded as a binary segmentation problem. The binary

labels consist of zeros (non-faults) and ones (faults). The

network trained only with the synthetic data set is applied

directly to the field data set and achieves a relatively good fault

detection. In this study, we consider karst cave detection as an

image recognition problem of labeling a 2D seismic image

with ones on caves and zeros elsewhere. We focus on the

automatic karst cave detection directly from seismic images

using a modified U-Net. We add a boundary padding

operation into each convolutional layer to make the input

and output of the same size. Because the binary label is highly

unbalanced between ones (caves) and zeros (non-caves), a

class-balanced cross-entropy loss function is introduced to

ensure that the gradient of the network descends in the correct

direction during the training process. We develop an

automatic modeling method for building velocity models

with karst caves and generate the synthetic imaging profiles

through convolution. The diffraction points with different

scales and velocities are used to simulate the karst caves and

the velocity models with cavities are generated by randomly

adding the diffraction points to the velocity models. We apply

data augmentation such as noise addition, resampling, and

vertical rotation around the depth axis to the synthetic data to

improve the diversity of the training data set. Then the well-

trained network is tested with the synthetic seismic images

contaminated with random noise. We also validate its

capability of karst cave detection with physical simulated

data. Before applying the trained network to the field data,

we introduce transfer learning to strengthen the network and

bridge the gap between the field data and synthetics. The field

data tests demonstrate the generalization ability of the

updated network.

During the training stage, the neural network takes in the

seismic images and effectively learns the nonlinear relationship

between the imaging profiles and the binary images. Although

the training process is computationally expensive, the cost of the

prediction is negligible once the network training is completed.

With an NVIDIA RTX5000 GPU, our neural network takes less

than 1 s to identify karst caves from 2D seismic images.

Training data sets

To train an efficient network, a large amount of training data

set and the corresponding labels are required. However, labeling

caves manually is time-consuming and highly dependent on
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human intervention, which may sometimes lead to incorrect

labels. Inaccurate labeling including unlabeled and mislabeled

caves may affect the training process of the neural network and

decrease the detection accuracy of the trained network. To

address these issues, we develop an automatic and effective

method to establish the velocity models with karst caves and

create the corresponding seismic images.

Automatic velocity model generation

To generate the training and testing data sets, we first

establish a certain number of velocity models without karst

caves through an automatic modeling strategy inspired by the

data augmentation method for automatic fault segmentation in

Wu et al. (2019). As is shown in Figure 1, the velocity models are

FIGURE 1
Six representative self-generated velocity models with different geological structures. (A) represents the horizontal layeredmodels; (B) refers to
the curved layered models; (C) denotes the models featured with thick and reverse layers; (D) is the models with a high-speed anomaly. (E) and (F)
represent the cropped section from the Marmousi model.
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designed in four types, including horizontal layered models with

velocity gradually increased with depth (A), curved layered

models with velocity gradually increased with depth (B),

models featured with thick and reverse layers (C), and models

with a high-speed anomaly (D). In this workflow, we first create

the horizontal layered velocity models with different layers. The

velocity values of each layer range from 2,000 to 6,500 m/s. All

the automatically generated velocity models have the same size of

700 × 350 points and the spatial interval is 20 M. Then, we

increase the complexity by vertically shearing the velocity model.

20 velocity models randomly cropped from the Marmousi model

are added into the training data set to increase model complexity.

A total of 100 velocity models are automatically generated during

this process.

Adding diffraction points

We simulate the velocity models with karst caves by adding

different scales of diffraction points to the velocity models. The

diffraction points are designed as 1 × 1, 2 × 2, and 3 × 3 to simulate

different scales of cavities. There are twomain reasons why we chose

FIGURE 2
Six representative velocity models with karst caves, which are generated by adding diffraction points (colored squares) to the velocity models in
Figure 1.
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to use a square to simulate a cave. One is that a square is more

convenient in modeling, the other is that we analyzed the field data

to be predicted and found that the cave is relatively small on the

migration images and its shape can be approximated as a square. A

total of 150 diffraction points with different velocities and scales are

randomly added to each velocity model. The velocity values of the

caves shift from −0.3 to −0.5 times to the original velocity values.

Figure 2 shows six representative velocity models with karst caves

(colored squares). The corresponding binary labels consisting of

zeros (non-caves) and ones (caves) are shown in Figure 3.

Seismic image generation

We focus on automatically detecting the karst caves from 2D

seismic imaging profiles. The network is trained by seismic images

generated from the velocity models with cavities, and the output is a

2D distribution probability map of karst caves. Considering the

differences between the field seismic records and the simulated

seismic data derived with wave equation forward modeling, we

obtain the corresponding seismic images by convolution to generate

the input data set, which greatly reduces the computational cost

FIGURE 3
Six labels correspond to the velocity models with karst caves in Figure 2. The white spots in the binary images denote karst caves (ones) and the
elsewhere black area represents non-karst caves (zeros).

Frontiers in Earth Science frontiersin.org05

Huang et al. 10.3389/feart.2022.1043218

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1043218


compared with the traditional imaging method. We first transform

the velocity models into reflectivity models and then obtain the

seismic images by convolving the Ricker wavelet with the reflectivity

models. The peak frequency of the Ricker wavelet is randomly

chosen in a limited range we defined. We add random noise to the

convolutional results to simulate more realistic seismic images.

Figure 4 shows the final 2D seismic images obtained from the

corresponding velocity models with karst caves in Figure 2. It shows

that the seismic images derived by convolution and noise addition

are very similar to the field data. The diversity of the training samples

is increased, which is crucial to successfully train an effective karst

cave detection network.

CNN-based karst cave detection
method

In this section, we first introduce the network architecture for

karst cave detection in detail. Then, a class-balanced binary

cross-entropy loss function (Xie and Tu, 2015) is illustrated.

FIGURE 4
The corresponding seismic images generated by convolution. Random noise is added to make the seismic data more realistic.
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Network architecture

We perform karst cave identification by modifying the

original U-net architecture (Ronneberger et al., 2015), which

is proved to be effective for detecting the cavities from seismic

images. Figure 5 illustrates the detailed convolutional neural

network (CNN), in which an input 2D seismic image is fed

into the network that consists of a contracting path (left) for

extracting the cave features and an expansive path (right side) for

accurate cave detection. As is shown in Figure 5, each step in the

left contracting path includes two 3 × 3 convolutional layers,

followed by a ReLU activation and a 2 × 2 max-pooling operation

with a stride of two for downsampling. The ReLU activation can

make the output of some neurons be 0, resulting in the sparsity of

the network and alleviating the occurrence of over-fitting

problems. The max-pooling operation compresses the features

and reduces the calculation of the training and prediction.

Symmetrically, each step on the right expansive path contains

a 2 × 2 upsampling operation and two 3 × 3 convolutional layers

followed by a ReLU activation. The upsampling is conducted by

nn. convtranspose2d in the PyTorch module. In each step, the

concatenation path links the left and right paths to recover the

spatial information destroyed mainly by max-pooling and other

operations. The sigmoid activation function in the last

convolutional layer is to produce a probability map of the

output with the same size as the input. The main body of our

network is similar to that of the original U-Net architecture and a

total of 23 convolutional layers are included in this network.

Class-balanced cross-entropy loss

The loss function calculates the differences between the labels

and the predictions. For a binary segmentation problem, the

following binary cross-entropy loss function is widely adopted:

Loss � −∑
n

i�1
(yi × lnxi + (1 − yi) × ln(1 − xi)) (1)

where n is the number of pixels in the input 2D seismic image. yi

is the true binary labels (0 or 1) and xi denotes the prediction

probabilities (0<yi < 1) calculated from the sigmoid activation in

the last convolutional layer. This binary cross-entropy loss

function is suitable to the common dichotomy problems, in

which the distribution of zeros and ones in the label is

generally balanced. However, it works not well for our karst

cave detection problem, in which most samples are non-cave

samples (labeled by zeros), whereas the proportion of caves

(ones) is relatively small. With this loss function, the network

may make zero predictions everywhere to make the loss value

very small, making the network converge in the wrong direction.

To address this problem, a class-balanced binary cross-entropy

loss function (Xie and Tu, 2015) is introduced to solve the

FIGURE 5
The proposed symmetrical convolutional neural network (U-Net) for automatic karst cave recognition.
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imbalance so that the network is not trained or converged to

predict only zeros.

Loss � −∑
n

i�1
(β × yi × lnxi + (1 − β) × (1 − yi) × ln(1 − xi))

(2)

where β � Y0/Y and 1 − β � Y1/Y . Y0 and Y1 are the number of

pixels of caves and non-caves in the label data set, respectively. Y

denotes the total number of pixels in the label data set. Using the

class-balancing weight β on a per-pixel term basis, the binary

cross-entropy loss with additional trade-off parameters for biased

sampling helps the network converge in the correct direction.

FIGURE 6
Four representative samples of the training data set. The first column is the velocity models, the second column represents the corresponding
seismic images as inputs, and the third column shows the karst cave probability distribution maps as the labels.
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Training and testing

We generate a total of 100 seismic images and the

corresponding labels, then we divide the inputs into

5,000 sample patches in total using data augmentations. We

first crop a random area in these seismic images, and then

resample it to a fixed size, e.g. 64 × 64 points. We assign

4,500 and 500 samples as the training and validation data

sets, respectively. Figure 6 shows four representative samples

of the training data set. The first column denotes the velocity

models, the second column represents the corresponding seismic

images as inputs, and the third column is the karst cave

probability distribution maps as the labels. The training data

set is crucial to train an effective karst cave detection network.

During the training process, we apply data augmentation such as

flip horizontal to improve the diversity of the training data set.

For each input of the seismic image, we first rotate the seismic

profiles by 180° around the depth axis. We choose not to perform

the rotation around the center point of the seismic profiles

because it may destroy the inherent characteristic of vertical

SBRs. Then, we enlarge each training data in a certain proportion

and randomly crop the data with the size of 64 × 64 for the final

inputs to further enhance data diversity.

We focus on the identification of karst caves through image

features and the relative numerical values. To balance the differences

in numerical values between the inputs and improve the

convergence of training, we normalize the input seismic images.

Many factors such as the learning rate, batch size, and training epoch

can greatly affect the detection performance of this neural network.

During the training process, data is transmitted to the network in

batch form and the selection of batch size depends on the problem to

be solved. For data with complex features and large sample

differentiation, the larger batch size can effectively avoid the

destruction of network convergence by discrete samples but

reduce the training efficiency of the network exponentially. For

the single feature recognition problem with obvious features, the

smaller batch is a better choice. We focus on the identification of

karst caves by SBRs on seismic images via CNN, which is a simple

feature identification problem. The batch size is set to be eight to

balance training efficiency and ensure correct convergence. We take

the Adam method (Kingma and Ba, 2014) as the optimization

strategy of the network parameters and set the learning rate to be

0.0001. We train the network with 100 epochs, and all the

4,500 seismic images are processed at each epoch. Figure 7

shows the convergence curves of the training (red line) and

validation (green line) data sets. With the increase of the number

of iterations, the prediction accuracy is improved, while the

convergence curve of the validation data set decreases to a

certain extent and then stops decreasing. It indicates that the

network trained with the training data set has achieved the best

effect on the validation data set and the continuous training may

lead to overfitting. The outputs of the network are probabilities

ranging from 0 to 1, and we set the threshold to 0.5. i.e., all output

values greater than 0.5 are considered as caves, which is equivalent to

a probability of 1. Conversely, for all output values less than 0.5, after

thresholding, all are considered as non-caves.

Numerical experiments and
applications

In this section, we first test the proposed network with

synthetic data, including the seismic data with noise-free and

the seismic images with random noise. Then we apply the

network trained with only synthetics to the physical simulated

data set of integrated geological models. Finally, we perform karst

cave identification on the field data based on transfer learning.

Predictions on the synthetic data set

We first test our network with synthetic data without noise. We

select the partial BP 2.5Dmodel and the complete Marmousi model

as two basic models for generating the validation data set. We

establish two corresponding velocity models with karst caves by the

same cave simulation method. Figures 8A,B show the partial BP

2.5D model and the Marmousi model with karst caves, both of

which contain a total of 150 caves. Figures 8C,D represent the

corresponding seismic images obtained by convolution with the

Ricker wavelet. It shows that each karst cave in the velocity model

corresponds to a clear SBR on the seismic images. The energy of

SBRs produced by each cave is different since the velocity

differences between the caves and the surrounding rocks are

different. When the velocity differences between the karst caves

and surrounding rocks are small, the energy of the corresponding

SBRs is weak. Figures 8E,F are the overlaid images of the prediction

results (red spots) and the seismic images in Figures 8C,D. The

results show that the trained network can accurately identify every

FIGURE 7
The training and validation loss decrease with epochs.
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karst cave. It recognizes the SBRs with weak energy as well as the

close or adherent karst caves. It indicates that the prediction

accuracy can be 100% for the seismic images without noise.

Here we define the accuracy as the percentage of caves identified

divided by the number of total caves. Note that the training data set

includes the seismic images with randomnoise, which demonstrates

that the recognition ability of the network to the normal SBRs is not

affected by the addition of randomnoise to the training data set. The

trained network can make accurate predictions for the SBRs

embedded in the reflective layer, which are likely to be ignored

in traditional interpretation. This is reasonable because the input of

the network is a 2D array with specific values rather than figures.

Although the SBRs on the seismic images are contaminated by the

reflective layer, the numerical values prove the existence of SBRs.

The trained neural network can not only identify the karst caves but

also predict their scales and positions since the true locations and

scales of the caves are included in the label. The CNN network takes

the strong reflected energy in the upper left of the Marmousi model

that is similar to the SBRs on a single trace, as non-cave.

Considering that the karst caves on a small scale are actually

distributed sporadically, we assume the karst caves to be cubes

when generating the data set. Therefore, the trained network can

not recognize the long beaded energy clusters that extend laterally as

a cave.

FIGURE 8
The prediction results on the testing data set. (A) The partial BP 2.5Dmodel with karst caves. (B) TheMarmousi model with karst caves. (C,D) The
corresponding seismic images of (A,B). (D–F) The overlaid images, consisting of the predicted karst caves of the trained neural network (red spots)
and seismic images (C,D).
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Then we verify the capability of the proposed network with

seismic images contaminated with random noise. The two velocity

models in Figures 9A,B are the same as in Figure 8. We add random

noise to the convolution results (Figures 9C,D). Not only the SBRs of

weak energy are almost covered by the noise, but the SBR

characteristics of the strong energy are destroyed. The predicted

results in Figures 9E,F indicate that the trained network can correctly

identify most karst caves. Under the noise interference, the network

predicts the cave accuracy of BP 2.5D model and Marmousi model

with 92% and 90%, respectively. The addition of Gaussian random

noise can destroy the original distribution characteristics of the SBRs

or cover the weak SBRs, rather than forging a bead-like energy

cluster. The presence of noise can affect the imaging results and lead

to degradation of image quality. For some tiny caves or caves with

minor difference in velocity between the internal fill and the

surrounding rock, its SBR features may be covered or destroyed,

resulting in the network not being able to identify it correctly, since

SBR is the basis for the network to identify the caves. However, the

presence of noise does not lead to similar SBR or false SBR on the

imaging results. Therefore, in this case, the network will not

recognize some small caves, but it will not increase the

recognition error rate. Therefore, the trained network may fail to

recognize the karst caves but not misidentify them. A-D and E-H in

Figure 10 are the enlarged display of the yellow dotted box in Figures

8, 9, respectively. Figures 10A,B,E,F are the enlarged display of the

seismic images and prediction results of the BP 2.5D model. There

are fewer reflective layers and the distance between the adjacent

reflective layers is large. The comparison between Figures 10B,F

FIGURE 9
The prediction results on the testing data set with random noise. The symbols are the same as in Figure 8.
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show that the SBRs of the unrecognized karst caves in the noise case

are completely contaminated by the noise, which cannot be

identified by the features or the numerical values. The right four

subfigures in Figure 10 correspond to the enlarged view of the

Marmousi model, which contains many thin layers and complex

structures. The karst caves are distributed in the thin layers or faults.

Figures 10D,F indicate that the karst caves in which the SBR energy

is drowned by random noise are not recognized by the neural

network. The SBRs with weak energy close to the complex structures

are not identified by the trained network since the SBRs are damaged

by the noise. Figures 10F,H show that some SBRs whose energy is

submerged or the SBRs are destroyed by noise can still be accurately

predicted by the trained network. This is because the velocity

difference between the cave and the surrounding rock is large,

which represents a diffractionwave with strong energy in the seismic

records, and then presents as a strong energy cluster in the imaging

profiles. The trained neural network can make predictions by

searching for the energy anomalies, such as the high energy of

the SBR center and by the vertical imaging features.

Predictions on physical simulated data

Before applying the proposed method to the field data, we

first test the trained network with a physical simulated data set,

which is derived by the physical simulation of an integrated

geological model. The physical model is created by casting in

three dimensions, including an undulating overburden, karst

caves, riverway, and faults. The karst caves of different scales and

depths are simulated by cubes made of specific materials. The

generated training data set is based on the assumption that the

caves are square, which is similar to the simulated karst caves in

the physical model. Therefore, this physical simulation data is

suitable to validate this method. There is a horizontal parallel

FIGURE 10
An enlarged view of the area selected by the yellow dotted line in Figure 9 and Figure 8.

FIGURE 11
The physical simulated model, and ultrasonic data excitation
and collection system.
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target layer beneath the overlay strata containing various

geological structures. As shown in Figure 11, the red line

denotes the upper rugged surface of the overlay strata, the

purple squares represent the karst caves with different scales

and depths, and the green area is the target layer. The whole

model is placed in the tank and is supported by the gasket at the

bottom. An excitation transducer and a receiving transducer are

both placed above the water tank as a source to transmit

ultrasonic waves to the water and as a geophone to receive

the signal, respectively.

We apply the network trained with only synthetics to the

imaging profiles of the physical simulated data to verify the

capability of this method. Figure 12A is an imaging profile on the

crossline, including three karst cave clusters with different

arrangements and depths. Figure 12B shows the predicted

results overlaid with Figure 12A. It shows that the network

trained with synthetic data can make predictions on the

imaging results of physical simulated data. Although the

characteristics of the SBRs are different from the synthetic

data, and the migration noise is different from the added

Gaussian noise, the proposed network can effectively identify

caves through the energy intensity and the vertical energy

distribution of the SBRs. Figure 13A shows the migration

results of the inline, in which the karst caves with gradually

increasing burial depths are distributed on the left side, and the

scattered caves and the cross-sections of the riverway are

distributed on the right side. The prediction results

(Figure 13B) indicate that the trained network can make

accurate recognition for karst caves with different burial

depths, and the predicted cave positions are consistent with

the central energy of the SBRs. The scattered karst caves

embedded in the riverway are accurately predicted by the

neural network. The pseudo-beading features in the middle of

the model are not misidentified as karst caves.

Predictions on field data

Finally, we validate the detection ability of the trained

network with the field data. The imaging results of the field

data are complicated and differ greatly from the synthetics,

which makes the network trained with only synthetic data

unable to identify karst caves accurately. Transfer learning is

an effective way to bridge the gap between field data and

synthetics. For two domains with similar features, transfer

learning enables the neural network to transfer the detection

ability learned with massive training data to the domain that

the training data is difficult to obtain, which is shown to be

effectively applied to the field data. We select four sections

from the imaging results of the field data and recognize the

karst caves manually. Then we generate the training data

according to the four imaging profiles and the

corresponding karst cave interpretation results. Finally,

200 training samples are generated using the same data

processing method, and are fed into the network at the

101 epoch to continue training. We only update the

parameters of the last convolutional layer to complete the

transfer of the network to the field data. This allows the

network to retain the weights previously trained on the

synthetic data sets. For the main body of the network,

which is the encoder-decoder structure, it has the ability to

identify caves according to the SBR. We only train the last

convolutional layer of the network with the new training data

to transfer its cave recognition capability to the field data.

FIGURE 12
The imaging results and prediction results of the physical simulated data on the crossline section. (A) is the seismic image, and (B) is the overlaid
display of (A) and the predicted results.
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Then we apply the updated network to the migration results of

the field data.

Figures 14, 15 are the imaging results (A and D) and the

corresponding prediction results (C and F) on the crossline

and inline sections, respectively. Meanwhile, we performed

manual cave picking for these four profiles, and the results of

human identification are shown Figures 14B,E and Figures

15B,E. Although the SBRs in the seismic images of the field

data are different from the synthetics, the updated network

can effectively identify karst caves from the field data through

transfer learning. For some small SBRs with weak energy, the

updated network can also make accurate detection.

Figure 14A shows that the karst caves are densely

developed in the middle and bottom, and the imaging

features are messy due to the complex geological structure.

The corresponding predicted results in Figure 14C

demonstrate that the updated network is capable of

detecting such adjacent karst caves. Figure 14D

corresponds to the migration imaging result of another

survey line on the crossline section, in which the overall

energy of the SBRs is weak. As is shown in Figure 14F,

almost all the karst caves are accurately identified, and the

positions of the predicted karst caves are consistent with the

central energy of the SBRs. Comparing Figures 14B,C, the

results of human identification and network prediction are

basically consistent, and the network can distinguish better in

the areas where small caves are densely developed. For the

profile in Figure 14D, the number of manually identified caves

is less than that predicted by the network. For a series of

laterally arranged karst caves in the shallow area of

Figure 15A, the network can make accurate predictions and

separate them well without sticking together (Figure 15C).

Figure 15D shows that there are three distinct SBRs, and some

SBRs with weak energy, and a large SBR that extends laterally

in the shallow part. The corresponding predicted results in

Figure 15F indicate that the network can accurately predict the

karst caves from the conventional SBRs and can make effective

karst cave detection from the shallow SBRs after transfer

learning. For both profiles in Figure 15, some small caves

as well as the caves where SBR is not obvious, the trained

network has an advantage. In conclusion, the benefits of the

network is that it can detect some weak SBRs and thus predict

the caves, which may be ignored by human fast identification.

In terms of efficiency, using convolutional neural networks to

predict caves is advantageous compared to manual

recognition.

Discussion

We validate the capability of this proposed neural network

for karst cave detection through synthetic data. The network

trained with only synthetics can be applied to the testing data

set generated by convolution. The trained network can make

completely accurate predictions from the seismic images with

noise-free. For the imaging results contaminated with random

noise, the trained network can identify most of the karst caves.

A few caves are not successfully recognized because the SBRs

are destroyed by noise, which can also not be identified by

manual interpretation. We apply the trained network directly

to the imaging profiles of the physical simulation data and

achieve accurate predictions, which demonstrates its

generalization ability. This is because the seismic

recordings of the physical simulation data have a high

signal-to-noise ratio (S/Ns) and the karst caves in the

physical simulated model are all cubes of different scales,

which is consistent with the assumptions of karst caves in our

training data set generation. However, the migration imaging

results of field data are messy and noisy since the actual

geological situation is complex and the S/Ns of the shot

FIGURE 13
The imaging results and prediction results of the physical simulated data on the inline section. (A) is the seismic image, and (B) is the overlaid
display of (A) and the predicted results.
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records is low. Besides, the SBRs greatly differ from the

synthetic data set because the underground karst caves are

not cubes. By introducing transfer learning, the neural

network can be applied to the imaging profiles of the field

data and achieve accurate identification. It indicates that the

neural network can be trained with the synthetic data first,

which can be generated quickly and can be strengthened by

transfer learning before applying it to the field data. For the

reservoirs with complex fractures and karst cave development

mechanisms, the proposed network cannot make effective

identification because limited by seismic resolution, the

imaging features are messy and no SBRs are presented.

Whereas for the scattered SBRs, especially for the karst

caves under the high-speed layer or the velocity differences

with the surrounding rock are small, the energy of SBRs is

weak, our neural network is capable of making accurate

detection. This is important for interpretation because it

helps interpreters to identify karst caves that are difficult to

find or even missed.

The generated training data set is based on the assumption

that the karst caves are cubes, while the actual karst caves are

various kinds of shapes, not just cubes. For further

improvement of this method, the simulation of caves with

various shapes may improve the prediction accuracy of the

network and have a better application on the field data.

Besides, finite-difference modeling method and migration

imaging can produce more realistic data sets, which should

also improve the generalization ability of the network, if the

computational cost is acceptable. With the more accurate

simulation method, the trained network should have a

better prediction ability in the reservoirs with complex

fractures and karst cave development mechanisms.

FIGURE 14
The imaging results and prediction results of the physical simulated data on the crossline section. (A) and (D) are the seismic images. (B) and (E)
are the manually cave picking results. (C) and (F) are the overlaid display of seismic images and the predicted results.
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Conclusion

We propose an end-to-end CNN to automatically and

effectively identify karst caves directly from seismic imaging

results, in which karst cave detection is regarded as a binary

classification problem. We design a modeling method for

automatically establishing velocity models and generating

the synthetic training data through convolution. Data

augmentation such as noise addition, resampling, and

rotation are applied to the synthetic data to train an

efficient network. Although trained with only synthetics,

the neural network can effectively and accurately detect

karst caves from seismic images contaminated with random

noise, in which the SBRs of weak energy are covered by the

noise or the SBR features of the strong energy are destroyed.

The numerical example and physical simulated data

demonstrate the capability and effectiveness of the

proposed neural network for karst cave detection. The

trained network is applied to the field data through transfer

learning and makes accurate predictions.
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