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A dynamic optimization method was created to address the production

schedule issue in an open-pit coal mine while taking into account the

characteristics of the fuzzy structured element. The fuzzy mining capacities

of all “geologically optimal push-back bodies” were then examined using the

moving covemethod. One of themost crucial elements in the process of open-

pit coal mine production scheduling optimization is coal pricing. As a result, this

work also presents a dynamic optimization technique for production

scheduling that incorporates the prediction of economic time series and the

generation of dynamic economic indices. An appropriate time series model is

created to forecast the future coal price based on previous data on coal prices.

The prediction results are used in the calculation of optimal mining body

generation to dynamically obtain the optimal production scheduling model.

The Baorixile Open-pit Coal Mine in China’s Inner Mongolia Autonomous

Region is using this method. The Autoregressive Integrated Moving Average

Model ARIMA is constructed to anticipate the coal price in the future 23 years by

evaluating and processing the coal price from 2009 to 2022, and the ideal

production scheduling scheme of the mine economics is afterwards identified.

The ideal fuzzy coal mining volume, the potential production life, and the fuzzy

total net present value (NPV) of the annual production scheduling are all

provided at the same time. The optimization findings can better give

fundamental support for mine design and future production since the fuzzy

problem is accurately expressed by correct formulations.
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1 Introduction

A prominent place is held by open-pit coal mines in the

worldwide coal industry. The share of open-pit coal mining in

major coal-mining nations like the United States, Australia, Russia,

and India is more than 50%, and some countries reach more than

90% (He et al., 2006; Zheng et al., 2014;Wang et al., 2022). Themain

objective of the OPCMPS is to choose a coal and waste rock

extraction sequence that is technically viable and has the greatest

possible total economic advantages. The term “technically feasible”

refers to the OPCMPS having to adhere to a number of technical

requirements; to maximize the entire NPV realized by deposit

mining is to obtain the “greatest possible total economic

advantages” (Ramazan, 2007; Osanloo et al., 2008; Khan and

Niemann-Delius, 2018; Gilani et al., 2020; Fathollahzadeh et al.,

2021). Saving non-renewable resources, safeguarding the ecosystem

on which people depend for existence, and enhancing total

economic gains throughout the mining life cycle are all greatly

aided by the OPCMPS in the mine design (Nelson and Goldstern,

1980; Fytas, 1986; Chicoisne et al., 2012; Alipour et al., 2020).

Therefore, the optimization design of OPCMPS has been

extensively researched since the 1980s and 1990s (Caccetta and

Hill, 2003; Bienstock and Zuckerberg, 2009; Boland et al., 2009).

The production scheduling issue has been the subject of

much study effort by many professionals and academics. For

short-term production scheduling: A multidestination mixed

integer linear programming model for short-term open pit

mine production scheduling was proposed by Eivazy and

Askari-Nasab (2012). The model takes into consideration

choices regarding buffer and blending stocks, horizontally

directed mining, and ramps. It decreases the whole cost of

mining operations, including extraction, processing,

transporting, rehandling, and rehabilitation. The following

items were presented by Blom et al. (2017): A tool for

constructing multiple, diverse, short-term schedules that meet

a variety of common objectives without the need for iterative

parameter adjustment; and a novel concurrent rolling horizon-

based algorithm for the generation of multiple distinct

production schedules, each optimized concerning a series of

objectives. Using hierarchical decomposition (HDP), Blom

et al. (2018) introduced a unique hierarchical decomposition-

based approach (HDP). It also provides an experimental

comparison of this technique with a scheduling approach

based on receding horizon controls. HDP may be used to

solve any scheduling issue, not only those that arise in the

mining industry. Upadhyay and Askari-Nasab (2018) provide

a simulation-optimization framework/tool to take into account

uncertainty in mining operations for reliable short-term

production planning and proactive decision making. With the

use of a goal programming-based mine operational optimization

tool and a discrete event simulation model of mine operations,

this framework/tool creates a short-term schedule based on

uncertainty. For long-term production scheduling: Tolouei

et al. (2021a) presented hybrid models to elucidate the long-

term production scheduling problem regarding grade

uncertainty, and the results show that the models generate a

near-optimal solution within a reasonable time. The same year,

due to the deterministic assumption and grade uncertainty,

Tolouei et al. (2021b) proposed hybrid models that combine

the Lagrangian relaxation (LR) approach with meta-heuristic

techniques, the bat algorithm, and particle swarm optimization

to solve the LTPSP. Utilizing meta-heuristic techniques, the

Lagrange multipliers have been updated. The results from the

case studies show that, in comparison to other strategies, the LR-

bat algorithm hybrid approach may provide a solution that is

near to optimum in terms of cumulative NPV, average ore grade,

and computing time during a 12-years production period. Khan

(2018) uses two distinct computationally effective population-

based metaheuristic techniques, based on particle swarm

optimization (PSO) and the bat algorithm, to solve one

specific stochastic variant of the open pit mine scheduling

problem, i.e., the two stage stochastic programming model

with recourse for figuring out the long-term production

schedule of an open pit mine under the condition of grade

uncertainty. Turan and Onur (2022) improved cone extraction

sequencing to ascertain the ultimate pit limit. Following that, a

long-term production schedule was created utilizing themodified

floating cone method’s cone extraction approach and parametric

analysis strategy. This method allows for the mining of ore blocks

with the same annual production quantity throughout the course

of each cycle.

Almost all of the above studies take metal open-pit mines as

the research object. It can be found that a large number of

researchers have focused their attention on the optimization of

production scheduling in open-pit metal mines, but rarely on the

optimization of production scheduling in open-pit coal mines.

Therefore, Gu et al. (2011) proposed a dynamic sorting method

for open-pit coal mines to simultaneously optimize the final pit

and production scheduling of mines. The method can

simultaneously solve the optimal final pit, mine life, annual

recoverable amount of waste rock and coal, and mining

sequence. Its flexibility is that it can easily incorporate

constraints such as maximum strip ratio, maximum and

minimum mining capacity. However, the preparation of an

open-pit coal mine production plan should take into account

the number of equipment, the number of personnel, the width of

the security platform, and the production capacity of available

equipment; the maximization of overall economic benefits

should be based on the perspective of dynamic economics to

maximize the total NPV. In actual production, due to the

influence of equipment failure, inaccurate geological model

caused by insufficient geological exploration, landslide of

working slope, weather and other factors, the actual annual

coal mining volume and stripping volume are uncertain and

fuzzy, which will lead to the totalNPV is also fuzzy. In the process

of calculating the NPV, the coal price is often calculated with the
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average value of coal price in recent years, without considering

the variability of coal price. How to solve the reliability of

economic parameters is also the key issue in the dynamic

optimization of production scheduling. Therefore, based on

the research of literature (Gu et al., 2011), this study proposes

a dynamic optimization method of mine production scheduling

based on fuzzy mining quantity and fuzzy stripping quantity of

production plan determined by economic time series prediction

production cost and coal sales price combined with the fuzzy

structural element. The dynamic optimization of production

scheduling considering economic variability and fuzzy

stripping quantity is realized, and the fuzzy interval of

maximum NPV is obtained. At the same time, the possibility

of each value in the interval is given. The effectiveness of the

method is verified by an example.

The following sections present the framework and

application of the approach. Section 2 introduces the principle

of fuzzy structure element; Section 3 explains the dynamic

optimization method of geologically optimal mining limit and

production scheduling described in the literature (Gu et al.,

2011); Section 4 describes the principle of the price time

series prediction method; Section 5 contains all the details and

processes of the proposed method; To demonstrate the viability

of the dynamic optimization approach suggested in this work, a

real mine is used in Section 6; Section 7 presents the contribution

of this paper to the research field and the characterization of the

proposed method, and discusses the experimental results; And,

finally, the conclusions are presented in Section 8.

2 Related theory of the fuzzy
structured element

In 2002, Guo Sicong presented the fuzzy structure element

analysis approach as a solution to the metadata fuzzy operation

issue (GUO, 2002a; GUO, 2002b; GUO, 2009; Guo and Song,

2011). This article introduces the fuzzy structured element to

achieve OPCMPS dynamic optimization. The basic concept,

theorem, and properties of the fuzzy structured element are

briefly introduced in this section.

2.1 Fuzzy structured element of the fuzzy
number

2.1.1 Definition 1
Let E is a fuzzy set on the real number field R, and E(x)

represents the membership function of E, and x ∈ R. Then, E is

called a fuzzy structured element on R, if

• E(x) � 1.

• E(x) is a function of monotone increasing and right

continuous on [(−1, 0), monotone decreasing and left

continuous on (0, 1)].

• E(x) � 0, When x ∈ (−∞,−1) or x ∈ (1,+∞).

For example, E also is known as a triangle structured element,

The graph membership function is shown in Figure 1A, if E has a

membership function:

E(x) �
⎧⎪⎨⎪⎩

1 + x, −1≤x≤ 0
1 − x, 0≤x≤ 1
0, otherwise

(1)

Then E also known as a rectangle structured element, the

graph membership function is shown in Figure 1B, if E has a

membership function:

E(x) � { 1, −1≤x≤ 1
0, otherwise

(2)

2.1.2 Definition 2
E is called a canonical fuzzy structural element, if E satisfies

the following conditions:

• ∀x ∈ (−1, 1), E(x)> 0.

• E(x) is a function of strictly increasing monotonically and

continuous on [(−1, 0), strictly decreasing monotonically

and continuous on (0, 1)].

Then, E is called a symmetric fuzzy structural element. if

E(x) � E(−x).

2.1.3 Theorem 1
Let E be a fuzzy structured element and E(x) is its

membership function, the function f(x) is continuous and

monotone on [−1,1], then f(E) is a fuzzy number, and the

membership function of f(E) is E(f−1(x)), (where f−1(x) is
rotational symmetry function for variable x and y, if f is a

strictly monotone function, then f−1(x) is the inverse

function of f(x)).

FIGURE 1
Fuzzy structured element. (A) Triangle structured element;
(B)Rectangle structured element.
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2.1.4 Theorem 2
For a given canonical fuzzy structured element E and any

finite fuzzy number A
~
, there always exists a monotone bounded

function f(x) on [−1,1], having the form A � f(E), and

uA ~(x) � E(f−1(x)).

2.1.5 Character 1
Let A

~
and B

~
are fuzzy numbers generated linearly by the fuzzy

structure element E. Let A
~
� a + αE, B

~
� b + βE, then,

A
~
+B

~
� (a + b) + (α + β)E � c + γE, uA

~
+B

~
(x) � E(x−cγ ) � E(x−(a+b)α+β );

kA
~
� ka + kαE; ukA

~
(x) � E(x−kaka )

2.2 Fuzzy numbers structured element
weighted order

2.2.1 Definition 3
Let A

~
, B
~
∈ N ~c(R), A

~
� f(E), B

~
� g(E), E is a canonical

fuzzy structure element, E(x) is a membership function. f and g

are the same ordered monotonic functions of membership on

[−1, 1]. Then the relation “≤” determined by Eq. 3 is the fuzzy

numbers structured element weighted order.

A
~
≤ B

~
5F(A

~
, B
~
) � ∫1

−1
E(x)(f(x) − g(x))dx≤ 0 (3)

Let A
~
is a triangular fuzzy number, A

~
� (a; a−, a+) for short,

if the membership function of the fuzzy number A
~
is:

E(x) �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x − a + a−

a−
, a − a− ≤ x≤ a

a + a+ − x

a+
, a≤ x≤ a + a+

0 otherwise

(4)

2.2.2 Theorem 3
IfA

~
� (a; a−, a+) and B

~
� (b; b−, b+) are fuzzy numbers, then

E is the triangular fuzzy structural element, then:

A
~
≤ B

~
5a + a+ − a−

6
≤ b + b+ − b−

6
(5)

The proof of the above theorems can be found in References

(Caccetta and Hill, 2003; Bienstock and Zuckerberg, 2009;

Boland et al., 2009; Eivazy and Askari-Nasab, 2012).

3 Geologically optimum final pits and
their dynamic programming

The highest coal amount among all final pits with volume V

in the mining region where the working slope angle does not

exceed β is referred to as the geologically optimum final pit. The

final pit optimization of OPCMPS is based on the pre-designed

annual total mining volume (the sum of the coal mining volume

and the stripping volume), and it is based on the corresponding

mining parameters to determine the optimal state of the end of

every year, which is the state of maximum coal volume in the

same mining volume. So it is also possible to achieve the ideal

coal mining and stripping volumes. There are multiple states in

the mining areas that meet the annual mining volume. It is

naturally known that the maximum coal mining volume in the

total mining volume that meets the requirements should be the

optimization, that is, the OPCMPS that meets the technical

feasibility and the maximum total NPV should be found from

a series of geological optimum mining pits, and the total NPV is

related to the coal mining volume, stripping volume and

mining cost.

Therefore, according to the thought of the Reference (Gu

et al., 2011), it is assumed that M geological optimummining pits

are obtained in final pits, i.e., {p}m � {p1, p2, . . . , pm}, where p1
is the smallest pit and pm is the largest pit, each element in the

sequence may be the optimum one. As shown in Figure 2.

• Stage decision variables: in the state pi, the coal volume is qi
and the stripping volume is wi.

• State variables: s(t, i) represents the i state of the t stage,
corresponding to the kth mining body of {p}m. S (t-1, i)

represents the j state of the t-1 stage, corresponding to the

kth mining body of {p}m.
• State transition equation: let the coal content of the first k

mining bodies be qk and the stripping amount be wi.

• Objective function: the state transfer profit of each stage is:

G(t−1,j)(t,i) � (pt − ct)q(t−1,j)(t,i) − btw
(t−1,j)
(t,i) − zt(q(t−1,j)(t,i) + w(t−1,j)(t,i) )

(6)
Where pt is the unit coal price in stage t, ct is the unit coal mining

cost in stage t, bt is the unit stripping cost in stage t.

NPV refers to the sum of the annual net cash flow by the

industry to the base year present value at the beginning of the

calculation period in the economic or physical life cycle of the

project. When NPV ≥ 0, the project is feasible, and when NPV ≤
0, the project is not feasible. NPV is a relatively scientific

evaluation method of investment scheme. After the time

attribute of the ore block and the ore price at corresponding

time points are known, the NPV of the boundary scheme can be

FIGURE 2
Push-backs in a final pit.
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calculated according to the concept of NPV. According to

economic theory, the total NPV should be used as the

standard to evaluate the subsequence profit of mining bodies.

In view of this, let the maximum NPV from state 0 to state

s(t − 1, j) beNPV(t−1,j), and transfer to state s(t, i) beNPV(t,j),
then:

NPV(t,i) � max
j∈J(t,i)

⎧⎪⎨⎪⎩NPV(t−1,j) +
G(t−1.j)(t,i)
(1 + d)t

⎫⎪⎬⎪⎭ (7)

Where J(t, i) is the decision set, which represents a state set of

state s(t, i) that may be transferred from stage t-1 to the next

stage.

4 Price time series prediction method

Given the dominant position of coal in China’s energy

market, fluctuating coal prices not only determine the survival

of coal enterprises but also directly affects economic growth,

energy security and industrial raw material supply (Li and Lin,

2017; Jiang et al., 2018; Wang et al., 2020; Zhang et al., 2020; Liu,

2021). Therefore, this paper combines economic time series with

production scheduling optimization for the first time. Oskar

Morgenstern, German Realmist (Clements and Hendry, 1998),

first systematically discussed the method of economic forecasting

in 1928. Box et al. (2015) proposed the famous Auto-Regressive

Moving Average (ARMA) model in 1976, and then Harvey

(1990) and Hendry and Doornik (1994) improved it. Auto-

Regressive Integrated Moving Average (ARIMA) model is a

well-known statistical technique for predicting time series.

Numerous studies have demonstrated that the ARIMA model

is effective in predicting outcomes in linear time series analysis

with high levels of accuracy (Contreras et al., 2003; Li, 2021). Its

benefits include a straightforward model and the absence of any

additional exogenous variables. There are certain restrictions,

though. For example, the time series data must be steady or stable

after differential differentiation. In essence, it only detects linear

correlations and ignores nonlinear ones. Comparing the ARIMA

model to approaches like machine learning, its simplicity may

assure the efficiency in the dynamic optimization process of

open-pit coal mine production scheduling. The ARIMA model’s

forecast accuracy matches the necessary forecasting criteria. The

model can be expressed as ARIMA (p, d, q), where p is the

autoregressive order, d is the different order, and q is the moving

average order. When d = 0, the model can be expressed as ARMA

(p, q), namely the autoregressive moving average model; but

when p, d, and q are not equal to 0, the model is expressed as

ARIMA (p, d, and q), that is, the autoregressive summation

moving average model. ARIMA (p, q) model refers to the linear

function that the time series can be expressed as the current and

previous random error term and the previous value, and its

expression is shown in Eq. 8, where yt is the time series; θ is the

moving average coefficient; φ is a self-regression coefficient; ut is

an independent white noise sequence, and obeys the normal

distribution with a mean value of 0 and variance of σ2u.

yt � φ1yt−1 + φ2yt−2 +/ + φpyt−p + ut − (θ1ut−1 + θ2ut−2 +/

+ θput−p)
(8)

ARIMA (p, d, q) is a random sequence model with a d-order

difference of time series, its expression is shown in Eq. 9, where

Bk is a delay operator and can be expressed as yt−k/yt.

yt �
(1 − θ1B − θ2B2 − . . . − θqBq)ut

1 − φ1B − φ2B
2 − . . . − φpB

p
(9)

Time series prediction analysis mainly includes the following

steps:

Step-1. Sequence autocorrelation and partial correlation

analysis

The simple correlation between each sequence value that

constitutes a time series is called autocorrelation, and the

autocorrelation coefficient rk is calculated by Eq. 10, where n

is the sample size, k is the lag period, and �y is the arithmetic mean

of the sample data.

rk �
∑n−k
j�1
(y1 − �y)(yt+k − �y)

∑n
j�1
(yt − �y)2 (10)

Partial autocorrelation refers to the conditional correlation

between yt and yt−k under the given conditions of

yt−1, yt−2, . . . , yt−k+1 for time series yt. The partial

autocorrelation coefficient is calculated by Eq. 11. When

k=1, a=b.

φkk �
rk − ∑k−1

j�1
φk−1,jrk−j

1 − ∑k−1
j�1

φk−1,jrj

(11)

The autocorrelation and partial autocorrelation of sequences

are an important basis for judging the stability of sequences and

selecting the type and order of prediction models.

Step-2. Model-based parameter estimation

The commonly used model parameter estimation methods

include Yule-Walker correlation moment estimation, least-

squares estimation, maximum likelihood estimation and

entropy estimation methods. The first method is mainly for

the AR model, and the second method is generally for the

MA model. The mixture of the two methods can be used for

the ARMA model.
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Step-3. Predictive analysis

Time series prediction refers to the prediction of future

yt+l (l> 0) in t + l period if yt is known. Since the time t is

known, the predicted value of yt+l can be called the first step

prediction starting from the time t. It is stated that to obtain the

best prediction effect, the mean square error between the

predicted value and the true value yt+l is required to be

minimized, that is, to minimize E[yt+l − ŷl]2. The predicted

minimum variance is obtained from the conditional

expectation of yt+l, that is, ŷl(l) � E(yt+l|yt, yt−1,//).
Therefore, as long as the model of yt is established, ŷl(l) can
be derived. The reversal form of ARMA prediction is shown in

Eq. 12, that is, the predicted value ŷl(l) is the linear combination

of all the data at present and in the past, and the coefficient wj is

determined by the inverse function.

ŷt(l) � ∑∞
j�1
wjyt+1−j (12)

5 Dynamic sequencing of geological
optimum final pit based on structure
element theory

Annual actual coal mining and stripping values tend to

fluctuate around planned values because they have

uncertainty in production. Therefore, the maximum total

net present value OPCMPS should be made in the final

mining pit, and the annual coal mining and stripping

should be regarded as fuzzy numbers. Since the fuzzy

number represented by the fuzzy structured element can

avoid the complex traversal problem based on the

traditional expansion principle in the operation process, the

fuzzy structured elements are used to represent the fuzzy coal

mining volume and the fuzzy stripping volume.

Let q ~i is the fuzzy coal mining volume in state i, w ~i is the

fuzzy stripping volume in state i, and they are linearly generated

by symmetric fuzzy structured elements. Let

q ~i � ai + biE, w ~i � ci + diE, then f(x) and g(x), two same

ordered monotonic functions, can be found on [−1, 1] through

Theorem 1. Let fi(x) � ai + bix, gi(x) � ci + dix, q ~i � fi(E)
and w ~i � gi(E). So, in the process of state transferred of state

s(t − 1, j) to s(t, j) from stage t-1to stage t, the analytic

expression of each index generated by the liner structured

element is as follows:

(1) The fuzzy coal mining volume is:

q
~
(t−1,j)
(t,i) � q ~k − q ~n � fk(E) − fn(E) � (ak − an) + (bk − bn)E (13)

Its membership function is:

uq
~

(t−1,j)
(t,i)

(x) � E((fk + fτ1
n )−1(E)) � E(x + an − ak

bk + bn
) (14)

(2) The fuzzy stripping volume is:

w~
(t−1,j)
(t,i) � w ~k − w ~n � gk(E) − gn(E)

� (ck − cn) + (dk + dn)E (15)

Its membership function is:

uq
~

(t−1,j)
(t,i)

(x) � E((gk + gτ2
n )−1(E)) � E(x + cn − ck

dk + dn
) (16)

(3) The fuzzy state transferred profit is:

G
~

(t−1,j)
(t,i) � ptq

~
(t−1,j)
(t,i) − ctq

~
(t−1,j)
(t,i) − btw~

(t−1,j)
(t,i) − zt(q

~
(t−1,j)
(t,i) + w

~
(t−1,j)
(t,i) )

� (pt − ct − zt)[(ak − an) + (bk + bn)E] − (bt + zt)[(ck − cn)
+ (dk + dn)E]

(17)

Its membership function is:

u
G
~
(t−1,j)
(t,i)

(x) � E(((pt + ct + zt)(fk − fτ1
n )−1(E))

+ (bt + zt)((gk + gτ2
n )−1(E)))

� E(x + (ct + zt − pt)(ak − an) + (bt + zt)(ck + cn)(pt + ct + zt)(bk + bn) + (bt + zt)(dk + dn) )
(18)

(4) Accordingly, the fuzzy NPV transferred to the state s(t, i) is:

NP
~
V(t,i) � max

j∈J(t,i)

⎧⎪⎨⎪⎩NP
~
V(t−1,j) +

G
~
(t−1,j)
(t,i)

(1 + d)t
⎫⎪⎬⎪⎭ (19)

Its membership function is:

uNP
~
V(t,i)(x) � max

j∈J(t,i)

⎧⎪⎨⎪⎩uNP
~
V(t−1,j)(x) +

u
G
~
(t−1,j)
(t,i)

(x)
(1 + d)t

⎫⎪⎬⎪⎭ (20)

FIGURE 3
The dynamic programming scheme for push-back.
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To explain the solving process of the model, take Figure 2 as

an example for a brief illustration. It can be seen from Figure 2

that 5 geologically optimum pits are produced in the final mining

pit, and the possible state transferred mode is shown in Figure 3

(In the actual calculation, tens or hundreds or even more

optimum mining pits will be produced. Therefore, a state

transferred mode should be drawn base on the actual

situation.). Suppose that a sequence of 5 geologically optimum

push-backs within a geologically optimum pit Fi has been

generated as shown by p1 to p5 in Figure 2. A dynamic

programming scheme is set up as shown in Figure 3. The

horizontal axis of Figure 3 represents stages with each stage

being a planning period (usually a year). The number of stages is

equal to the number of push-back volumes, represented by

circles. The states of each stage are the push-backs in

ascending order of push-back volume, represented by circles.

The two states of stage 1 are push-backs p1 and p2, which means

that at the end of the first year, the working slope may be mined

(pushed) to p1 or p2. The last state (push-back) and the number of

states for a stage depend on the constraint on the maximum

yearly production capacity.

If the fuzzy NPV of path { p0→p1→p3→Fi} in Figure 3 is the

largest, the order of states on the path represents the optimal

OPCMPS, and it can be seen that:

• The mining life is 3 years (the end of the third year push to

the final mining final pit Fi.)

• State sequence. Push-back to state p1 at the end of the

first year; Push-back to state p3 at the end of the second

year; And push-back to state p5 at the end of the

third year.

• Through Eq. 13, it can be obtained that the fuzzy coal

mining volume at the end of the 1st, 2nd, and 3rd year

are q ~1, q ~3 − q ~1 and q ~5 − q ~3 respectively. It can be

obtained through Eq. 15 that the fuzzy stripping

volume at the end of the 1st, 2nd, and 3rd year are

w ~1, w ~3 − w ~1 and w ~5 − w ~3 respectively.

Similarly, the fuzzy profit and the fuzzy NPV of state

transferred can be obtained by using Eqs. 17, 19

respectively. Finally, the flow chart of the dynamic

optimization of OPCMPS with the proposed method

is shown in Figure 4.

FIGURE 4
Dynamic optimization of OPCMPS flow.
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FIGURE 5
The location of the Baorixile open-pit mine.

FIGURE 6
The mining area division of the Baorixile open-pit coal mine.
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6 Application of the proposed
optimization approach to a large
open-pit coal mine

6.1 Case background

The Chenbaerhuqi coal field in Hulunbuir City, Inner

Mongolia Autonomous Region of China, is where the

Baorixile open-pit mine is situated (as shown in Figure 5).

The mine’s external perimeter spans a 50.72 km2 region,

measuring 5.86 km in width from north to south and

10.98 km in length from east to west. The mining adopts

semi-continuous technology of single bucket

excavator—dump truck—semi-fixed crushing station—belt

conveyor, the stripping adopts discontinuous technology of

FIGURE 7
Coal price (2009Q1-2022Q2).

FIGURE 8
Stationarity test of the coal price time series.

TABLE 1 Autocorrelation and Partial Correlation coefficient of the coal prices series.

Number Autocorrelation Partial correlation Prob Number Autocorrelation Partial correlation Prob

1 0.870 0.870 0.000 13 0.249 −0.014 0.000

2 0.774 0.072 0.000 14 0.203 −0.055 0.000

3 0.717 0.12 0.000 15 0.153 −0.051 0.000

4 0.655 −0.011 0.000 16 0.109 −0.024 0.000

5 0.609 0.058 0.000 17 0.075 0.002 0.000

6 0.555 −0.046 0.000 18 0.031 −0.07 0.000

7 0.508 0.018 0.000 19 −0.010 −0.028 0.000

8 0.466 −0.014 0.000 20 −0.048 −0.029 0.000

9 0.433 0.037 0.000 21 −0.081 −0.014 0.000

10 0.387 −0.068 0.000 22 −0.115 −0.045 0.000

11 0.337 −0.038 0.000 23 −0.149 −0.027 0.000

12 0.291 −0.037 0.000 24 −0.184 −0.046 0.000
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single bucket excavator—dump truck—bulldozer. The whole
open-pit mine is split into 5 mining regions based on careful
consideration of the immediate economic advantages, long-

term development of the open-pit mine, and the relationship
between production continuity across mining areas. Figure 6
shows each mining area’s location and mining order. There
are a total of five near-horizontal coal seams that can be
mined. The coal volume still recoverable as of 31 December
2021, is 860.66 Mt. Baorixile open-pit coal mine has
completed the mining task of the second mining area, and
is making a production transition to the third mining area and
the fourth mining area. However, during the turning period of
the mining area, it is faced with the problem of difficult
production connections. It is necessary to carry out a
reasonable life cycle OPCMPS task based on the current
situation.

6.2 Time series prediction of coal price
parameters

ARIMA model refers to the model established by

transforming non-stationary time series into stationary time

series and then regressing the lag value of a dependent

variable with the current value and lag value of the error

term. The actual historical coal sales prices of the mine from

the first quarter of 2009 to the second quarter of 2022 were

gathered as the basic data for the time series prediction analysis of

coal sales prices through coordination and communication with

the staff of the Zhanihe Open-pit Coal Mine’s production

technology department. The coal price sequence is shown in

Figure 7, and determines whether the sequence is stable.

It can be seen from Figure 7 that the change in coal price

fluctuates seasonally, and its trend is rising. The time series of

prices does not have the characteristics of zero mean, and its

variance is constantly changing, so it can be preliminarily

determined that the time series of coal price is unstable.

In Figure 8; Table 1, it can be found that the decline rate of the

autocorrelation coefficient is very slow. The autocorrelation

coefficient before the 13 period is always outside the

confidence interval. The partial autocorrelation coefficient

decreases greatly after the first lag period and is not

statistically significant. The autocorrelation coefficient value

CA and the partial autocorrelation coefficient value CPA do

not appear truncation and tailing, which further illustrates that

the coal price time series is non-stationary.

The differential processing of coal price time series is to

eliminate the fluctuation and the dependence on time, so that

the data tends to be stable. The unit root test results after

differential processing are shown in Tables 2, 3. After the first-

order difference, the unit root test is performed, and the results

show that there is a unit root, and p>0.05. The first-order

difference sequence is unstable. After the second-order

difference, the unit root test is performed, and the results

showed no unit root and the p<0.05. After the second-order

difference sequence is stable. Therefore, I = 2 in the ARIMAmodel.

TABLE 2 The unit root test of first-order difference sequence.

Null hypothesis: D (PRICE) has a unit root

Exogenous: Constant

Lag length: 3 (automatic—based on SIC, maxlag=10)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic 1.065629 0.9967

Test critical values 1% level −3.571310

5% level −2.922449

10% level −2.599224

Prob.*, indicates emphasis. The size of the Prob.* value reflects the stability of the data

series.

TABLE 3 The unit root test of second-order difference sequence.

Null hypothesis: D (PRICE,2) has a unit root

Exogenous: constant

Lag length: 2 (automatic—based on SIC, maxlag=10)

t-Statistic Prob.*

Augmented dickey-fuller test statistic −9.583848 0.0000

Tesactt critical values 1% level −3.571310

5% level −2.922449

10% level −2.599224

Prob.*, indicates emphasis. The size of the Prob.* value reflects the stability of the data

series.

FIGURE 9
Second-order difference results of coal price time series.
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Figure 9 shows that the second-order difference sequence is a

stationary sequence with zero mean and variance. In Figure 10;

Table 4, it can be seen that the image of the partial autocorrelation

coefficient starts from p = 4, suddenly approaches the centre line,

and hovers on both sides of the zero value. Therefore, it can be

preliminarily concluded that the p is obtained on the (He et al.,

2006;Wang et al., 2022). Similarly, through the change trend of the

autocorrelation coefficient, it can be basically determined that the q

is obtained on the (Ramazan, 2007; Wang et al., 2022), which can

constitute ARIMA (1,2,1), ARIMA (1,2,2), ARIMA (1,2,3),

ARIMA (1,2,4), ARIMA (2,2,1), ARIMA (2,2,2), ARIMA

(2,2,3), ARIMA (2,2,4), ARIMA (3,2,1), ARIMA (3,2,2),

ARIMA (3,2,3), ARIMA (3,2,4) these 12 models. Then by

comparing the AIC, SC, MAPE and RMSE of each

ARIMA model, an optimal coal price forecasting model is

determined.

Table 5 shows that the ARIMA (2, 2, 1) model has the largest

corrected Adjusted-R2 and the smallest AIC, SC,MAPE, and RMSE.

Therefore, ARIMA (2, 2, 1) is tentatively used as the prediction

model of coal price. However, coal price has some seasonal

fluctuations, the difference needs to lag 4 to eliminate the impact

of seasonal fluctuations. The calculated results are shown in Table 2.

Table 6 shows that the ARIMA (1, 2, 4) model has the highest

corrected Adjusted-R2 and the lowest AIC, SC, MAPE, and

RMSE values across all models. Therefore, ARIMA (1, 2, 4) is

used as the prediction model of coal price.

Figure 11 shows that the effect of using this model to predict the

coal price is better, but the effect of short-term prediction will be

better. The ARIMA model only considers the characteristics of the

coal price time series itself, without considering the influence of

some uncertain factors. With the extension of the test time, the

prediction error of the model will also increase. Therefore, with the

FIGURE 10
Stationarity test of the Second-order difference results.

TABLE 4 Autocorrelation and Partial Correlation coefficient of the Second-order difference results.

Number Autocorrelation Partial correlation Prob Number Autocorrelation Partial correlation Prob

1 −0.401 −0.401 0.003 13 −0.162 −0.093 0.000

2 −0.174 −0.399 0.005 14 −0.124 −0.014 0.000

3 −0.071 −0.467 0.013 15 0.003 −0.110 0.000

4 0.432 0.140 0.000 16 0.188 −0.151 0.000

5 −0.122 0.232 0.000 17 0.005 0.123 0.000

6 −0.252 −0.002 0.000 18 −0.255 −0.034 0.000

7 0.027 −0.100 0.000 19 0.160 0.130 0.000

8 0.287 0.016 0.000 20 0.055 0.005 0.000

9 −0.047 0.115 0.000 21 0.035 0.037 0.000

10 −0.282 −0.041 0.000 22 −0.300 −0.168 0.000

11 0.086 −0.050 0.000 23 0.250 0.008 0.000

12 0.253 0.076 0.000 24 −0.043 −0.097 0.000
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TABLE 5 The parameter comparison of each model’s test index.

Index ARIMA
(1,2,1)

ARIMA
(1,2,2)

ARIMA
(1,2,3)

ARIMA
(1,2,4)

ARIMA
(2,2,1)

ARIMA
(2,2,2)

ARIMA
(2,2,3)

ARIMA
(2,2,4)

ARIMA
(3,2,1)

ARIMA
(3,2,2)

ARIMA
(3,2,3)

ARIMA
(3,2,4)

Adjusted-
R2

0.351697 0.352447 0.139293 0.311184 0.394786 0.279782 0.066860 0.151594 0.356335 0.001429 0.094755 0.151327

AIC 7.514608 7.513726 7.784217 7.573689 7.449272 7.696297 7.869510 7.776217 7.507592 7.928901 7.898818 7.779057

SC 7.627180 7.626297 7.896789 7.686260 7.561843 7.808869 7.982082 7.888789 7.620164 8.041473 8.011390 7.891629

MAPE 6.576058 6.573973 8.285324 6.847210 5.991413 6.680915 7.673681 7.285152 6.719789 8.376965 8.502531 7.482382

RMSE 9.717137 9.713131 11.16802 10.01724 9.454456 10.66723 11.68773 11.14531 9.854205 12.19098 11.98773 11.26219

Prob.*, indicates emphasis. The size of the Prob.* value reflects the stability of the data series.

TABLE 6 The parameter comparison of each model’s test index (eliminate seasonal fluctuations).

Index ARIMA
(1, 2, 1)

ARIMA
(1, 2, 2)

ARIMA
(1, 2, 3)

ARIMA
(1, 2, 4)

ARIMA
(2, 2, 1)

ARIMA
(2, 2, 2)

ARIMA
(2, 2, 3)

ARIMA
(2, 2, 4)

ARIMA
(3, 2, 1)

ARIMA
(3, 2, 2)

ARIMA
(3, 2, 3)

ARIMA
(3, 2, 4)

Adjusted-
R2

0.282660 0.302913 0.224594 0.401740 0.282594 0.144170 0.013991 0.207111 0.292092 0.123519 −0.015869 0.149244

AIC 7.505304 7.487031 7.574546 7.373051 7.505778 7.703474 7.814235 7.635996 7.493233 7.721904 7.841370 7.692927

SC 7.622254 7.603981 7.691496 7.490001 7.622728 7.820424 7.931185 7.752946 7.610183 7.838854 7.958320 7.809877

MAPE 5.495101 5.439750 5.682568 5.072340 5.430309 6.579909 6.998548 6.020232 5.687182 6.844513 7.251816 6.197987

RMSE 9.637975 9.514886 10.00691 8.884206 9.725911 10.72635 11.41146 10.29992 9.765165 10.89394 11.70910 10.75731

Prob.*, indicates emphasis. The size of the Prob.* value reflects the stability of the data series.
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FIGURE 11
The result of the coal prediction model based on ARIMA.

FIGURE 12
The result of coal price forecast in the next 23 years based on ARIMA.

TABLE 7 The optimization results of OPCMPS.

Year/a Fuzzy mining volume×104/t Fuzzy stripping volume×104/m3 Fuzzy NPV×104/yuan Mining body sequence

1 2419.83+0.43E 11784.57+0.85E 14885.487+0.4579E 1

2 2511.23+0.74E 13054.28+1.55E 15774.121+0.6547E 15

3 3482.69+1.87E 12977.65+2.88E 19124.855+0.8741E 24

— — — — —

21 3518.47+3.76E 12984.22+4.56E 24154.787+1.7789E 98

21 3520.45+3.97E 11045.54+4.79E 24277.365+1.8745E 110

23 1807.32+4.19E 4526.32+5.18E 10485.354+2.0078E 128

Fuzzy total NPV ×104/yuan 418453.714+31.1163
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growth of the year, the sample data of coal price prediction can be

dynamically updated every year to achieve more accurate prediction

results of future coal prices. This model is used to predict the coal

price in the next 23 years. The result of coal price forecast based on

ARIMA (1, 2, 4) is shown in the red curve Figure 12.

6.3 Application of proposed optimization
approach

In the preparation of the OPCMPS process, according to the

actual situation of the mine, set the mining body of coal

increment of about 2.3 million tons, the recovery rate of 95%,

stop working slope angle of 8°, and the annual production

capacity of about 25 million tons. The production cost of coal

mining is 96.27 yuan/t, the stripping cost is 7 yuan/m3, the price

of raw coal is 220.25 yuan/t, the cost rise rate is 3%, the price rise

rate is 5%, and the annual discount rate is 7.5%. The coal price

predicted by ARIMA is combined with the dynamic sorting of

the geological optimal mining body based on the structural

element theory proposed in this paper.

AutoCAD is a popular computer-aided design (CAD) and

drawing software program. By autodesk, who also developed and

sold it. The AutoCAD application is a great and well-liked tool that

creates any sort of schemes and drawings with high precision and

quality. Additionally, it aids in fully recognizing the creative potential

of programusers. In order to automate their designwork,millions of

professionals, scientists, engineers, and students now often utilize the

AutoCAD system (Cao and Miyamoto, 2003). Based on AutoCAD,

the secondary development is carried out to establish a three-

dimensional deposit block model, and a total of 128 geological

optimal mining bodies are generated.

Taking E as a triangular structure element, Its membership

function is E(x) � { 1 + x,−1≤ x≤ 0
1 − x, 0≤x≤ 1 , The fuzzy mining quantity

and fuzzy stripping quantity of 128 geological optimalmining bodies
can be expressed by the triangular fuzzy number. Taking No.
1 geologically optimal mining body as an example, let
f(x) � 2419.83 + 0.18x, g1(x) � 2419.83 + 0.18x, then
q1(x) � f1(E) � 2419.83 + 0.18E, w1 � g1(E) � 11784.57+
0.85E. Others can be analogized. Let pt � 0.022(1 + 0.05)t,
ct � 0.0096(1 + 0.03)t, bt � 0.0007(1 + 0.03)t, d � 0.0075,
zt � 0.001 + 0.001ht, ht is calculated according to the specific
situation of the mining body. Therefore, according to the fuzzy
coal mining amount, fuzzy stripping amount and set technical
parameters, the software is used to perform fuzzy dynamic
sorting on the sequence composed of 128 geological optimal
mining bodies. The optimization results of OPCMPS are shown
in Table 3.

Table 7 shows that when the sequence of geologically

optimal mining body is {p1 → p15 → p24→ . . .→ p98 → p110
→ p128}, the maximum fuzzy total NPV is

(418453.714+31.1163E) ×104 yuan. It can be seen that the

optimal mining life is 23 years. The annual amount of fuzzy

coal mining and stripping can be determined in Table 3. The

membership degree of fuzzy total NPV is:

uNP
~
V(32,128)(x) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + x − 418453.714

31.1163
; 418422.5977≤ x≤ 418453.714

1 − x − 418453.714
31.1163

; 418453.714≤x≤ 418484.8303

In addition to the first and 2nd years when the mining field is

in the turning period of the mining area and the last year when

the mining task is completed, the annual fuzzy coal mining

volume fluctuates greatly. Others are 35 million tons.

7 Discussions

There have been many studies on production scheduling in

the field of open-pit metal mines, but there have been very few

studies in this area for open-pit coal mines with stratified ore

bodies. From the viewpoint of fuzzy economics, this study

suggests a novel mathematical model of the total NPV of

opencast coal mine production scheduling, while the majority

of other studies on this topic have been built by taking into

account various limitations. Additionally, this study offers a

method for projecting coal prices based on economic time

series, and it dynamically executes the production scheduling

optimization design from a dynamic economics perspective to

account for the effects of price fluctuations on the total NPV. The

novel approach that has been suggested would undoubtedly aid

in the design and construction of open-pit coal mines and offer

fresh perspectives to experts working in this area. Additionally,

the production schedule optimization technique suggested in this

study can be used as a guide for open-pit metal miners.

The size of the sample data set will have an impact on the forecast

accuracy, which is one drawback of the price prediction approach. This

paper’s case study research findings demonstrate that the proposed

production scheduling model may simultaneously achieve the best

production capacity, excavation order, and production life. But because

the mine only began selling coal in 2009, there is only a limited sample

data set that can be used to anticipate coal prices. However, there is a

technique for optimization and adjustment, which allows for the

correction of the current year’s coal price and the dynamic

updating and adjusting of the future production schedule

throughout the development and building of mines.

8 Conclusion

ThetraditionaloptimizationmethodofOPCMPSadoptsaccurate

calculation,whichsomewhat ignores theminingprocess’suncertainty.

Basedontheproductionschedulingoptimizationmethodproposed in

Reference (Gu et al., 2011), this paper introduces the fuzzy structural
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element theory to establish the fuzzy optimizationmodel of fuzzy coal

mining volume, fuzzy stripping volume and fuzzy totalNPV and their

respective membership function expressions. At the same time,

considering the volatility of coal prices over time, the ARIMA

prediction model is used for prediction. Through the analysis of

coal prices from 2009 to 2022, the prediction model was

determined as ARIMA (1, 2, 4), and the model was applied to

predict coal prices in the next 23 years. The optimal mining

sequence of the optimal geological body and the fuzzy coal mining

volume, fuzzy stripping volume and fuzzy NPV of each optimal

geological body is obtained by combining the constructed fuzzy

optimization model, the predicted coal price and the moving cone

exclusion method. The maximum total NPV is (418453.714 +

31.1163 E) × 104 yuan, and the optimal mining period of the mine

is 23 years.
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