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In practical engineering, slopes subjected to local loads, like footings of

buildings, are common. This paper aims to give an insight into the effect of

seismic force on the stability of locally loaded slopes. Numerical methods can

be used to study this problem, but they require much computational time.

Contrarily, limit analysis method is an approach to perform slope stability

analysis with high computational efficiency. Thus, an accurate approach in

mechanical points is proposed for this problem based on limit analysis method

herein. In the framework of limit analysis, existing research about this problem

used a kinematically translational velocity field. However, the velocity field of the

locally loaded slope at failure is proved to be rotational possibly. Thus, to fill this

gap, a 3D rotational velocity field is employed herein to obtain limit loads on the

slope top, which improves the existing upper-bound solutions obtained by

using the translational velocity field. The particle swarm optimization algorithm

and the Nelder-Mead simplex algorithm are employed to search the global

minimumof the upper-bound estimation of the limit load. Parametric analysis is

performed and it shows that the limit load increases with the increase of a/H or

the internal friction angle φ but decreases as the slope angle β or the length-to-

width ratio (L/t) of the local load increases. Furthermore, the limit load is found

to decrease with the increase of the seismic coefficient kh and it is proportional

to the seismic coefficient.
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Introduction

It is common to construct infrastructures, such as a building or a road, on the top of

slopes in engineering practice. In this circumstance, they are prone to collapse when the

stability of the slope is threatened. In some regions of the world, there are frequent seismic

activities that have great adverse effects on slope stability. When an earthquake occurs, the

buildings on the top surface of slopes are likely to collapse, resulting in huge losses (Song

et al., 2021a; Song et al., 2021b; Song et al., 2021c; Song et al., 2021d). Thus, it is important

to study the effect of seismic activities on the stability of locally loaded slopes.

Many papers have been devoted to the stability analysis of locally loaded slopes using

various approaches. The slice method of limit equilibrium was used to study this problem
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by many scholars (Bishop, 1955; Morgenstern and Price, 1965;

Spencer, 1967; Acevedo et al., 2021; Jiang et al., 2021). Using the

limit equilibrium method, Azzouz and Baligh (1983) conducted

circular arc limit equilibrium analysis and gave a set of charts for

clay slopes bearing strip and square footings. The limit

equilibrium method was also employed to provide solutions

and design charts for this problem by many other scholars

(Meyerhof, 1957; Saran et al., 1989). Recently, the finite

element method has been widely adopted. Georgiadis (2010)

employed the finite element method to investigate the undrained

bearing capacity of strip footings on the top surface of slopes. The

finite element method combined with a linear programming was

used to compute the rigorous upper bounds of the collapse load

by Sloan (1989). Leshchinsky (2015) used the discontinuity

layout optimization (DLO) approach to investigate the bearing

capacity of a footing on the crest of a c-φ slope. The DLO

approach was also employed by Zhou et al. (2018) to study the

bearing capacity and failure mechanism of locally loaded slopes.

However, the limit equilibrium method requires hypotheses

about the inter-slice force, which may reduce the theoretical

rigor, and the numerical method requires much computational

time, which is of low efficiency. Compared with the methods

introduced above, limit analysis method is equipped with a

rigorous mechanics basis and high calculation efficiency.

Therefore, it is studied by many scholars in recent years. The

upper bound theorem of limit analysis states that an upper bound

estimation of the force which drives the slope to collapse can be

obtained by equating the total external work rate to the internal

energy dissipation rate computed in a kinematically admissible

velocity field (He et al., 2012; Khezri et al., 2016; Qin et al., 2020;

Xiao et al., 2020; Zhang et al., 2022). There are many

kinematically admissible 3D velocity fields that can be used in

the upper bound analysis of slope stability, for instance, the

cylindrical and spherical mechanism (Baligh and Azzouz, 1975),

the 3Dmulti-blocks failure mechanism (Michalowski, 1989), and

the 3D rotational failure mechanism (Michalowski and Drescher,

2009; Pan et al., 2017). Besides these mechanisms above, the

mechanical mechanism at failure of granular materials, like soils,

can also be derived from the view of the soil particle

rearrangement (Bai et al., 2019; Bai et al., 2022). For example,

based on the soil particle rearrangement, Bai et al. (2021)

proposed a new coupled thermo-hydro-mechanical

mechanism. Michalowski (1989) performed a 3D stability

analysis of locally loaded slopes and provided a set of upper-

bound solution using the 3D translational multi-blocks failure

mechanism. However, this issue has never been studied using a

3D rotational failure mechanism since this scenario may concern

a rotational velocity field of slope at failure. Nevertheless, the

recent numerical investigation performed by Li et al. (2019)

showed that, at failure, the velocity field of the locally loaded

slope is rotational rather than translational, and the velocity field

given by Li et al. (2019) is reprinted in Figure 1. Therefore, it is

necessary to perform a 3D seismic stability analysis of locally

loaded slopes based on a 3D rotational velocity field, which is the

gap of the present research. In the framework of limit analysis,

the widely used 3D rotational velocity field is the 3D rotational

failure mechanism proposed by Michalowski and Drescher

(2009). Thus, the 3D rotational failure mechanism is

employed herein to perform a stability analysis of slopes

subjected to local loads on the top surface.

In the presented work, the 3D stability of slopes,

subjected to seismic forces and local loads on the top

surface, is investigated. The upper bound theorem of limit

analysis is employed to calculate the critical limit load using

the 3D rotational failure mechanism. To obtain the global

minimum, the particle swarm optimization algorithm in

combination with the Nelder-Mead simplex algorithm is

adopted in searching for the least upper-bound solution.

This paper extends the work of stability analysis of slopes

subjected to local loads based on the 3D translational failure

mechanism by Michalowski (1989) to that based on 3D

rotational failure mechanism. To validate the present

approach, the limit loads computed from the proposed

approach are compared with the solutions of Michalowski

FIGURE 1
The rotational velocity field of the slope at failure [reprinted
from Li et al. (2019)].

FIGURE 2
The 3D slope with a local load on the top surface.
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(1989) and Zhou et al. (2018). A parametric analysis is

provided at the end of this paper.

Problem description

As shown in Figure 2, a slope subjected to vertical local loads

on the top surface is considered. The angle of the slope is denoted

by β and the height byH. The soil in the slope body is regarded as

a homogeneous and isotropic material, obeying the Mohr-

Coulomb yield criterion. The cohesion and internal friction

angle of the soil are denoted by c and φ, respectively. The

vertical local load, a cause of slope failure, is uniformly

distributed on the top of the slope. The width and the length

of the locally loading region are denoted by t and L, respectively,

and the distance between the local load and the crest of the slope

is represented by a. To study the seismic stability of the slope,

earthquake forces are considered in this paper and they are

described by a seismic coefficient kh. The upper bound theorem

of limit analysis is employed to calculate the upper bound of the

limit load causing slope collapse. This issue was already studied

by Michalowski (1989) using the 3D multi-block failure

mechanism as a kinematically admissible velocity field in the

absence of seismic forces. This paper extends the work of

Michalowski (1989) by applying the 3D rotational failure

mechanism as a kinematically admissible velocity field. The

internal energy is only dissipated along the sliding surface,

while the work rate of external forces includes those of the

weight and the local load on the top surface. According to the

upper bound theory of limit analysis, the upper bound of the

limit local load can be found by equating the internal energy

dissipation rate to the total external work rate.

In this problem, with the increase of a/t, the failure pattern

will change from toe failure and face failure to Prandtl-type

failure in which the failure surface extends to the bottom surface

of slopes. The Prandtl-type failure cannot be studied by the 3D

rotational failure mechanism. Therefore, only the toe failure and

the face failure are in the consideration of this work, which is the

limitation of the proposed method.

Upper bound seismic stability analysis
of locally loaded slopes

Description of 3D rotational failure
mechanism

The 3D rotational failure mechanism was firstly proposed by

Michalowski and Drescher (2009) to study the stability of slopes.

It is a classical 3D failure mechanism for slope stability analysis

and inspired many subsequent researches (Gao et al., 2013; Yang

and Pan, 2015). The geometry of the 3D rotational failure

FIGURE 3
3D rotational failure mechanism of slopes.

Frontiers in Earth Science frontiersin.org03

Ji and Wu 10.3389/feart.2022.1039398

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1039398


mechanism is sketched in Figure 3. It can be seen from Figure 3

that the shape of the 3D rotational failure mechanism is a

curvilinear cone with an apex angle, a portion of which

intersects the slope body (the sliding part). The symmetry

plane of the failure mechanism contains two log-spirals whose

equations are as follows

r � r0e
(θ−θ0) tanφ, (1)

r′ � r′0e
−(θ−θ0) tanφ, (2)

where OA= r0, OA’= r0′, and θ0 is the angle between OA and the

horizontal direction. In this work, both the toe failure and the

face failure of slopes are in consideration. Thus the height of the

failure mechanism, denoted byH′, should not be bigger than the

slope height, H. The distance between the rotation center O and

the center axis of cone is denoted by rm. The cross-section of the

cone is a circle whose radius is denoted by R. The magnitudes of

rm and R change at different values of θ and the expressions of

them are

rm � (r + r′)
2

� r0f1(θ), (3)

R � (r − r′)
2

� r0f2(θ), (4)

where the expressions forf1 andf2 are reported in the Appendix

A of this paper.

For the sake of the consistency with engineering practice, the

3D rotational failure mechanism is modified by splitting the

halves of the 3D sliding body and placing a plane-strain insert

between these two-halves, as shown in Figure 4. The width of the

plane insert is denoted by b. It should be noted that the sum of the

width of the two curved halves and the width of the plane insert,

b, cannot exceed the slope width B. In addition, the width of the

plane insert b is optimized together with the geometrical

parameters determining the rotation center in the search for

the best failure surface. In Figure 4, the local load q is symmetric

about the symmetry plane of the failure mechanism. It should be

noticed that the minimum width of the failure mechanism at the

top surface of the slope, i.e., b, should not be smaller than the

length of the local load, i.e., L, and, in other words, the constraint

condition of b/H≥ L/H should be enforced in the search of the

optimal failure surface. The external work rate and internal

energy dissipation rate of the two curved halves are calculated

by complicated integrals, while those of the plane insert can be

obtained by the product of b and those of the 2D situation.

Calculations of external work rate

To perform work rate calculations of external forces, a local

coordinate system x-o-y is set up in the circular cross-section, as

shown in Figure 3 and the original point o is the center of the

circular cross-section. In this paper, the considered external

forces include the gravity force, the seismic force and the

vertical local load q on the top surface.

The work rate of gravity force includes two parts. The first

one is the gravity force work rate done by the plane insert of the

3D rotational failure mechanism and the other one is that done

by the two curved halves at the two ends of the failure

mechanism. By integration, the expression of the gravity force

work rate for the two curved halves is (Michalowski and

Drescher, 2009):

Wγ−3D � 2ωγ[∫θB

θ0

∫x1*

0
∫y*

a0

(rm + y)2 cos θdxdydθ + ∫θh

θB

∫x2*

0

× ∫y*

d0

(rm + y)2 cos θdxdydθ],
(5)

where ω is the angular velocity, and γ is the unit weight of the soil.

x1
* �

						
R2 − a20

√
, x2

* �
						
R2 − d20

√
, y* � 						

R2 − x2
√

, a0 and d0 are

calculated from the following equations,

a0 � sin θ0
sin θ

r0 − rm � r0f3(θ), (6)

d0 � sin(θh + β)
sin(θ + β) r0e(θh−θ0) tanφ − rm � r0f4(θ). (7)

Angle θB is found from the geometrical relations

θB � arctan
sin θ0

cos θ0 − κ
, (8)

κ � sin(θh − θ0)
sin θh

− e(θh−θ0) tanφ sin θh − sin θ0
sin θh sin β

sin(θh + β). (9)

After the integration about y and x which is calculated

analytically, and about θ that is performed numerically, Eq. 5

is converted to

Wγ−3D � γωr40g1(θ0, θh, r0′/r0). (10)

FIGURE 4
The modified 3D rotational failure mechanism with a plane
insert.
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The work rate of soil weight for the plane insert can be calculated

by taking the product of b and those of 2D situation. Its

expression is
Wγ−insert � γωr40g2(θ0, θh, b/H). (11)

The local load on the top of the slope is regarded as surface

force whose work rate is obtained by performing integral over the

intersecting region of the top of failure mechanism and the area

where the load is distributed. For instance, when the failure

mechanism gets through the right end point of the local load, as

shown in Figure 3, the expression of the work rate of the local

load is

Wq � ωqLr20g3(θ0, θh, r0′/r0, H′). (12)

The angle θt, the integral upper limit in the expression ofWq,

is found from the geometrical relations

θt � arctan
r0 sin θ0

r0 cos θ0 − t
, (13)

where r0 is equal to H′/(H′/r0), thus H′ is involved in the

expression of Wq. The expression of H′/r0 is given in the

Appendix A.

In this paper, the seismic force is regarded as a static inertia

force and characterized by a coefficient kh, which is in the range

of 0 and 0.2. Similar to the calculation of gravity force work rate,

the seismic force work rate is also divided into two parts. The

seismic force work rate for the two curved halves is,

Wkh−3D � 2khωγ[∫θB

θ0

∫x1*

0
∫y*

a0

(rm + y)2 sin θdxdydθ + ∫θh

θB

∫x2*

0

× ∫y*

d0

(rm + y)2 sin θdxdydθ].
(14)

After performing integration about y and x analytically, then

Eq. 14 can be written as,

Wkh−3D � γωkhr
4
0g4(θ0, θh, r0′

r0
), (15)

where the expressions for g4(θ0, θh, r0′/r0) is reported in the

Appendix A of this paper.

The seismic force work rate of the plane insert can be

expressed as,

Wkh−insert � γωkhr
4
0g5(θ0, θh, b

H
), (16)

where the expressions for g5(θ0, θh, b/H) is reported in the

Appendix A of this paper.

W � Wγ−3D +Wγ−insert +Wq +Wkh−3D +Wkh−insert, (17)

Thus the total external work rate can be expressed as.

Calculations of internal energy dissipation
rate

The calculations of internal energy dissipation rate can be

converted to integrals over the face of the slope and the top

surface of the slope, which are denoted by DBC and DAB

respectively. The expressions of the internal energy dissipation

rate of the two curved halves is

DAB−3D � −2ωc cotφ∫θB

θ0

∫x1*

0

sin 2θ0
sin 3θ

cos θr20dxdθ, (18)

DBC−3D � −2ωc cotφ∫θh

θB

× ∫x2*

0

sin 2(θh + β)
sin 3(θ + β) cos(θ + β)r20e2(θh−θ0) tanφdxdθ.

(19)
Summing DAB−3D and DBC−3D leads to the internal energy

dissipation rate of the two curved halves, i.e.

D3D � DAB−3D +DBC−3D. (20)

By substituting Eqs 15, 16 into Eq. 17, then Eq. 17 can be

written as

D3D � ωc cotφr30g6(θ0, θh, r0′/r0). (21)

Similarly, the internal energy dissipation rate of the plane

insert can be derived as follows,

DAB−insert � −2ωc cotφ∫θB

θ0

∫b/2

0

sin 2θ0
sin 3θ

cos θr20dxdθ, (22)

DBC−insert � −2ωc cotφ∫θh

θB

× ∫b/2

0

sin 2(θh + β)
sin 3(θ + β) cos(θ + β)r20e2(θh−θ0) tanφdxdθ.

(23)
Similarly, summing DAB−insert and DBC−insert leads to the

internal energy dissipation rate of the plane insert, i.e

Dinsert � DAB−insert +DBC−insert. (24)

By substituting Eqs 19, 20 into Eq. 21, then Eq. 21 can be

written as

Dinsert � ωc cotφr30g7(θ0, θh, b
H
). (25)

Therefore, the total internal energy dissipation rate of the 3D

failure mechanism can be obtained by summing those of the

rotational mechanism and the plane insert, i.e.,

D � D3D +Dinsert. (26)

For the sake of completeness, the expressions of f1(θ) −
f4(θ) and g1(θ0, θh, b/H) − g7(θ0, θh, b/H) are given in the

Appendix A of this paper.
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Optimization of the limit load q

According to the upper bound theorem of limit analysis,

equating the internal energy dissipation rate to the external

work rate results in the upper bound estimation of the limit

load. And its expression is as follows,

q � [ωc cot φr30g6 (θ0 , θh , r0′/r0 ) + ωc cotφr30g7(θ0 , θh , b/H) − γωr40g1 (θ0 , θh , r0′/r0 ) − γωr40g2(θ0 , θh , b/H) − γωkh r40g4 (θ0 , θh , r0′/r0 ) − γωkh r40g5(θ0 , θh , b/H)]
ωLr20g3(θ0 , θh , r0′ /r0 , H′) .

(27)

It is easily found that the upper bound of the local

load in this study is a function of five parameters:

θ0, θh, r0′/r0, b/H,H′. Each set of these parameters defines a

kinematically admissible velocity field that is able to yield an

upper bound estimation of the limit load. Thus the critical

limit load can be obtained by cycling these parameters under

the following constraint conditions until the least upper bound

solution is obtained.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0< θ0 < π,

θ0 < θh < π,
0< r0′/r0 < 1,

(L + B 3D
max )

H
< (b + B 3D

max )
H

< B

H
,

0<H′≤H,

(28)

where B 3D
max is the maximum width of rotation mechanism

and B is the slope width. To find the global minimum of

the limit load, the particle swarm optimization algorithm

is firstly used to locate the region near the optimum

point, followed by adopting Nelder-Mead simplex

algorithm to search the global minimum using the

solution from the particle swarm algorithm as the initial

point. The obtained minimum upper bound solution qcr is

seen as the limit load and used to perform the following

analysis.

Results and discussions

Comparisons

To validate the correctness of the proposed approach, the

limit loads of 10 cases computed from the proposed approach are

compared with the solutions of Michalowski (1989) in which the

3D multi-blocks translational failure mechanism is used to

determine the limit load. In the calculations, L/t and kh are

fixed to 2.0 and 0, respectively. The results are given in Table 1. It

can be seen from Table 1 that the upper-bound solutions of the

limit load computed from the proposed method are lower than

that of Michalowski (1989), the maximum difference only

reaching 6.98%. This indicates that the proposed method

improves the existing upper-bound solutions of limit loads

provided by the 3D translational failure mechanism. The

reason why the upper bound solutions computed from the 3D

rotational failure mechanism is smaller than that of the 3D

translational failure mechanism may be that the 3D rotational

failure mechanism is more unfavorable to the stability of slopes

and is closer to the real situation in practical engineering than the

3D translational failure mechanism.

Zhou et al. (2018) evaluated the bearing capacity and

failure mechanism of strip footings placed on the top of 2D

slopes, using the discontinuity layout optimization (DLO)

approach. The DLO approach can automatically identify

the critical layout of slip-lines and the corresponding least

upper bound solution of the critical load. To further validate

the present approach, the limit loads computed from the

proposed approach are compared with the solutions of

Zhou et al. (2018) for 10 cases. In the calculations, the

magnitude of H/t and kh are set to 5 and 0, respectively.

For a better comparison with their 2D work, the length of the

local load is fixed to the slope width, i.e., L=B. The results are

given in Table 2. It is seen that the presented solutions agree

TABLE 1 Comparison between the proposed method and Michalowski (1989).

Case φ (°) β (°) γt/c a/t qcr/c

Present solutions Michalowski (Qin et al., 2020)

1 20 45 0.25 1.6 24.24 25.08

2 20 60 0.25 2.5 27.47 28.40

3 10 30 0.25 1.4 12.78 12.79

4 10 45 0.25 1.8 12.70 12.80

5 10 60 0.25 2.0 11.91 12.81

6 20 45 1.25 1.4 24.99 26.19

7 20 60 1.25 1.8 22.57 23.55

8 10 30 1.25 1.2 12.58 13.21

9 10 45 1.25 1.6 13.05 13.53

10 10 60 1.25 1.8 12.15 12.99

Frontiers in Earth Science frontiersin.org06

Ji and Wu 10.3389/feart.2022.1039398

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1039398


TABLE 2 Comparison between the proposed method and Zhou et al. (2018).

Case φ (°) β (°) c/tγ a/t qcr/tγ

Present solutions Zhou et al.
(2018)

1 20 30 2.0 0.8 23.41 23.89

2 20 30 1.0 0.8 11.80 12.44

3 20 30 0.5 0.9 6.54 6.99

4 20 40 2.0 1.6 23.13 23.75

5 20 40 1.0 1.7 12.11 12.70

6 20 40 0.5 1.5 5.22 5.31

7 10 30 2.0 2.5 16.30 17.72

8 10 30 1.0 2.6 8.82 9.44

9 10 40 2.0 2.8 16.89 17.71

10 10 40 1.0 2.5 7.08 7.64

FIGURE 5
Limit load ratio qcr/c as a function of a/H.(A) kh =0.1, φ =10 ° (B) kh =0.1, φ =20 ° (C) kh =0.2, φ =10 ° (D) kh =0.2, φ =20 °.
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well with those of Zhou et al. (2018), and the maximum

difference is 8.7% for case 7 in which φ � 10°, β � 30°, c/tγ �
2 and a/t=2.5. This shows the validation of the proposed

method.

Parametric analysis

Several design charts are presented in Figure 5 to perform

parametric analysis, each showing the limit load ratio qcr/c (qcr
is the limit load leading to slope failure and c is the cohesion of soil

masses) as a function of a/H. In the calculation, the B/H ratio is set as

three and the vertical load is distributed in a rectangular area (L/t=2).

The soil cohesion is set to 20 kPa and the internal friction angle is set

as 10 ° or 20 °. The unit weight of the soil mass is equal to 20 kN/m3.

Figure 5 indicates that the limit load ratio increases with the increase

of a/H or the internal friction angleφ but decreases as the slope angle

β increases. It can be found by comparing Figures 5A,B that the

growth rate of the limit load ratio with the increase of a/H is larger

for φ =20 ° than φ =10 °. For example, limit load ratio increases by

2.64 (from 2.96 for a/H=0.2 to 5.6 for a/H=0.4) for φ =10 ° and
β =30 °, but the growth is equal to 11.26 (from 13.38 to 24.63) for

φ =20 °.
Figure 6 is presented to study the effect of the seismic force on

the limit load. The limit load ratio qcr/c is plotted as a function of the

seismic coefficient kh in Figure 6. It can be found from Figure 6 that

the limit load decreases with the increase of seismic coefficient kh,

which is because the seismic force is an adverse effect on the slope

stability and can reduce the bearing capacity of slopes. Another

interesting fact is that the curves in Figure 6 are almost straight lines,

indicating that the limit load is proportional to the seismic

coefficient kh. Therefore, given some limit loads for some seismic

coefficients, unknown limit loads for certain seismic coefficients can

be obtained by linear interpolation.

Figure 7 is given for investigating the effect of the shape of the

local load on the magnitude of the limit load. In Figure 7, the

dimensionless limit load ratio (qcr/c) is shown as a function of the

length-to-width ratio (L/t) of the local load. It can be seen from

Figure 7 that the limit load decreases and gradually becomes stable

with the increase of the L/t ratio. In the calculation, a/H and kh are

set to 0.2 and 0.1 respectively, andφ is equal to 10 °. The length of the
local load L is less than the slope width B in the calculation.

Conclusion

In light of the kinematical approach of limit analysis, this paper

investigates the effect of seismic force on slope bearing capacity by

calculating the limit load on the top surface of slopes. In the

framework of limit analysis, the stability analysis of locally loaded

slopes was performed based on the translational velocity field.

However, numerical research shows that the failure velocity field

seems rotational. Therefore, to fill this gap, the 3D rotational failure

mechanism is employed as the kinematically admissible velocity field

to investigate this problem. For validation, the limit loads computed

from the proposed approach are compared with the solutions

available in the literature. Parametric analyses are presented to

investigate the influence of different parameters on the critical

loads. Based on the work above, the conclusions are drawn:

(1) Comparisons with the results of using the 3D multi-block

failure mechanism and with the DLO approach show a good

agreement, indicating the correctness of the proposed

approach. The upper bound of limit loads computed from

FIGURE 6
Limit load ratio qcr/c as a function of seismic coefficient kh.

FIGURE 7
The influence of the length of the local load on the
magnitude of the limit load; γb/c � 1, a/b=0.3, φ � 15°.
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the proposed method is found lower than those computed

using the 3Dmulti-blocks failure mechanism, indicating that

the 3D rotational failure mechanism can improve the upper-

bound estimation of the limit load from the 3D multi-block

failure mechanism.

(2) The limit load is found to decrease with the increase of the

seismic coefficient kh and it is proportional to the seismic

coefficient. Thus, unknown limit loads for certain seismic

coefficients can be obtained by the linear interpolation method.

(3) Parametric analysis indicates that the limit load increases

with the increase of a/H or the internal friction angle φ but

decreases as the slope angle β increases. And, with the

increase of a/H, the growth rate of the limit load becomes

larger for the larger value of φ. The investigation into the

effect of the shape of the local load on the limit load shows

that the limit load decreases and gradually becomes stable as

the length-to-width ratio (L/t) of the local load increases.

(4) The sliding surface extending to the bottom surface of the slope

is not considered in this work, which is the limitation of this

paper. Follow-up investigations can improve this limitation.
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