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Glacial lakes are a potential threat to the livelihoods and precious infrastructures

in the Himalayan region. The expansion of these lakes under the influence of

global warming further poses a grievous risk of natural disasters in the form of

glacial lake outburst flood (GLOF) that necessitates regular monitoring to

reduce and mitigate its implications. This research focuses on the regional

scale distribution and evolution of glacial lakes in theHimalayanmountain range

with their causes. We used Landsat thematic mapper (TM) and operational land

imager (OLI) images, Google Earth imageries, Shuttle radar topographicmission

(SRTM) Digital Elevation Model, and Aphrodite climatic data to study lake

evolution and its controlling parameters. A total of the 5,409 glacial lakes

was taken for the size expansion analysis, which excludes supraglacial lakes.

An expansion rate of 2.98%/yr and 1.01%/yr in glacial lakes number and size was

found from 1990 to 2020, respectively. The glacial lakes are distributed mainly

in Langtang, Bhutan, Sikkim and Everest region; while, new lakes are forming at

higher elevations continuously. The highest lake size expansion was noted in

2015–2020 (36.51%) followed by 2000–2010 (21.72%) and 2010–2015

(10.65%), while 1990–2000 (3.36%) showed a lowest expansion rate. The

highest expansion rate was noticed near an elevation band of

5000–5500m. Moreover, lakes in the central and eastern Himalaya are

highly decrease by climatic change, i.e., increase in temperature a decrease

precipitation. The feature selection algorithm was used to identify the

importance of various controlling parameters, which showed temperature

change rate, glacier fed lake, glacier snout steepness, proximal distance,

glacier calving frontal width, precipitation change rate and lake type gave

higher weightage towards lake size change.
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1 Introduction

Glaciers in the mountains have extensively reached its

maximum extent during the little ice age (Holocene epoch).

After that, it started retreating due to global warming, as a result

forming glacial lakes (Cramer et al., 2014; Harrison et al., 2018;

Zhu et al., 2020). The rate of glacier retreat correspondingly

matched with the new lake formation (Emmer et al., 2014; Rashid

and Majeed, 2018; Pandey et al., 2021). The Himalayan region

witnessed warming at a higher rate than the global average

(Taylor et al., 2013), therefore experiencing significant

consequences of lake size increase, glacial lake outburst flood,

avalanches, etc (Emmer et al., 2016; Veh et al., 2019). The

number and size of glacial lakes have been increasing since

1990 by 53% and 51%, respectively, globally (Shugar et al.,

2020). Through literature, we noted a contrast in the

evolution of glaciers and glacial lakes over the eastern and

western parts of the mountain range. In the eastern part, the

majority of glaciers are retreating at a higher rate in comparison

to the western part where melting is not fast as western

counterparts (Kargel et al., 2005; Gardelle et al., 2011;

Gardelle et al., 2013; Worni et al., 2013). Besides, glacial lake

size and number are increasing faster in different parts of the

Himalaya at a higher rate: Bhutan (Veettil et al., 2016; Wessel

et al., 2018), Sikkim (Aggarwal et al., 2017; King et al., 2018),

Nepal (Shrestha and Aryal, 2011), Uttarakhand (Raj and Kumar,

2016), Jammu and Kashmir (Govindha Raj, 2010; Mir et al., 2018;

Watson et al., 2018; Yao et al., 2018).

Zone of lake with higher growth rate and future lake

formation is a potential threat to the downstream (Mohanty

and Maiti, 2021b). These increases in lake size could attribute to

GLOF caused by global warming. A lake growth has possibly

happened at a long glacier tongue with flat slope (Agarwal et al.,

2014; Song et al., 2017). Lake characterization also indicates the

GLOF possibility as ice dam followed by moraine dam lakes are

more prone to GLOF (Veh et al., 2018). Moreover, lesser

proximal distance, moraine dam and glacier fed lakes are

more prone to lake size increase (Gardelle et al., 2013; Zhang

et al., 2015). Besides, in the Nepal Himalaya, the majority of

present-day large moraine-dammed lakes did not exist before the

1950s (Harrison et al., 2018). Many of these lakes started forming

in the mid-1950s–1960s as small supraglacial lakes, which

coalesced and started growing rapidly in the 1970s (Mohanty

and Maiti, 2021a). A little is known about where a lake can be

formed and to what extent a lake can be grown. Regional scale

lake formation pattern and lake size change related to climatic,

topographic and glacial lake parameters has not been discussed in

detailed.

The glacial lakes are not stable due to the underlying

formation mechanism, and hence very prone to the

outburst in many circumstances, such as failure of the

moraine dam by avalanches, landslide, earthquake, and

extreme rainfall, etc. This outburst flood of glacial lakes is

known as glacial lake outburst flood (GLOF). GLOF is the

phenomenon of sudden release of huge amounts of water and

sediment in the downstream river channel by the dam breach

of glacial lake. Most of the GLOF events were experienced in

lakes that have a larger lake size with a higher expansion rate.

It was also noted that the majority of the GLOF events were

concentrated in the Himalaya (Worni et al., 2013; Aggarwal

et al., 2017; Nie et al., 2017). Furthermore, most of the GLOF

has occurred from breach of the ice dam lake followed by the

moraine dam lake (Carrivick and Tweed, 2016; Veh et al.,

2019). These GLOF events pose grave threats to the societal

and infrastructural setup along with significant risk to the

livelihoods. Therefore, identification of lakes that have larger

size and greater expansion rate is crucial. Notably, it is found

that most of the critical lakes are present in the eastern and

central Himalaya (Mohanty and Maiti, 2021b), due to the

faster melting of glaciers in this region.

The simulations of the integrated impact on the glacial lakes of

rugged topography, changing climate and variable response of

glaciers to the climate change are challenging due to the

dynamics of glacial lakes, which is complex in nature. An

alternate choice is to be ready with the inventory datasets to

understand these processes and dynamics of lakes. Therefore,

lake inventory was firstly proposed for more than 300 glacial

lakes from 1966–1975, further updated in 1980 taking lake

morphometry and depth (Anselin and Getis, 1992; Worni et al.,

2013). After thatmuchwork has been conducted in theHimalaya on

glacial lake inventory. Besides, a study jointly carried out from

1999 to 2003 by the International Center for Integrated Mountain

Development (ICIMOD), United Nations Environment

Programme (UNEP), and Asia Pacific Network (APN) reported

a total of 9,000 glacial lakes for 15,000 glaciers in Bhutan, Nepal,

Karakoram, China, and India. Moreover, Zhang et al. (2015)

reported the number of lakes in different basins: the Amu Darya,

594, Indus, 1,607, Ganges, 364, and Brahmaputra, 2,247; estimated

using 2010 Landsat images. These lake numbers are relatively

smaller in comparison to other published papers, Such as

(Bhambri et al., 2011) mapped 1,266 glacial lakes in Uttarakhand

(India), Aggarwal et al. (2017) showed 1,104 glacial lakes in Sikkim

(India), Jeelani et al. (2011) estimated 1,466 glacial lakes in Nepal,

and Nie et al. (2013) showed 4,950 lakes in the Himalaya. These

inconsistencies could be a result of the distinctive conduct of these

studies during different time frames. Therefore, these lake

inventories should be updated in regular intervals to know the

implication of climate change on glacier/glacier-lakes and the lakes’

expansion/reduction dynamics in this region (Mool et al., 2001;

Wang et al., 2013; Nie et al., 2017). The specific objectives of our

study are therefore: (1) to examine the detailed evolution of glacial

lakes size and number since 1990 in the Himalaya; (2) to investigate

glacial lake evolution related to topography, lake characteristics and

climate, and (3) to simulate possible future lake growth and zone of

lake formation based on the glacial topography that are considered

as being potentially dangerous.
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2 Study area

Himalaya is a rugged topography ranging from 1,000 to 8848 m

in elevation, and encompasses the highest elevation of the planet i.e.

8848 m. The Himalaya is a 2500 km-long orogenic zone which

varies in width from 400 km in the west to 150 km in the east

(Rubatto et al., 2013). The Himalaya was taken as a study area which

is bounded by 69° 48′ 36.73″ E longitude to 98° 22′ 22.78″ E and 27°

12′ 16.89″ N to 39° 31’ 26.89″ N latitude. Our study area expands

over 4 important river basins: Indus, Ganges, Brahmaputra and the

Mansarovar Interior Basin. The distributions of equilibrium line

altitudes (ELA) are mainly fluctuating in the influence of summer

Monsoon and Subtropical Westerly Jets with limited supplies from

East AsianMonsoon (Yao et al., 2012). Besides, the IndianHimalaya

has a glaciated area of 23,300 km2 and a volume of 1071 km3 (Bolch

et al., 2012).

Himalaya gets snowfall due to three types of wind flow; (i) NW

wind flow (westerly), (ii) SW monsoon, and (iii) NE wind flow

(Bookhagen and Burbank, 2006). Eastern Himalaya is getting

snowfall due to two types of wind flow: SW monsoon and NE

wind flow (Bookhagen and Burbank, 2010). Moreover, these are

mainly getting snowfall in the summertime, called summer

accumulation type glaciers. The western side of the Himalaya

(Karakoram, Pamir, and west Himalaya) is getting snowfall

because of the westerly wind flow, which is prevalent during

wintertime; so it is called winter accumulation type glacier.

Summer accumulation glaciers are relatively more sensitive to the

temperature rise because it will directly affect the snowfall and hence

the feedback to the glacier system. The monsoonal precipitation

decreases from east to west, and its divider from the westerly jet is

present at 78° longitude near Sutlej valley (Aggarwal et al., 2016). The

northern side of the easternHimalaya is getting less snowfall than the

southern side bymonsoonal precipitation (Shrestha andAryal, 2011).

3 Methodology

3.1 Data sources

3.1.1 Satellite data and DEM
We used Landsat Thematic Mapper (TM) L1T and Operational

Land Imager (OLI) data set to estimate the lake size. These datasets

were obtained from the United States Geological Survey (USGS)

Earth Explorer (https://earthexplorer.usgs.gov). A total of 90 scenes

was used over the entire Himalayan region to delineate the lake

boundaries for 1990, 2000, 2010, and 2015. We also utilized the

Google Earth high-resolution images to outline the lake boundaries

for 2020. The SRTM (Shuttle Radar Topography Mission) Digital

Elevation Model (DEM) of 30 m spatial resolution provided the

topographical information.

Cloud cover, solar elevation angle, and date of acquisition play a

crucial role in data selection over a Cryospheric environment.

Another critical aspect of the visible range satellite data is the

presence of cloud cover, as it may significantly affect the accuracy.

Thereby, we consciously chose cloud-free satellite datasets. However,

the availability of datasets with absolute zero cloud cover is

challenging; thus we chose the data with <5% of cloud cover, sun

elevation angle>40°, and nadir facing. The data were obtained for the
late summer period to melt the freshly fallen snow and provide us

with a realistic representation of the glacial lakes. (Gardelle et al.,

2011). Therefore, we selected satellite images of September to

December (for the eastern part of Himalaya) and between June to

October (for the western part of Himalaya), respectively.

3.1.2 Climatic data
We used the APHRODITE (Asian Precipitation-Highly-

Resolved Observational Data Integration Towards Evaluation)

daily gridded precipitation data, a long-term regional-scale

precipitation product. It is proven to be well-matched with the

station data (Ali et al., 2012). It is interpolated from ground-based

data from an in-situ rain-gauge-observation network (Sunilkumar

et al., 2019; Taylor and Carr, 2019). These mean annual temperature

and precipitation data were collected from https://www.chikyu.ac.jp/

precip/english/for 1951–2007. The APHRODITE data was obtained

which has a spatial resolution of 0.25°. Initially, APHRODITE -

V1101 was available for 67 years (1951–2007) over the Asian

monsoon region, but a new version - V1101EX_R1 extends the

time range to 2015. In this study, we combined the two versions of

the data to get an expanded time series of 64 years (1951–2015).

3.1.3 Lake boundary data
We obtained the lake data from Zhang et al. (2015) for the years

1990, 2000, and 2010. However, after investigation, we found that

this dataset is incomplete and does not incorporate many lakes in

this region. Therefore, we modified this dataset with new additions

of the missing lakes and some boundary corrections. We added 375,

144, and 403 lakes along withmodifications in 11, 5, and 10 lakes for

the years 1990, 2000, and 2010 respectively. Moreover, to extend this

inventory further in time, we prepared the lake boundaries for the

years 2015 and 2020 using a similar method as in Bajracharya et al.

(2008). For an extended inventory, we have used Landsat OLI for

2015 and high-resolution images like Worldview, Quickbird, and

GeoEye for 2020.

3.1.4 Glacier boundary data
The glacier outline data were obtained from GLIMS (Global Land

Ice Measurements from Space) webpage. RGI version 6.0 was

downloaded, and some manual boundary corrections were performed.

3.2 Data analysis

3.2.1 Lake size expansion rate
A few glacier lakes are not perennial, and have formed/

disappeared after a specific year. Therefore, to account for this

variability over the time, we determined the average lake size change
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rate. We took care of those lakes and calculated the average lake size

change rate that has a different lifespan than the study period

(i.e., 1990, 2000, 2010, 2015 and 2020) using the following formula:

Average lake size expansion rate m2/year( ) � ∑n
1Xi −Xi−m
n*m

(1)

Where Xi and Xi-m is the lake size between two consecutive times

of 10 years interval. m is the total time interval of these years, and

n is the number of lakes.

3.2.2 Lake attributes data derivation
Lake types (glacier-fed, connected, moraine-dammed)

were marked in the lake polygon by visual interpretation

with the help of the Google Earth platform. The proximal

distance was calculated with the help of the near tool in

ArcGIS 10.3, using the lake and glacier polygon as an input

file. Northern side lakes and southern side lakes were

classified in the GIS platform, referring to Nagai et al.

(2013).

3.3 Statistical analysis

3.3.1 Cumulative frequency
The cumulative lake size was estimated by adding lake

size continuously with an increase in elevation dataset

(Mohanty and Maiti, 2021a). The last value will always be

equal to the total (sum) for all lake size observations for that

year since all frequencies have been added to the previous

total. Cumulative lake size was studied concerning the

elevation annually used for knowing the variation of lake

size at certain elevation intervals in the Himalayas. A

FIGURE 1
The Himalaya is taken as study area; here, dot with brown color shows the lake position in the study area. The violet color boundary shows the
study area extent. Here, the scatter plot in the upper right corner shows the lake distribution along the latitude and longitude in the Himalaya, the
histogram in the lower-left corner shows the lake size distribution in the Himalaya. Lake frequency distribution was also shown in another graphwith
respect to elevation.

TABLE 1 Lake size and number variation in different years.

year Lake size Lake number

Total (km2) Average (km2)

1990 262.45 0.132 2,406

2000 280.94 0.140 2,306

2010 304.59 0.132 3,015

2015 325.22 0.151 2,822

2020 342.08 0.136 4,420
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cumulative graph was plotted between cumulative lake size

and respective lake elevation.

3.4 Accuracy assessment

According to Zhang et al. (2015) and (Chand and Watanabe,

2019), the smallest detectable glacial lakes should be more than three

pixels, i.e., 0.0027 km2 in the Landsat TM/ETM + data. In addition to

cloud and snow coverage, the accuracy of glacial lake areas can be

affected by the spatial resolution of satellite data. As we did manual

digitization error due to clouds and snow is very less here. Several

studies have demonstrated that the accuracy of data derived from

satellite imagery is within approximately 0.5 pixels (Ord and Getis,

1995;Clague andEvans, 2000; Salerno et al., 2016;Qiao andZhu, 2019).

The uncertainty of the glacial lake areawas estimated in this study as an

error of ±0.5 pixels on either side of the delineated lake boundary.

Error � ± 0.5* perimeter of glacial lake

We compare the lake boundary delineated uncertainty

between ours and Zhang et al. (2015) for the year 2010. An

uncertainty of <10% was found in this analysis.

4 Results

4.1 Lake characterization and its
distribution in the Himalaya

A total of 5,409 separate glacial lakes with size >0.01 km2

were selected for the calculation of lake size change rate.

Moreover, glacial lakes within 5 km from mother glacier were

included in this analysis. Glacial lakes are widely distributed

throughout the Himalayan region with an elevation between

3000 and 6000 m (Figure 1).We noted that most of the lakes were

formed in Langtang, Bhutan, Sikkim, and Everest region (near

90°E longitude and 29°N latitude) (Figure 1). Notably, nearly half

of the lake in the Himalayas is relatively smaller in size (less than

0.01 km2), identified through the modified and updated version

of the glacial lake database of (Das et al., 2015; Dixit et al., 2021)

We found 2,406, 2,306, 3,015, 2,822 and 4,420 glacial lakes during

1990, 2000, 2010, 2015, and 2020, respectively. Thereby, the

number of glacial lakes in the region is rising rapidly with

~83.07% increase from 1990 to 2020 (Table 1). Most of the

new lakes were formed in the eastern Himalaya, whereas in 2020,

FIGURE 2
Lake size change rate map of the Himalaya; here, red color shows the highest positive, whereas green shows the lowest negative lake size
change. In the zoom box important lakes were shown in different part of the Himalaya with their lake size change rate and different years of lake
boundary polygon. In the histogram plot, the distribution of lake size change rate shown for the Himalaya.
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most of the new lakes were formed in the western Himalaya.

However, these lakes were more prominent in the region of

highest glacial retreat. The retreat depends on glacial topographic

and climatic factors at different magnitudes (Bolch et al., 2008;

Bhambri and Bolch, 2009; Racoviteanu et al., 2015; Pandey et al.,

2017).

4.2 Characteristics of lake size expansion
in the Himalaya

A total of 5,409 lakes was taken for the size expansion

analysis, which excludes supraglacial lakes. We found a total

lake size of 319.44 km2, 329.14 km2, 400.63 km2, 443.31 km2 and

605.31 km2 in 1990, 2000, 2010, 2015 and 2020, respectively.

Besides, stable lakes (lakes present throughout the study period)

showed a change rate of 30.53% during the study period, while

lake size of 262.45km2, 280.94km2, 304.59km2, 325.22km2 and

342.08 km2 were found in 1990, 2000, 2010, 2015 and 2020,

respectively. We also noted that during the recent decade

(2015–2020) the change in lake size is relatively higher,

followed by 2000–2010.

We found that the glacial lakes are increasing rapidly in

the eastern side (i.e., middle Nepal, Bhutan, Sikkim and

Everest region) than the rest of the Himalayas (Figure 2).

The highest change was found in the Galongco lake (Nepal)

followed by Gangxico (Nepal) and Thorthormi lake (Bhutan)

(Figure 2). We also noted that 813 lakes were decreasing in

their size over time. Upon manual investigation using high-

resolution Google Earth images, we found that most of them

are unconnected or glacier-fed lakes or erosional lakes.

Moreover, some of the lakes were decreasing in size after

the occurrence of the GLOF event (Tam Pokhari, some other

lakes).

FIGURE 3
In (A) lake size and number distribution is shown for 2020 in different elevation band; while in (B) lake frequency distribution is shown in different
color for various years (1990–2000-red, 2000–2010-cyne and 2010–2020-yellow) in different elevation zones of the Himalaya.
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4.3 Altitudinal distribution in glacial lake
number, size and expansion

The total lake count and size is highest at an elevation

between 4500 and 5500 m (Figure 3A). Consequently, a

cluster of new lakes was found to develop at the higher

elevations (>5000 m) over the years (Figure 3B). This is due

to the continual increase in glacier retreat, creating glacier

fragmentation. The glacial fragmentation helps to form new

lakes at the contact between main glaciers and its tributary

(Figure 4). This contact zone is usually at a higher elevation

than the ablation area of a primary glacier.

The average, standard deviation, and total lake size are

continuously increasing since 1990 (Figures 5A,B). An

increase in standard deviation refers to the higher variability

in expansion over the time along with the formation of new

smaller lakes. A sudden shift in lake size after the year 2000 was

noticed due to the rapid increase in the lake size after the year

2000 (because of various underlying reasons such as faster

glaciers melting). A crossover of the cumulative profile of lake

size was seen for 2015 and 2020 at the elevation of 5000m, which

shows that lakes are decreasing in size at elevation <5000 m.

Additionally, for the elevation >5000m, an increase in the lake

size was noticed in 2020, which happened because of the presence

of a large number of proglacial connected lakes (Table 2). The

highest and second-highest increase in lake size were found to

happen between 2015–2020 and 2000–2010, respectively

(Figure 5A). Moreover, out of 21 outburst phenomena

(Table 3), seven occurred between 1990–2000; hence, these

two cumulative profiles (2000 and 1990) are close to each

FIGURE 4
New proglacial lake is forming by coalensing at the tributary glacier (changri Nup) of Khumbhu glacier. Here, lake polygon in different years is
shown in various color.
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other. The lake size expansion is higher between the elevation

band 5000–5500m, followed by the elevation value >5500 m. The

highest lake size change rate (819.17 m2/yr) was found over the

elevations 5000–5500m, possibly due to the presence of

maximum proglacial connected lakes (731). However, at a

higher elevation (>5500 m), a lesser number of lakes were

present; mostly connected moraine-dammed lakes (Table 2).

For the elevations lesser than 4500m, the glacial lake size

change rate was relatively slower. However, a minimal

number of lakes exist at elevation >5500 m (515), followed

by <4500m and 5000–5500 m (Table 2). The average lake size

is higher at 5000–5500 m (0.17 km2) than the lakes present at

4500–5000 m (0.13 km2) and >5500 m (0.09 km2).

5 Discussion

5.1 Climatic control on glacial lakes
distribution and expansion in Himalaya

Trend analysis of temperature and precipitation was

calculated for the Himalayan region using APHRODITE

dataset (Figure 6). It showed increasing precipitation mainly

over the western Himalaya and central Himalaya. The

temperature showed an increasing trend throughout

Himalaya, having the highest warming trend over the central

Himalaya. The western and eastern Himalaya showed warming,

but with lesser intensity than central. At the same time, we found

that the glacial lakes are increasing in number and size with a

largest hotspot in the central Himalaya. The compound influence

of both increased precipitation and temperature helped these

lakes to grow in the central region of Himalaya. Albeit, the

western region also received the increased precipitation, but due

to the dominance of westerlies this precipitation falls mainly in a

solid phase, however, over the central Himalaya, most of the

precipitation falls in a liquid phase due to the dominance of the

Indian Summer Monsoon. Therefore, the added energy flux

through rain refreezing over the ice and increased

temperature provide more water through melting to these

glacial lakes that help them to grow further. Besides, we

correlate the lake size change rate with the temperature and

precipitation change rate in the Himalayan region and I got a R2

value of 0.39 and 0.25, respectively.

Global Precipitation Climatology Project (GPCP)

precipitation data showed a decreasing trend in the

Himalaya from 1979 to 2010 (Huggel et al., 2002; Kaab,

2005; Kulkarni et al., 2011; Emmer and Vilímek, 2013).

Moreover, Mohanty and Maiti. (2021b) showed a

continuing decrease trend of precipitation amount in the

Himalaya from 1998 to 2019. Moreover, Nie et al. (2017)

also showed a decreasing trend of precipitation amount in

FIGURE 5
The graph plotted between elevation along X-axis with the
cumulative lake size along Y-axis for different years (1990, 2000,
2010, 2015, 2020 and 2030) for the Himalaya glacial lakes (A). In
(B), the average lake size was shown with standard deviation
for different years.

TABLE 2 Elevation wise lake characteristics distribution in the Himalaya.

Elevation (m) Lake count Lake size change rate
(m2/yr)

Lake size (km2) Moraine dammed connected
lakes

<4,500 1,000 457.33 0.11 342

4,500–5,000 1,374 526.58 0.14 501

5,000–5,500 1,309 819.17 0.18 731

>5,500 515 570.19 0.12 307
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TABLE 3 Number, causes and locations of GLOF events reported in the Himalaya since 1990.

Name of
the lake

Occurring date Longitude Latitude Country Causes of
outburst

Chubung 1991–07 86.47 27.88 Nepal Moraine collapse

Zanaco 1995–6 85.37194 28.66222 Nepal Unknown

Kongyangmi La Tsho 1995 88.78 27.90 India

Kab 1994–10 89.58486 28.06667 Bhutan Unknown

LuggyeTso 1994–10 90.30778 28.08333 Bhutan Moraine collapse

Sabai Tsho/Tam Pokhari 1998–09 86.84 27.74 Nepal Ice avalanches

Tshojo glacier 2009–07 90.16 28.10 Bhutan Ice deformation

South Lhonak 2011–6 88.191,867 27.911,779 India Artificial pumping

Chorabari lake 2013–17 79.681,259 30.747,866 India Landslide dam failure

Ranzeria Co 2013–07 93.53 30.47 China Calving/ice avalanches

GongbatongshaTsho 2016–07 86.06 28.08 China Ice avalanches

LemthangTsho 2015–6 89.580,404 28.068754 China subglacial conduit

ChongbaxiaTsho 2001 89.749,470 28.209,315 China Unknown

Unnamed 2005–09 96.47 29.75 China

Jialongco 1st 2002–5 85 51 07 28 12 85 China Ice avalanches

Jialongco2nd 2002–6 85 48 24 28 13 53 China Unknown

Degaco 2002–9 90 34 01 28 07 25 China Ice avalanches

Tsho Ga 2009–07 94.00 30.83 China

Zhemaico 2009–7 92 20 36 28 00 54 China Ice avalanches

Geiqu 2010 87.99 27.95 China

Langmale lake 2017–04 87.14 27.81 China Rock fall

FIGURE 6
Precipitation (A) and temperature (B) change rate is shown with their corresponding average lake size change rate in the Himalaya.
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most of the Himalayan from 1979 to 2014. The precipitation

decrease in Himalaya was caused by the weakening in the

Indian monsoon (Wu et al., 2005; Yao et al., 2012). The size of

most of the non-glacial-fed lakes showed a declining trend

caused by the decrease in the supply of precipitation; the same

was observed in the Central Himalaya by Salerno et al. (2016)

and Nie et al. (2017). However, most of the Himalayan glaciers

are retreating at a higher rate, except for glaciers in Pamir,

Hindu Kush, and the Karakoram in high Mountain Asia (Kaab

et al., 2012; Gardelle et al., 2013; Vincent et al., 2016; Brun

et al., 2017).

The impact of climate on glacial lakes is pretty complex.

The addition of black soot particles to the glaciers causes

darkening and accelerated glacier melting (Reynolds, 2000;

Richardson and Reynolds, 2000; Scherler et al., 2011a; Ming

et al., 2012; Vishwakarma et al., 2018). Black soot particles

gather in the high altitude glaciers by the wind, after

originating from industrial and fossil fuel combustion

(Negi et al., 2019). Moreover, glaciers containing a lake/

debris content, and clean glaciers have different retreat

rates and responses to climate change (Racoviteanu et al.,

2015; King et al., 2018). The glacier type, debris content and

local topography have great control on the thinning and

retreat pattern of the glaciers, as well as the precipitation

and temperature pattern (Bhambri et al., 2011; Racoviteanu

et al., 2015). These heterogeneities in glaciers varied across

different parts of Himalaya i.e., western, eastern, and central

(Bolch et al., 2012; Yao et al., 2012; Kaab et al., 2015).

5.2 Verification of lake size expansion and
process associated

The highest lake size expansion rates were observed for

proglacial lakes viz, a (Galongco), b (Gangxico), present in the

Chinese Himalaya (Figure 7A). This observation is aligned with

(Mayewski and Jeschke, 1979; Chen et al., 2007). The lake size

expansion rate is lowest for the lake (a, b) from 2015 to 2020 due to a

shorter period and also for mountain base came, where the snout

detachment happened from lake surface (Figure 7). This expansion

rate increases till the lake touches the base of themountainwhere the

slope is steep (the average slope of the lower part of the ablation area

is 25°); after that the expansion of lake size slows down, and only

volumetric growth happens. Moreover, the lake ‘c’ is a permafrost

lake where lake size expansion rate is always low. On the contrary,

only the proglacial connected lakes will continue to grow at a higher

rate, as in Figure 7B; these proglacial connected lakes also

showed a higher lake size expansion rate. In Figure 7B,

these lakes, possibly increase at a higher rate till the

mountain base or higher relief zone comes. We noted the

third highest lake size increase rate was shown by

Thorthormi glacial lakes (Figure 2). This lake is present in

FIGURE 7
The growth process of proglacial lakes is shown. Figure (A) shows proglacial lakes (A,B) became connected to unconnected with time, whereas
in figure (B), these proglacial lakes are remained connected.

Frontiers in Earth Science frontiersin.org10

Mohanty et al. 10.3389/feart.2022.1038777

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1038777


the southern slope of Bhutan and formed by the coalescing of

supraglacial lakes. The highest expansion rate of this lake

happens because of the higher calving frontal width and the

smaller size of mother glacier with higher debris content.

Moreover, lakes formed by cleansing have a higher increase

rate (Komori, 2008; Mohanty and Maiti, 2021b).

A total of 813 (19%) lakes showed a negative lake size

expansion rate in the whole Himalaya. Most of them are

unconnected or erosion lakes or non-glacier fed lakes. Three

types of processes can explain the reduction in lake size: lake

outburst, partially drained by artificial draining, or natural and

naturally dried by lowering in water input. The first and second

type of lake size decrease is frequent in an ice-dammed or

moraine-dammed lake, while the third happens only in

unconnected or non-glacier-fed lakes. The lake becomes

dangerous when lake volume increases; hence, artificially

pumping could be done, as in Imja and Lhonak Lake

(Kattelmann and Watanabe 1997). However, when lake water

increases to higher extent, partial draining happens. A total of

21 lake outbursts events happened during the study period, and

out of these, most of the GLOF occurred between the years

1990–2000. Moreover, many lake outbursts or partial draining

phenomena were observed from previous studies and verified in

this study (Table 3) (Figure 8).

5.3 Fate of proglacial lakes

The bedrock slope is closely related to the surface slope of a

glacier, i.e., steeper the surface, thinner the ice, and vice versa

FIGURE 8
GLOF event verified in a different part of the Himalaya. Here, the GLOF occurrence in different parts of the Himalaya is shown: (A)-Tam Pokhari
in Everest Himalaya, (B)-Luggey Tso in Bhutan region, (C) (Tibetan plateau close to Sikkim) sdown stream of lake-f, (D)-Rejico northern slope of
Sikkim, (E)- Lamthang Tso southern slope of Bhutan and (F)-Chongbaxia Tso northern slope of Bhutan.
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(Oerlemans, 2001). The continual increase in frontal loss leads to

the detachment of proglacial-connected lakes when the glacier’s

front comes to a zone of higher relief (steeper slope) (Figures

9A,C,D). Besides, due to the lesser slope in north Lhonak lake

(Figure 9B) snout detachment could not have happened, causing

a higher increase in lake size. On the other hand, the snout

detachment is seen in (Figures 9A,C,D) due to the higher slope.

This detachment is prominent for clean glaciers with lesser ice

thickness. The glacier is unable to erode when the glacier

subsurface rock is very hard; as a result, the sub-glacial relief

will be high. This process is a typical case of most of the northern

flowing glaciers, mostly in the Bhutan and Sikkim region, which

flows over hard crystalline rocks (Nagai et al., 2013; Racoviteanu

et al., 2015). Moreover, those glaciers have higher frontal and

area loss due to lesser size and debris content (Scherler et al.,

2011b; Bolch et al., 2012; Nagai et al., 2013; Ojha et al., 2017).

Therefore, many lakes may get unconnected with time in the

eastern and central Himalaya, as the glaciers present in those

areas have a higher retreat rate (Bolch et al., 2012; Kulkarni and

Karyakarte, 2014; Kaab et al., 2015; Racoviteanu et al., 2015; Brun

et al., 2017). This detachment is possible because of a higher

surface slope (>20%) at the lower part of the ablation area,

observed fromGoogle Earth (Figures 9A,B,D). Additionally, after

the detachment of the lake, its expansion rate will be slowed

down with time, if the current trend of temperature and

precipitation prevails.

5.4 Comparison with previous work

A higher lake size and number change of 25%, 36% and 25%,

47% was noticed for the Himalayan region from datasets of Zhang

et al. (2015) and our data set, respectively.Wang et al. (2020) showed

a 15% and 10% increase in size and number for the HKH region

from 1990–2018. Likewise, Xin et al. (2012) showed a 29% increase

in lake size in the Chinese Himalaya from 1970–2000. A total of

7.02% of lake size expansion rate was shown in the Himalaya from

1990–2010 (Li and Sheng, 2012). Nie et al. (2013) showed that the

glacial lakes expanded rapidly by 17.11% from 1990 to 2010 in the

central Himalaya. The Himalayan lakes grew continuously between

1990 and 2009 by 20%–65% (Gardelle et al., 2011). Shukla et al.

(2018) showed a lake size expansion rate of 24% for the Sikkim

region from 1975 to 2017. However, the Hindu Kush and

Karakoram regions showed a decrease in lake size expansion rate

(Gardelle et al., 2013). This is due to the current trend in temperature

and precipitation in that region, i.e., increasing precipitation. Hence,

we can conclude that the lake size and number are increasing

with time.

The greatest expansions occurred in the latitudinal zones

between 4800m and 5600 m on the northern side and between

4500m and 5600 m on the southern side of the Himalaya (Song

and Sheng, 2016). Here, a higher lake expansion rate between

elevation zones 5000–5500 m was identified in the whole

Himalaya. The expansion rate of southern side lakes is higher

FIGURE 9
Surface slope of glaciers at lower part of ablation area, i.e., close to glacial lake. (A)Google Earth based observations of surface slope of glaciers
temporarily (A) view in 2006 shows connected and (B) shows view in 2020 which became unconnected (B) GIS based procedures for future
prediction of becoming unconnected based on slope of lower part of ablation area for Sikkim Himalayan connected lakes.
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than the northern side lake (Kanamitsu et al., 2002; Kattelmann,

2003; Kulkarni et al., 2007; Komori, 2008; Nie et al., 2013; Veettil

et al., 2016). Besides, Debnath et al. (2018) showed higher lake

growth for the North aspect lakes in the Sikkim region. Here, we

found the lake size expansion rate is higher for the southern side

lakes for the whole Himalaya. Besides, We have also found a

higher rate for glacier-fed lakes as reported by (Songchitruksa

and Zeng, 2010; Singh et al., 2015) and Song et al. (2014).

5.5 Feature selection techniques

The feature selection algorithm was used to identify the

importance of various controlling parameters (Manepalli et al.,

2011). Here, the multiple regression analysis was used with

1,680 numbers of observations and 16 independent variables

(viz., temperature change rate, precipitation change rate, proximal

distance, calving width, size of mother glacier, lake size, lake type,

lake width, lake length, slope, aspect and elevation), while lake size

change rate was taken as dependent variable. Here, temperature

change rate, glacier fed lake, glacier snout steepness, precipitation

change rate and lake type gave higher weightage towards lake size

change rate in regression analysis with a 95% confidence level.

Besides, correlation matrix was created which showed lake type,

proximal distance the glacier calving frontal width, mother glacier

size, debris content, moraine dam and lake width gave higher

weightage for lake size change rate.

6 Conclusion

• In the Himalaya glacial lake count (lake size >0.01 km2) has

increased rate by approximately 2.98%/yr (30.53%) from

1990 to 2020. Most of the glacial lakes are gathered in

Langtang, Everest, Sikkim and Bhutan regions at an

elevation band of 4500–55000 m. Moreover, new lakes

are continuously forming at higher elevation in the

Himalaya and these are prominent where glacier

fragmentation happens caused by glacier retreat.

• Besides, the average lake size expansion rate of 1.01%/yr

was estimated for the Himalaya region. Furthermore, the

majority of lake size expansion was noticed at an elevation

band of 5000–5500 m due to the presence of the maximum

number of moraine dam lakes.

• The lakes present in central and eastern Himalaya (Bhutan,

Sikkim, Everest and Langtang) gave higher expansion rates,

which is due to the decrease in the amount of precipitation

and increase in temperature. Therefore, these regions are

going to face the GLOF events depending on the local

geomorphology.

• In future, the rate of glacial lake size increase will be slowed

down, as some of the glacial lakes are going to be

unconnected with continual frontal loss when a steep

glacier subglacial topography comes.
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