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The problem of tropical cyclone rapid intensification is reduced to a potential

vorticity (PV) equation and a second order, inhomogeneous, partial differential

equation for the azimuthalwind. The latter equation has the formof a Klein-Gordon

equation, the right-hand side of which involves the radial derivative of the evolving

PV field. When the PV field evolves rapidly, inertia-gravity waves are excited at the

edges of the evolving PV structure. In contrast, when the PV field evolves slowly, the

second order time derivative term in the Klein-Gordon equation is negligible,

inertia-gravity waves are not excited, and the equation reduces to an invertibility

principle for the PV. The above concepts are presented in the context of an

axisymmetric shallow water model, in both its linear and nonlinear forms. The

nonlinear results show a remarkable sensitivity of vortex intensification to the

percentage of mass that is diabatically removed from the region inside a given

absolute angular momentum surface.
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1 Introduction

While modern numerical weather prediction has produced significant skill in

forecasting tropical cyclone tracks, the forecasting of rapid intensification remains an

important challenge (DeMaria et al., 2014). The status of present observational,

theoretical, and numerical modeling efforts to improve intensity forecasting can be

found in the special collection of thirty articles that have appeared recently in five of the

journals published by the American Meteorological Society (see the Doyle and Ferek,

2017, reference for the website that describes this special collection associated with the

Tropical Cyclone Intensity Experiment). A concise and excellent review of much of this

previous work can be found in Martinez et al. (2019). The present paper explores some of

the theoretical aspects of the rapid intensification problem. In particular, this paper

discusses how the problem of tropical cyclone intensification can be reduced to the

solution of a coupled pair of partial differential equations—a first order equation for the
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time evolution of the potential vorticity (PV) field, and a second

order, Klein-Gordon equation for the evolution of the rotational

wind field. In many interesting cases the potential vorticity

equation can be solved analytically and the result used as a

forcing term in the Klein-Gordon equation. Examples of this

approach, in the case when the Klein-Gordon equation reduces

to an elliptic invertibility principle, are given in Schubert and

Alworth (1987) and Möller and Smith (1994).

The forcing term in the Klein-Gordon equation can be

especially large at the edges of an evolving PV structure.

When this forcing effect varies slowly in time, the second

order time derivative term in the Klein-Gordon equation can

be neglected, which converts this hyperbolic equation into an

elliptic, PV invertibility principle. When the forcing does not

vary slowly in time, the second order time derivative term must

be retained and the Klein-Gordon equation maintains its

hyperbolic character, thereby describing both the balanced

flow and the generation and propagation of inertia-gravity

waves. These basic concepts are presented in the simple

context of the axisymmetric shallow water model (Section 2),

where curvature effects and gradient balance come into play. In

the linear case (Section 3), the primary results are the PV

solution, given in Eq. 8, and the linear Klein-Gordon equation

for v (r, t), given in the middle entry of Eq. 11, or the linear

invertibility principle for vb (r, t), given by the middle entry of Eq.

12. These linear results are generalized to the nonlinear case

through the use of a Lagrangian description of the flow (Section

4). In the nonlinear case, the primary results are the PV solution,

given in Eq. 21, and the nonlinear Klein-Gordon equation for V

(R, τ), given by Eq. 24, or the nonlinear invertibility principle for

Vb(R, τ), given by Eq. 26. Solutions of the nonlinear problem

illustrate how rapid intensification can occur when a large

percentage of the original lower tropospheric mass inside a

given absolute angular momentum surface is diabatically

removed via eyewall convection.

2 Shallow water model

Consider the inviscid, axisymmetric, nonlinear shallow water

equations

Du

Dt
− f + v

r
( )v + g

zh

zr
� 0,

Dv

Dt
+ f + v

r
( )u � 0,

Dh

Dt
+ h

z ru( )
r zr

� −hS, (1)

where u (r, t) is the radial velocity component, v (r, t) the

azimuthal velocity component, h (r, t) the fluid depth, g the

acceleration of gravity, f the constant Coriolis parameter, (D/

Dt) = (z/zt) + u (z/zr) the material derivative, and S (r, t) the

specified mass sink. The potential vorticity principle associated

with Eq. 1 is

DP

Dt
� PS where P � f + ζ( )�h

h
and ζ � z rv( )

r zr
,

(2)
with the constant �h denoting the far-field fluid depth. Our goal in

Section 4 is to solve Eq. 1 as a forced, nonlinear, transient,

gradient adjustment problem. The approach is to solve

analytically for P and then use this solution as a forcing in

the second order partial differential equation for v. However, the

derivation of a single nonlinear partial differential equation for v

is not a straightforward task. For example, one approach might

be as follows. First, take (z/zr) of hP � �h(f + ζ), and use the

result to eliminate (zh/zr) from the radial momentum equation.

Then, write the azimuthal momentum equation in an angular

momentum form. The momentum equations then take the form

Du

Dt
− f + v

r
( )v + g�h

P

z

zr

z rv( )
r zr

( )
� gh

P

zP

zr
and

1
r

D rv( )
Dt

+ fu � 0, (3)

which we can regard as a coupled pair of equations for u (r, t) and

v (r, t) if P (r, t) is regarded as known from the solution of the PV

principle (Eq. 2). Taking D/Dt of the second entry in Eq. 3 and

using the result to eliminateDu/Dt from the first entry, we obtain

z

zr

z rv( )
r zr

( ) −f̂
2

gh
v − P

fg�h

D

Dt

1
r

D rv( )
Dt

( ) � h
�h

zP

zr
,

where
f̂
2

gh
� 1
gh

f + v

r
( ) f + z rv( )

rzr
( ) � 1

g�h
f + v

r
( )P.

(4)

It is tempting to regard Eq. 4 as a nonlinear Klein-Gordon

equation for the single variable v (r, t), with a time dependent

forcing term that is proportional to the radial derivative of the

potential vorticity. However, it is important to note that the

variables u (r, t) and h (r, t) have not been completely eliminated

from Eq. 4, with u (r, t) appearing in the D/Dt operator. In

Section 4 we discuss the transformation of Eqs 2–4 to a

Lagrangian coordinate, which simplifies the material derivative

D/Dt to a local derivative. This not only simplifies the (D/Dt)-

terms in Eqs 2–4, but also allows for time integration of the

potential vorticity equation (Eq. 2), thereby making the forcing

term in Eq. 4 a known function. If the forcing term varies slowly

enough in time, the term in Eq. 4 involving D/Dt becomes

negligible, so that the diagnostic equation for the gradient

balanced wind vb (r, t) is

z

zr

z rvb( )
r zr

( ) −f̂
2

b

gh
vb � h

�h

zP

zr
,

where
f̂

2

b

gh
� 1
gh

f + vb
r

( ) f + z rvb( )
rzr

( )
(5)

which is the shallow water version of the nonlinear invertibility

relation discussed by Hoskins et al. (1985). However, before

discussing the nonlinear problem, we consider in Section 3 the

linearized version of the shallow water dynamics (Eq. 1).
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Although it is limited to weak vortices, the linear analysis of

Section 3 provides a useful guide to the nonlinear analysis of

Section 4.

Although the analysis presented here is in the context of the

shallow water equations, a more general interpretation is that

these equations approximately describe the dynamics of an

atmospheric layer confined between two isentropic surfaces.

The analogy is as follows. When there is a mass sink in the

shallow water continuity equation, the two isentropic surfaces

bounding the layer should be regarded as lower tropospheric

surfaces (e.g., with the layer defined by 320 ≤ θ ≤ 325K). In

contrast, when there is a mass source, the two isentropic surfaces

should be regarded as upper tropospheric surfaces (e.g., with the

layer defined by 355 ≤ θ ≤ 360K). This interpretation is justified

by noting that the shallow water continuity equation in the

independent variables (r, t) and the continuity equation for a

stratified hydrostatic model in the independent variables (r, θ, t)

can respectively be written as

zh

zt
+ z ruh( )

rzr
� −hS and

zσ

zt
+ z ruσ( )

rzr
� −σ z σ _θ( )

σzθ
⎛⎝ ⎞⎠,

(6)
where σ = −(1/g) (zp/zθ) is the pseudodensity, p is the pressure, θ is

the potential temperature, and σ _θ is the diabatic mass flux. Because

of the close correspondence of the two equations in Eq. 6, we can

make the following analogies: h 5 σ and S5[z(σ _θ)/σzθ]. Note
that in regions where the fractional variation of σ with respect to θ

is much less than the fractional variation of _θ with respect to θ, this

analogy simplifies to S5(z _θ/zθ). In the lower tropospheric core

region of a tropical cyclone, [z(σ _θ)/σzθ]> 0, so there should be an

analogous mass sink in the shallow water equations to simulate a

lower tropospheric layer. In the upper tropospheric core region of

a tropical cyclone, [z(σ _θ)/σzθ]< 0, so there should be an

analogous mass source in the shallow water equations to

simulate an upper tropospheric layer. In Section 4 and

Supplementary Appendix C we develop an alternative analogy

based on potential vorticity dynamics rather than simply the mass

conservation principles in Eq. 6. Although these analogies help

interpret the shallow water model results in terms of the dynamics

of a continuously stratified fluid, the analysis of the detailed

vertical structure of tropical cyclones requires a complete θ-

coordinate model, in which case the Klein-Gordon equations

and the invertibility principles discussed in Section 3 and

Section 4 would include terms that involve second order partial

derivatives in θ.

3 Linear dynamics

As a guide to the nonlinear analysis of Section 4, let us first

linearize the system Eq. 1 about a state of rest with constant mean

depth �h. The linear equations are

zu

zt
− fv + g

zh′
zr

� 0,
zv

zt
+ fu � 0,

zh′
zt

+ �h
z ru( )
r zr

� −�hS, (7)

where h′(r, t) � h(r, t) − �h is the deviation depth. As initial

conditions for Eq. 7 we assume there is no flow and no anomaly

in the fluid depth, i.e., u (r, 0) = 0, v (r, 0) = 0, and h′(r, 0) = 0. With

these assumptions, any flow that develops is due to the mass sink S (r,

t). The equation for the potential vorticity anomaly P′(r, t), derived
from the second and third entries in Eq. 7, and its solution are given by

zP′
zt

� fS where P′ � P − f

� z rv( )
r zr

− f
�h
h′ 0 P′ r, t( ) � f∫t

0
S r, t′( ) dt′. (8)

In order to better understand the stationary and oscillatory

solutions of the unforced version of Eq. 7, assume the solutions

are separable in r and t, with the time dependent part given by

eiωt, where ω is the frequency of oscillation. It can then be shown

that the radially dependent part of h′ satisfies an order zero Bessel
equation and the radially dependent parts of u and v satisfy order

one Bessel equations (for further discussion, see Schubert et al.,

1980). In other words, we can simply begin with the assumed

separable forms u(r, t) � cûJ1(kr)eiωt, v(r, t) � cv̂J1(kr)eiωt,
and h′(r, t) � (c2/g)ĥJ0(kr)eiωt, where û, v̂, ĥ are

dimensionless complex constants, k is the radial wavenumber,

J0 and J1 are Bessel functions of order zero and order one

respectively, and c � (g�h)1/2 is the pure gravity wave speed.

Substituting these assumed solutions into the unforced version

of Eq. 7 and using the Bessel function derivative relations dJ0 (kr)/

dr = −kJ1 (kr) and d [rJ1 (kr)]/rdr = kJ0 (kr), we obtain

iω −f −ck
f iω 0
ck 0 iω

⎛⎜⎝ ⎞⎟⎠ û
v̂
ĥ

⎛⎜⎝ ⎞⎟⎠ � 00 ω ω2 − f2 − c2k2( ) � 0

0 ω �
ω0 � 0
ω1 � f2 + c2k2( )1/2
ω2 � − f2 + c2k2( )1/2.

⎧⎪⎨⎪⎩
(9)

The three eigenvectors corresponding to the three eigenvalues ω0,

ω1, ω2 are

û
v̂
ĥ

⎛⎜⎝ ⎞⎟⎠
0

� A
0
ck
−f

⎛⎜⎝ ⎞⎟⎠,
û
v̂
ĥ

⎛⎜⎝ ⎞⎟⎠
1

� A�
2

√
−iω1

f
ck

⎛⎜⎝ ⎞⎟⎠,
û
v̂
ĥ

⎛⎜⎝ ⎞⎟⎠
2

� A�
2

√
−iω2

f
ck

⎛⎜⎝ ⎞⎟⎠, (10)

where A � (f2 + c2k2)−1/2 is the normalization constant. Using

the assumed form of solution and the derivative relation for rJ1
(kr), the potential vorticity anomaly can be written as

P′ � (ckv̂ − fĥ)J0(kr)eiωt. For the eigenvector corresponding

to the eigenvalue ω0, the potential vorticity anomaly is

P′ � (f2 + c2k2)1/2J0(kr). In contrast, since the factor ckv̂ −
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fĥ vanishes for both the eigenvector corresponding to the

eigenvalue ω1 and the eigenvector corresponding to the

eigenvalue ω2, both of these inertia-gravity modes have P′ =
0. In other words, although the inertia-gravity waves contribute

to the u (r, t), v (r, t), and h′(r, t) fields, these waves are invisible in
the P′(r, t) field. The remainder of this section is devoted to

understanding how inertia-gravity waves can be excited on the

edge of a rapidly intensifying PV disk or the edges of a rapidly

intensifying PV annulus.

Single, independent, second order partial differential

equations for u (r, t), v (r, t), and h′(r, t) can be found.

The easiest to derive is the equation for the divergent

component u (r, t), which can be found by taking z/zt of

the radial momentum equation and then using the other two

equations to eliminate zv/zt and zh′/zt. Then, including

boundary and initial conditions, the complete linear

problem for the radial flow is given in the first entry of Eq.

11. Since the rotational wind component v (r, t) plays such a

central role in tropical cyclone dynamics, the single partial

differential equation for v (r, t) is of particular interest. This

equation can be obtained by taking (z/zt) of the v-equation in

Eq. 7, then using the u-equation to eliminate (zu/zt), and

finally using the second entry in Eq. 8 to eliminate h′. Then,
including boundary and initial conditions, the complete linear

problem for the azimuthal flow is given in the second entry of

Eq. 11. Similarly, and again making use of the second entry in

Eq. 8, we can derive the single partial differential equation for

h′(r, t), which is given in the third entry of Eq. 11. To

summarize, the linear primitive equation problems for u (r,

t), v (r, t), and h′(r, t) as independent equations are as follows:
Linear Klein − Gordon Equations for u r, t( ), v r, t( ), h′ r, t( )

z

zr

z ru( )
r zr

( ) − 1

c2
f2 + z2

zt2
( )u � −zS

zr

with
BCs : u � 0 at r � 0, ru → 0 as r → ∞
ICs : u � 0 and ut � 0 at t � 0

⎧⎨⎩ ⎫⎬⎭,

z

zr

z rv( )
r zr

( ) − 1

c2
f2 + z2

zt2
( )v � zP′

zr

with
BCs : v � 0 at r � 0, rv → 0 as r → ∞
ICs : v � 0 and vt � 0 at t � 0

⎧⎨⎩ ⎫⎬⎭,

z

rzr
r
zh′
zr

( ) − 1

c2
f2 + z2

zt2
( )h′ � f

g
P′ + 1

g

zS

zt

with
BCs :

zh′
zr

� 0 at r � 0, rh′ → 0 as r → ∞

ICs : h′ � 0 and ht′ � −�hS at t � 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭.

(11)

Equations of the type Eq. 11 are often referred to as linear,

inhomogeneous, Klein-Gordon equations (Whitham, 1974), or, in

the context of electromagnetic theory, as equations of telegraphy (see

Cahn Jr, 1945, and sections 4.10 and 5.6 of Copson, 1975). See

Supplementary Appendix A for historical notes on the Klein-

Gordon equation. The initial conditions listed in Eq. 11

guarantee that the evolving flow results entirely from the forcing

S (r, t). Note that the three equations in Eq. 11 contain time-

dependent inhomogeneities that depend on the forcing. For the

idealized forcing given below in the first entry of Eq. 13,P′(r, t) grows
as shown in the second entry of Eq. 13, so that |zP′/zr| at the PV edge

increases with time and inertia-gravity waves can be excited there.

Thus, more generally, the inner and outer edges of a PV annulus can

be regions for the generation of inertia-gravity waves. Since the three

Klein-Gordon equations in Eq. 11 are linear, they can be solved by

transform methods, e.g., Laplace transforms in time or Hankel

transforms in radius. The Hankel transform solution of the

Klein-Gordon equation for v (r, t) is discussed in Supplementary

Appendix B.

When the forcing is slow enough, the pressure field and

the azimuthal wind field remain close to a state of balance, so

that the radial wind equation could be discarded and replaced

by vb � (g/f)(zhb′/zr). This is equivalent to saying that the

(z2/zt2) terms in Eq. 11 all become negligible. Also, when the

forcing is slow enough, the time derivative of the forcing

becomes small and can be neglected. Thus, in this slow forcing

case, each of the equations in Eq. 11 simplifies to a diagnostic

equation, with the first equation in Eq. 11 reducing to a

diagnostic equation for the slowly evolving divergent flow

ub (r, t), the second equation in Eq. 11 reducing to an

invertibility principle for the balanced rotational flow vb (r,

t), and the third equation in Eq. 11 reducing to an invertibility

principle for the balanced mass field hb′(r, t). The only initial

condition required is on P′(r, t), so that the hyperbolic

problems in Eq. 11 reduce to

Linear Balanced Problems for ub r, t( ), vb r, t( ), hb′ r, t( )
z

zr

z rub( )
r zr

( ) − μ2ub � −zS
zr

with BCs : ub � 0 at r � 0, rub → 0 as r → ∞,

z

zr

z rvb( )
r zr

( ) − μ2vb � zP′
zr

with BCs : vb � 0 at r � 0, rvb → 0 as r → ∞,

z

rzr
r
zhb′
zr

( ) − μ2hb′ � f

g
P′ with BCs :

zhb′
zr

� 0 at r � 0, rhb′ → 0 as r → ∞,

(12)

where μ = f/c is the inverse of the Rossby length.

In order to provide examples of the solutions of the linear

balanced flow problems (Eq. 12), we now assume that the

mass sink S (r, t) vanishes for r > r0 and is horizontally

uniform for r ≤ r0, where r0 is a specified constant. The time

dependence of the mass sink is assumed to be (t/t2s ) e−t/ts ,
where the specified constant ts is the time at which the mass

sink is a maximum. Small values of ts correspond to rapid

forcing and large values of ts to slow forcing, but the total

forcing is independent of ts since ∫∞
0
(t/t2s )e−t/ts dt � 1. This

forcing S (r, t) and the result of using it in Eq. 8 are given by

S r, t( ) � V
πr20

�h
t/t2s( ) e−t/ts 0≤ r≤ r0
0 r0 < r<∞{

0 P′ r, t( ) � fV
πr20

�h
1 − 1 + t/ts( ) e−t/ts 0≤ r≤ r0
0 r0 < r<∞,

{
(13)
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where V is a specified constant. Thus, the P′ field is a disk of fixed
radius r0, with the value of P′ in its interior increasing in time.

The ultimate value of P′ in the disk is independent of the specified
constant ts since P′(r, t) → f(V/πr20�h) as t→∞ for r ≤ r0. With

this particular forcing S (r, t), integration of the linearized

continuity equation over all r and all t yields

2π ∫∞
0
[�h − h(r,∞)]r dr � V, so the constant V can be

interpreted as the total volume of fluid removed by the mass

sink over its life cycle. We now assume that V � πr20
�h, i.e., the

mass sink removes all the fluid initially inside r = r0. Because the

linear dynamics have the limitation that |P′| < f, this value of V is

essentially the maximum allowable value, since, according to the

second entry in Eq. 13, it allows the magnitude of the growing PV

jump at r = r0 to maximize at the value f. The time dependence of

the mass sink S (r, t) for r ≤ r0 is shown in Figure 1A for the three

choices ts = 3, 6, 12 h. The time dependence of P′(r, t)/f for r ≤ r0,

as given by the second entry in Eq. 13, is shown in Figure 1B.

Thus, without restating the boundary conditions, the linear

balanced problems (Eq. 12) with this forcing (Eq. 13) take the

forms

Linear Balanced Problems for the Specified Forcing(13)

r2
z2ub

zr2
+ r

zub

zr
− μ2r2 + 1( )ub � 0 for r ≠ r0

with ub[ ]r0+r0− � 0 and
z rub( )
rzr

[ ]r0+

r0−
� t/t2s( ) e−t/ts ,

r2
z2vb
zr2

+ r
zvb
zr

− μ2r2 + 1( )vb � 0 for r ≠ r0

with vb[ ]r0+r0− � 0 and
z rvb( )
rzr

[ ]r0+

r0−
� −f 1 − 1 + t/ts( ) e−t/ts[ ],

r2
z2hb′
zr2

+ r
zhb′
zr

−μ2r2hb′ � f2r2

g

1 − 1 + t/ts( ) e−t/ts if 0≤ r< r0

0 if r0 < r<∞,

⎧⎨⎩
with hb′[ ]r0+r0− � 0 and

zhb′
zr

[ ]r0+

r0−
� 0.

(14)

Note that the relations Eq. 13 for S (r, t) and P′(r, t) result in
Dirac delta functions on the right-hand sides of the ub and vb
equations in Eq. 12. In Eq. 14, these become jump conditions on

the radial derivatives of rub and rvb. The equations governing ub
(r, t) and vb (r, t) for r ≠ r0 are homogeneous modified Bessel

equations of order one, while the equation governing hb′(r, t) is
an inhomogeneous modified Bessel equation of order zero. This

difference in orders arises from the difference in the radial

derivative operators in Eq. 12. The jump conditions on the

radial derivatives of rub and rvb can be derived via integration

of the first two equations in Eq. 12 over a narrow radial interval

surrounding r = r0.

As can be checked by direct substitution, the solutions of Eq.

14, along with the associated formula for the relative

vorticity, are

Solutions of the Linear Balanced Problems(14)
ub r, t( ) � −r0 t/t2s( ) e−t/ts I1 μr( )K1 μr0( ) if 0≤ r≤ r0

I1 μr0( )K1 μr( ) if r0 ≤ r<∞,
{

vb r, t( ) � r0f 1 − 1 + t/ts( )e−t/ts[ ] I1 μr( )K1 μr0( ) if 0≤ r≤ r0
I1 μr0( )K1 μr( ) if r0 ≤ r<∞,

{
hb′ r, t( ) � −�h 1 − 1 + t/ts( )e−t/ts[ ] 1 − μr0 I0 μr( )K1 μr0( ) if 0≤ r≤ r0

μr0 I1 μr0( )K0 μr( ) if r0 ≤ r<∞,
{

ζb r, t( ) � f 1 − 1 + t/ts( )e−t/ts[ ] μr0 I0 μr( )K1 μr0( ) if 0≤ r≤ r0
−μr0 I1 μr0( )K0 μr( ) if r0 < r<∞,

{
(15)

where I0 and K0 are the zero order modified Bessel functions,

and I1 and K1 are the first order modified Bessel functions. All

four of the solution fields in Eq. 15 are continuous across r = r0
except ζb (r, t). The fact that the solutions ub (r, t) and vb (r, t)

given in Eq. 15 satisfy the jump conditions can be checked by

using the derivative relations d [rI1 (μr)]/rdr = μI0 (μr) and d

[rK1 (μr)]/rdr = −μK0 (μr), and the Wronskian I0 (μr0)K1 (μr0)

+ K0 (μr0)I1 (μr0) = 1/(μr0). Using this Wronskian, it is easily

seen that the jump in ζb across r = r0 is the same as the jump in

P′. The maximum inflow occurs at r = r0 when t = ts, while the

maximum azimuthal flow occurs at r = r0 as t → ∞

FIGURE 1
Panel (A) shows the time dependence of the mass sink S (r, t)
for r ≤ r0, as given by the first entry in Eq. 13, with V � πr20

�h, for the
three choices ts =3,6,12 h, where the specified constant ts is the
time at which the mass sink is a maximum. Since the areas
under the three curves are identical, the total mass removed by the
mass sink is independent of ts. Panel (B) shows the corresponding
time dependence of P′(r, t)/f for r ≤ r0, as given by the second entry
in Eq.13, again for the three choices ts =3,6,12 h. Although the rate
of increase of P′(r, t) depends on ts, the ultimate value of the P′(r, t)
is independent of ts, with P′(r, t)→ f as t →∞ for r ≤ r0.
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and the minimum fluid depth anomaly occurs at r = 0 as

t → ∞.

We now examine actual solutions of the linear balanced model

and the linear primitive equation model, using the parameters

specified in Table 1 and the three forcing cases shown in

Figure 1. The solutions of the linear primitive equation model

(Eq. 7) are obtained numerically using a second-order, centered

finite differencing scheme radially, a fourth-order Runge-Kutta

scheme temporally, an outer radial boundary set at r = 5000 km,

a 100 m radial resolution, and a 1 s temporal resolution. Select

properties of the linear balanced solutions, specifically the values of

ub (r0, ts), vb (r0, ∞), and hb′(0,∞), are given in Table 2. For the

rapid forcing case ts = 3 h, the linear balanced solutions

ub(r, t), vb(r, t), hb′(r, t) and the linear primitive equation

solutions u (r, t), v (r, t), h′(r, t) are respectively plotted in the

left and right columns of Figure 2. Similarly, Figure 3 shows linear

balanced (left column) and linear primitive equation (right column)

results for parameter settings identical to those in Figure 2, except

that the time scale ts has been increased from 3 h to 6 h. Note from

Figures 2, 3 that the differences between the balanced and primitive

equation results become smaller as the forcing time scale ts increases

from 3 h to 6 h. In fact, we have chosen not to show the ts = 12 h case

because the balanced solutions and the primitive equation solutions

are so similar for this case. To better understand the nature of the

inertia-gravity wavemotion excited in the primitive equationmodel,

Figure 4 shows the time behavior of the u, v, h′ fields at r = 200, 400,

600, 800, 1000 km for the ts = 3 h case (left column) and for the ts =

6 h case (right column). The h′(r, t) field most clearly shows the

outward-propagating inertia-gravity wave packet. For the ts = 3 h

case, that wave packet causes the negative depth anomaly to

overshoot before returning to an equilibrium value that is the

same as that given by the balanced solution hb′(r,∞). Although
individual inertia-gravity wave components can have shorter time

scales, the superposition of these individual components into an

inertia-gravity wave packet results in an outward-propagating wave

pattern that has a time scale (period) of approximately 11 h.

The fundamental difference between the radial and azimuthal

wind fields plotted in Figures 2, 3 can be understood as follows.

The Dirac delta function on the right-hand side of the Klein-

Gordon equation for u (r, t) and on the right-hand side of the

diagnostic equation for ub (r, t) is characterized by a single pulse in

time, so that both u (r, t) and ub (r, t) go to zero as t→∞, similar

to S (r, t). In contrast, the Dirac delta function on the right-hand

side of the Klein-Gordon equation for v (r, t) and on the right-

hand side of the invertibility principle for vb (r, t) is characterized

by the same time behavior as the PV, so that both v(r, 17 and

vb (r, t) approach nonzero values as t → ∞.

The solution of the invertibility problem for vb (r, t) or the

solution of the invertibility problem for hb′(r, t) can be viewed as

essentially converting the radial distribution of P′ into the radial

distributions of ζb and hb′. This is a nonlocal process since it involves
the solution of a second order differential equation. Since P′ � ζ −
(f/�h)h′ and since P′ = 0 for r > r0, we obtain ζb � (f/�h)hb′ < 0 for

r > r0. The situation is quite different in the region r ≤ r0, where P′ >
0. In this region, ζb > 0 and hb′ < 0, so both the wind field and the

mass field contribute to the positive PV anomaly. To better

understand how the partitioning between ζb and hb′ in the core

(r ≤ r0) depends on vortex size, note that the average vorticity in the

core is given by 2vb (r0, t)/r0, which allows us to write

Average Core Vorticity
Core PVAnomaly

� 2vb r0, t( )/r0
P′ 0, t( ) � 2I1 μr0( )K1 μr0( )

� 0.960, 0.891, 0.817, 0.746, 0.680( )
for μr0 � 0.2, 0.4, 0.6, 0.8, 1.0( ),

(16)
where the second equality follows from the cancellation of the

time dependence of vb (r0, t) with the time dependence of P′(0, t).
Thus, as long as the radius of the vortex core is less than a Rossby

length (i.e., μr0 < 1), most of the PV anomaly in the core is

partitioned to the vorticity field rather than to the mass field.

Since P′(r, t) grows as shown in Eq. 8, then |zP′/zr| at the PV
edge increases with time and inertia-gravity waves can be excited

there. Thus, the outer edge of a PV tower can be a region for the

spontaneous generation of inertia-gravity waves. The inertia-

gravity wave packets initiated at r = 200 km propagate inward

and outward at c � (g�h)1/2 � 50 m s−1 = 180 km h−1, so that at r =

920 km the radial flow u, the azimuthal flow v, and the free surface

height anomaly h′ remain zero for the first 4 hours, immediately

after which the height anomaly quickly becomes negative, the

radial flow quickly becomes inward, and the azimuthal flow

becomes cyclonic. Although the inertia-gravity wave packets are

visible in the u (r, t), v (r, t), and h′(r, t) fields, they are invisible in
the P′(r, t) field. Even though the balanced solutions

ub(r, t), vb(r, t), hb′(r, t) filter inertia-gravity waves, they are

useful approximations of the primitive equation solutions u (r,

t), v (r, t), h′(r, t) even when the time scale of the mass sink is as

short as ts = 3 h. Since the balanced dynamics have an elliptic

rather than a hyperbolic character, the response at large radius to a

mass sink at small radius is immediate, i.e., it can be described as

“action at a distance.” In this regard, the following analogy is

useful: The balanced model is to the primitive equation model as

Newton’s gravitational theory is to general relativity, i.e., in the

shallow water primitive equations information cannot radially

TABLE 1 Parameters used for the linear balanced and linear primitive
equation solutions.

Specified Constants Computed Quantities

r0 = 200 km r0f =10 m s−1

f = 5 × 10–5 s−1 c =(g�h)1/2 � 50 m s−1

g = 9.8 m s−1 μ−1 =(g�h)1/2/f � 1000 km

�h �255.1 m μr0 = 0.2

I1 (μr0)K1 (μr0) = 0.47999
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propagate faster than c � (g�h)1/2, while in general relativity

information cannot propagate faster than the speed of light.

We may use the results of this section as the basis for the

following physical picture. Each pulse of eyewall convective mass

transport from the lower to the upper troposphere is

accompanied by a corresponding pulse in the divergent

circulation, which ratchets up the rotational circulation and

ratchets down the fluid depth. According to the balanced

model, the time dependence of the divergent circulation is in

lock-step with the forcing S (r, t); this behavior is due to the

mathematically elliptic character of the balanced divergent flow

(i.e., action at a distance). Convection in the hurricane eyewall

can fluctuate on a variety of time scales, so the secondary

circulation is expected to fluctuate in a roughly similar

fashion. If the convective fluctuations have a vertical structure

similar to the first internal mode of the troposphere, the

associated gravity wave speed is approximately 50 m s−1

(180 km h−1), so the information from eyewall convective

fluctuations will propagate outward to 1000 km in

approximately 4.5 h. For eyewall convective fluctuations

having time scales larger than 6 h, the amplitude of the

associated inertia-gravity wave packet is small, but for eyewall

convective fluctuations with time scales less than 3 h, the

amplitude of the associated wave packets may be considerably

larger. In a continuously stratified fluid the inertia-gravity wave

packets also propagate vertically, an important aspect that is

further discussed in Section 5.

Although the linear analysis presented in this section

provides a helpful guide to the nonlinear analysis of Section 4,

the linearization used in Eq. 7 means that we are not analyzing

true gradient adjustment and are restricting applications of the

analytical results to situations where ζ < f, whereas real tropical

cyclones involve situations in which ζ ~ 100f. In Section 4 we

examine the full nonlinear case.

4 Nonlinear dynamics in the
Lagrangian coordinate

We now return to the nonlinear shallow water equations of

Section 2, and perform numerical integrations using two types of

forcing. The first type uses the mass sink defined by Eq. 13, i.e., the

mass sink is confined within a disk of fixed radius (0 ≤ r ≤ r0). The

second type, defined below in Eq. 27, uses amass sink that is confined

within the disk 0 ≤ R ≤ R0, where R is a Lagrangian coordinate that

collapses as the vortex intensifies. As we shall see, there are some

remarkable differences in the vortices that can be produced by these

two types of forcing.

Figure 5 compares the nonlinear (left panels) and linear (right

panels) numerical integrations using the identical parameter

settings and forcing used to obtain the results shown in the

right column of Figure 2. A major difference between the linear

and nonlinear cases is the inward shift of the radius of maximum

wind in the nonlinear case. In the linear case the azimuthal

equation is (zv/zt) = −fu, so the radial distributions of (zv/zt)

and − u are identical. In the nonlinear case the azimuthal equation

is (zv/zt) = −(f + ζ)u, so the radial distribution of (zv/zt) is shifted

inward when compared to the radial distribution of − u. During

the first 24 h, the radius ofmaximumazimuthal wind shifts inward

from 200 km to about 150 km and the maximum azimuthal wind

approaches 5.3 m s−1. Thus, for 24 ≤ t ≤ 48 h, the average relative

vorticity inside r = 150 km is approximately 1.4f, somewhat

outside the range of validity for linear theory.

Before discussing results of the second type of forcing, we

note that insight into nonlinear model results can be obtained by

transforming from the original independent variables (r, t) to the

new independent variables (R, τ), where τ = t and R is defined by
1
2fR

2 � 1
2fr

2 + rv � 1
2fr

2 + RV, with V = (r/R)v denoting the

new dependent variable. Note that in general (z/zτ) ≠ (z/zt) since

(z/zτ) implies fixed Rwhile (z/zt) implies fixed r. We can think of

TABLE 2 Themaximum radial inflow, maximum azimuthal wind, and final central depth anomaly for the three forcing cases ts =3,6,12 h, as computed
from the linear balanced solutions (Eq. 15) using the specified and computed constants listed in Table 1. The maximum radial inflow is
proportional to 1/ts, but theweaker inflows last progressively longer. Since the same volume of fluid is removed in each case, the final values vb (r0,∞)
and hb9(0,∞) are the same. Even though all the originalmass inside r= r0 has been removed by themass sink, almost all of thismass has been replaced
by the time-integrated inflow at r = r0, so that the final central depth anomaly is only −11.43 m. Detailed plots of the ts =3 h and ts =6 h cases are
presented in Figures 2, 3. The ts =12 h case is not shown since the balanced solutions and the primitive equation solutions are so similar.

Property Forcing Case

ts = 3 h ts = 6 h ts = 12 h

Maximum Radial Inflow −3.27 m s−1 −1.63 m s−1 −0.82 m s−1

ub (r0, ts) = −(r0/ts)e
−1I1 (μr0)K1 (μr0)

Maximum Azimuthal Wind 4.80 m s−1 4.80 m s−1 4.80 m s−1

vb (r0, ∞) = r0fI1 (μr0)K1 (μr0)

Final Central Depth Anomaly −11.43 m −11.43 m −11.43 m

hb′(0,∞) � −�h[1 − μr0K1(μr0)]
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R as an absolute angular momentum coordinate with the unit of

length, or equivalently, as the potential radius, i. e., the radius to

which a fluid particle must be moved, conserving its absolute

angular momentum, in order for its azimuthal wind to vanish.

Finally, in the present context of inviscid flow, R can also be

viewed as a Lagrangian coordinate, i. e., as a fluid particle label.

Noting that

1 + 2v
fr

( ) 1 − 2V
fR

( ) � 1, (17)

FIGURE 2
Panels (A-C) show the linear balanced solutions ub(r, t), vb(r, t), hb′(r, t) obtained from Eq. 15, while panels (D-F) show the corresponding linear
primitive equation (PE) solutions u (r, t), v (r, t), h′(r, t) obtained from Eq. 7 or equivalently from Eq. 11, all for the rapid forcing case ts =3 h. The isoline
intervals are 0.5 m s−1 for the radial and azimuthal flow and 2.0 m for the perturbation depth, and the gray regions indicate initial regions where the
plotted field is zero. The peak radial inflow is −3.3 m s−1 for the balanced case and −3.8 m s−1 for the primitive equation case, which has a slight
overshoot. As t→∞, both vb (r0, t) and v (r0, t) approach 4.8 m s−1, while both hb′(0, t) and h′(0, t) approach −11.4 m. Note that in the outer region 800<
r <1000 km, the balancedmodel response to the inner core forcing is instantaneous (action at a distance), while in the primitive equationmodel there
is a 4–5 h delay as the inertia-gravity wave packet propagates outward at 50 m s−1. The pink area in the u (r, t) panel is weak outward radial velocity
and is associated with inertia-gravity waves having very small radial wavenumber k, so that the relevant frequency (f2 + c2k2)1/2 is close to the inertia
frequency ω ≈ f (i.e., a period of approximately 34.9 h).
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we can easily confirm that transformations between r, v and R, V

can be written in the form

R � 1 + 2v
fr

( )1/2

r

V � 1 + 2v
fr

( )−1/2
v

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ 5

r � 1 − 2V
fR

( )1/2

R

v � 1 − 2V
fR

( )−1/2
V

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭.

(18)

Since the relative circulation 2πrv divided by the area πr2 is 2v/r,

the factor (1 + 2v/fr) can be interpreted as the absolute circulation per

unit area, measured in units of f, or equivalently, as the dimensionless

average absolute vorticity inside the radius r. In the core of a hurricane

we typically find (1 + 2v/fr) ~ 100 and (1 − 2V/fR) ~ (1/100), so

that r ~ (1/10) R and v ~ 10 V. Because of the conservation of

absolute angular momentum, the material derivative is (D/Dt) =

(z/zt) + u (z/zr) = (z/zτ). As discussed below, this simplification

FIGURE 3
As in Figure 2, panels (A-C) show the linear balanced solutions ub(r, t), vb(r, t), hb′(r, t) while panels (D-F) show the corresponding linear
primitive equation solutions u (r, t), v (r, t), h′(r, t). All parameter settings used in this figure are identical to those used in Figure 2, except that ts has been
changed, i.e., Figure 2 corresponds to the rapid forcing case ts =3 h, while the present figure corresponds to the less rapid forcing ts =6 h. Note that,
with less rapid forcing, the differences between the balanced and primitive equation solutions are smaller.
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of the material derivative will allow the PV equation to be

directly integrated in time, so that the PV part of the dynamics

can be treated analytically. The fact that (D/Dt) = (z/zτ) means

that the radial advective effects u (zu/zr), u (zv/zr), u (zh/zr),

and u (zP/zr) become implicit in the coordinate transformation

r→ R. If the solutions of the nonlinear shallow water equations

are obtained in R-space, the effects of the radial advection terms

do not appear until the final step of transforming the results

back to r-space. Many of the characteristics of rapid

intensification appear in this transformation R → r.

FIGURE 4
This figure shows the time dependence of the linear primitive equation solutions for the radial flow u (r, t), the azimuthal flow v (r, t), and the
deviation depth h′(r, t) at the selected radii r =200,400,600,800,1000 km for the rapid forcing case ts =3 h (A-C) and for the less rapid forcing case
ts=6 h (D-F). Note that these curves are simply vertical cross sections from Figures 2, 3. The outward propagating inertia-gravity wave packet is most
readily apparent in the h′(r, t)-field, where it is immediately seen at r =200 km, and is seen, for example, with an approximately 4.5 h delay at
r =1000 km. At each radius for the rapid forcing case (ts =3 h) these linear primitive equation solutions for h′(r, t) overshoot before coming into
adjustment at a value that equals hb′(r,∞). The less rapid forcing case (ts =6 h) generates a weaker inertia-gravity wave packet that does not result in
such an overshoot in the h′(r, t) solutions.
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To further understand the transformation between v(r)

and V(R), it is useful to consider the special case of a

Rankine vortex. This example is simple because if V has a

Rankine structure in R, then v has a Rankine structure in r,

i. e.,

V R( ) � V0
R/R0 if 0≤R≤R0

R0/R if R0 ≤R<∞{ 5

v r( ) � v0
r/r0 if 0≤ r≤ r0
r0/r if r0 ≤ r<∞,

{ (19)

FIGURE 5
Panels (D-F) show the linear primitive equation solutions u (r, t), v (r, t), h′(r, t) for the rapid forcing case ts =3 h as shown previously in the right
panels of Figure 2. Panels (A-C) show the nonlinear primitive equation solutions u(r, t), v(r, t), h(r, t) − �h obtained from Eq. 1 for the rapid forcing case
ts =3 h obtained using the same parameters and forcing as those used for the linear results. The isoline intervals are identical to those used in the
linear case (Figure 2), i.e., 0.5 m s−1 for the radial and azimuthal flow and 2.0 m for the perturbation depth, and the gray regions again indicate
initial regions where the plotted field is zero. For the nonlinear results, the peak radial inflow is −3.8 m s−1 and occurs at r =200 km, the central depth
anomaly h(0, t) − �h approaches −15.4 m as t→∞, and themaximum azimuthal flow approaches 5.3 m s−1 at about r =150 km. It follows that, for 24≤
t ≤48 h, the average relative vorticity inside r=150 km is approximately 1.47 f. A major difference between the linear and nonlinear cases is the inward
shift of the radius of maximum wind in the nonlinear case. Further discussion of this effect is given in Hack and Schubert (1986).
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where r0, v0 are related to R0, V0 by

r0 � 1 − 2V0

fR0
( )1/2

R0 and v0 � 1 − 2V0

fR0
( )−1/2

V0. (20)

Thus, if we specify R0 and V0, then compute r0 and v0 from Eq.

20, we can plotV(R) and v(r) using Eq. 19. Figure 6 shows a family of

Rankine vortices with R0 = 300 km and 0 ≤ v0 ≤ 65 m s−1 where

isolines of the physical azimuthal wind v in the (r, v0)-plane are

shown in the top panel and isolines of the transformed azimuthal

wind V in the (R, v0)-plane are shown in the bottom panel. For a

particular value of v0, the associated horizontal cross section from the

top panel gives v(r) for that particular Rankine vortex and the same

FIGURE 6
An illustration of the transformation relations Eq. 18 for the special case of a family of Rankine vortices, as defined in Eqs. 19, 20, with R0=300 km
and f =5×10–5 s−1, so that 1

2 fR0 � 7.5 m s−1. Panel (A) shows isolines of the physical azimuthal wind v in the (r, v0)-plane with an isoline interval of
5 m s−1, and panel (B) shows isolines of the transformed azimuthal wind V in the (R, v0)-plane with an isoline interval of 0.5 m s−1. In both (A,B) the
range on the left ordinate is 0≤ v0≤65 m s−1. This corresponds to the range 0≤ V0≤7.403 m s−1, as shown on the right ordinate of panel (B), and to
the range 0≤ ζ0/f ≤76.10, as shown on the right ordinate of panel (A), where ζ0/f =2v0/(fr0) is the dimensionless core vorticity. Note the striking
difference in the behavior of V(R) and v(r). As V (R0) increases from rest to 7.403 m s−1, v (r0) increases from rest to 65 m s−1 and the radius ofmaximum
wind decreases from r0=300 km to r0=34.17 km.
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horizontal cross section from the bottom panel gives the

corresponding V(R) for that same Rankine vortex. Since all the

effects of radial advection are implicit in the R-coordinate, these often

striking radial advective effects appear in the transformation back

from R to r, i.e., in going from the bottom panel to the top panel in

Figure 6. Some of the information in Figure 6 can also be presented in

tabular form, as shown in Table 3. In constructing Table 3 we have

chosen R0 = 300 km and a convenient set of values for v0, and then

used Eq. 20 to determine r0 and V0. The determination of r0 is easily

accomplished by noting that the two equations in Eq. 20 can be

combined into r0 � [(α2 + 1)1/2 − α]R0, where α = v0/(fR0). Once r0
is thereby found, V0 can be computed from V0 = (r0/R0)v0. Table 3

shows properties for a sequence of Rankine vortices with R0 =

300 km, running from tropical depression (TD), to tropical storm

(TS), and on upward to category five hurricane strength.

Because of the conservation of absolute angular momentum, the

material derivative is (D/Dt) = (z/zt) + u (z/zr) = (z/zτ). This allows

the potential vorticity equation (Eq. 2) and its solution to bewritten as

zP

zτ
� PS 0

P R, τ( ) � f exp ∫τ

0
S R, τ′( ) dτ′( )

and

hp R, τ( ) � �h exp −∫τ

0
S R, τ′( ) dτ′( ),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(21)

where the potential depth h* is related to the potential vorticity by

Php � f�h. Comparing the second entry in Eq. 21 with the linear

version (Eq. 8), note that the appearance of the exponential

function in Eq. 21 will lead to much faster growth of the P field in

the nonlinear case. In fact, it is the appearance of this exponential

function that is the crux of the rapid intensification process. In

order to make practical use of this and related theoretical results,

Hendricks et al. (2021) have introduced and tested a minimal,

axisymmetric, shallow water modeling system (SWAMI) as an

aid to forecasting short-term tropical cyclone intensity and wind

structure changes.

Now consider the transformation of the nonlinear equations

(Eq. 3). Using Eqs. 17, 18, and the definitions for R and V, the

following useful relationships can be derived

z

rzr
� f + ζ

f
( ) z

RzR
, f + z rv( )

r zr
( ) f − z RV( )

R zR
( ) � f2 � f + 2v

r
( ) f − 2V

R
( ),

r2 f + v

r
( ) � R2 f − V

R
( ), and

z

rzr

z rv( )
rzr

( ) � f + ζ

f
( )3

z

RzR

z RV( )
RzR

( ).
(22)

Using Eq. 22 and the definitions for P and h*, the nonlinear

equations (Eq. 3) become

zu

zτ
− R

r
( )3

f − V

R
( )V +gh

f

h2r

hp2R
( ) z

zR

z RV( )
RzR

( ) � −g h2r

hp2R
( ) zhp

zR

and
R

r

zV

zτ
+ fu � 0.

(23)

The single, nonlinear partial differential equation for V (R, τ) can

now be obtained by eliminating u from the system in Eq. 23.

Taking (r/R) (z/zτ) of the V-equation in Eq. 23, and then making

use of the u-equation, we obtain

Nonlinear Klein − Gordon Equation for V R, τ( )
z

zR

z RV( )
R zR

( ) − 1
gh

hpR

hr
( )2

f
R

r
( )2

f − V

R
( )V + r

z

zτ

1
r

zV

zτ
( ){ } � −f

h

zhp

zR

with
BCs : V 0, τ( ) � 0, RV R, τ( ) → 0 as R → ∞
ICs : V R, 0( ) � 0, Vτ R, 0( ) � 0

⎧⎨⎩ ⎫⎬⎭,

(24)

which is the nonlinear generalization of the middle entry in Eq. 11.

The initial conditions and boundary conditions in Eq. 24 result from

the assumption that the evolving flow is due entirely to a localized

forcing S (R, τ). The factors r and h appearing in Eq. 24 can be

expressed in terms of V by

r � R 1 − 2V
fR

( )1/2

and h � hpf f − z RV( )
R zR

( )−1
. (25)

When the forcing term on the right-hand side of Eq. 24 is slow

enough, the azimuthal flow remains close to gradient balance. Then,

the r (z/zτ)[(1/r) (zV/zτ)] term becomes negligible and Eq. 24

simplifies to the following invertibility principle for the balanced

transformed azimuthal wind Vb(R, τ):

Nonlinear Invertibility Problem for Vb R, τ( )

R2z
2Vb

zR2 + R
zVb

zR
− μ2bR

2 + 1( )Vb � −fR
2

h

zhp

zR

with BCs : Vb 0, τ( ) � 0, RVb R, τ( ) → 0 as R → ∞

where μb R, τ( ) � f

gh
f − Vb

R
( )[ ]1/2

f − 2Vb

R
( )−1

f − z RVb( )
RzR

( ).
(26)

TABLE 3 Rankine vortex properties for a variety of storm categories,
ranging from tropical depression (TD), to tropical storm (TS), to
the five hurricane categories (C1–C5), and computed using Eq. 20
with R0=300 km and f =5×10–5 s−1. A range of values of the maximum
physical azimuthal wind v0 is specified in the second column
followed by computed values in the next three columns of the
radius of maximum wind r0, the maximum transformed azimuthal
wind V0, and the quantity 2v0/(fr0), which can be interpreted as the
core’s relative vorticity, measured in units of f. Since the validity of
the linearized dynamics discussed in Section 3 requires that 2v0/
(fr0)<1, seven of the eight storm categories shown here fall outside
the scope of linear theory.

Storm
Category

v0
(m s−1)

r0
(km)

V0

(m s−1)
2v0/(fr0)
Vorticity/f

TD 5 216.2 3.604 0.93

TD 15 124.3 6.213 4.8

TS 25 83.1 6.925 12.0

C1 35 61.6 7.184 22.7

C2 45 48.7 7.303 37.0

C3 55 40.2 7.366 54.8

C4 65 34.2 7.403 76.1

C5 75 29.7 7.427 101.0
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Once again the h appearing in Eq. 26 can be expressed in terms of

V by using Eq. 25.

In analogy with the argument given in Section 3 for the linear

case, we now assume that the mass sink S (R, τ) vanishes for R >
R0 and is horizontally uniform for R ≤ R0, where R0 is a specified

constant. The time dependence of S (R, τ) is again assumed to be

(τ/τ2s ) e−τ/τs , where τs is a specified constant. Again, small values

of τs correspond to fast forcing and large values of τs to slow

forcing. This forcing S (R, τ) and the result of using it in Eq. 21 are

given by

S R, τ( ) � −ln 1 − ϵ( ) τ/τ2s( ) e−τ/τs if 0≤R≤R0

0 if R0 <R<∞,
{ (27)

and

hp R, τ( ) � �h 1 − ϵ( )1− 1+τ/τs( )e−τ/τs if 0≤R≤R0

1 if R0 <R<∞,
{ (28)

where ϵ � V/(πR2
0
�h) and, as confirmed below, the specified

constant V is the total volume of fluid removed by the mass

sink. Note that ϵ is the percentage of the initial fluid volume

inside the potential radius R0 that is removed by the mass sink

and that − ln (1 − ϵ) ≈ ϵ for ϵ≪ 1, in which case the forcing for the

nonlinear case (Eq. 27) is essentially the same as the forcing for

the linear case (Eq. 13). The h* field is a disk of potential radius

R0, with values of h* in its interior decreasing with time. To

confirm that the constant V is the total volume of fluid removed,

integrate the mass continuity equation over the entire spatial

domain to obtain

z

zt
2π∫∞

0

�h − h r, t( )[ ]r dr{ } � 2π∫∞

0
Sh r dr

� 2π∫R0

0
Shp RdR � −πR2

0

zhp 0, τ( )
zτ

,

(29)
where we have made use of hr dr = h*R dR, the assumption that

S = 0 for R > R0, and the assumption that S (R, τ) and h*(R, τ) are

independent of R for R ≤ R0. The last equality in Eq. 29 results

from writing the first entry of Eq. 21 in the form (zh*/zτ) = −Sh*.

The total volume of fluid removed is now obtained by integrating

Eq. 29 over time, giving

2π∫∞

0

�h − h r,∞( )[ ]r dr � πR2
0
�h − hp 0,∞( )[ ] � πR2

0
�hϵ � V,

(30)
where the second to last equality in Eq. 30 results from the use of

Eq. 28 to show that hp(0,∞) � (1 − ϵ)�h. This confirms that V is

the total volume of fluid removed by the mass sink over its life

cycle. In other words, for a fixed value of V in Eq. 27, the total

volume of fluid removed by the mass sink is independent of the

choice of the constants τs and R0, although the choice of R0

should satisfy πR2
0
�h>V so that 1 − ϵ > 0. Note that since R is a

Lagrangian coordinate, fluid does not flow across R surfaces, so ϵ
is constrained to be less than unity. As we shall now discuss, a

crucial aspect of the forcing (Eq. 27) is its confinement to R ≤ R0,

i.e., in physical space the forcing collapses as the angular

momentum surface R0 collapses. This confines the forcing to

the high PV region (Musgrave et al., 2012) and leads to rapid

increases in the core PV.

Since P/f � �h/hp, the solution in Eq. 28 can also be expressed

in the potential vorticity form

P R, τ( ) � f 1 − ϵ( ) 1+τ/τs( )e−τ/τs −1 if 0≤R≤R0

1 if R0 <R<∞,
{

0 P 0,∞( ) � f

1 − ϵ � f 1 − V
πR2

0
�h

( )−1
,

(31)

A plot of P (0, ∞)/f as a function of V/(πR2
0
�h) is given in

Figure 7. As discussed in Supplementary Appendix D, the

solution Eq. 31 can be used to obtain a simple upper bound on

the rotational flow v (r, t). If we regard R0 as fixed, the abscissa

of Figure 7 can be interpreted as a measure of the total volume

of fluid removed by the mass sink. If the total volume of fluid

removed is V � 0.5 (πR2
0
�h), then P (0, ∞) = 2f. If the total

volume of fluid removed is V � 0.90 (πR2
0
�h), then P (0, ∞) =

10f. In the extreme case when the total volume of fluid

removed is V � 0.99 (πR2
0
�h), then P (0, ∞) = 100f. In other

words, it is the removal of the last vestiges of the original mass

inside R0 that spins up the PV to such large values. This effect

can also be seen in Figure 8, which shows plots of P (0, τ)/f, as

given by Eq. 31, for the time range 0 ≤ τ ≤ 72 h and for the fixed

volume parameter V � 3.174 × 1013 m3. The nine curves

correspond to combinations of the three choices τs = 3, 6,

12 h and the three choices R0 = 200, 300, 400 km, the latter of

which give ϵ = 0.990, 0.440, 0.248. The nine curves illustrate

the sensitivity of the core PV to the value of R0 for fixed V.
They also illustrate the concepts of long incubation times and

vortex preconditioning (see section 15 of Ooyama, 1969). For

example, although all nine cases in Figure 8 have the same

value of V, the R0 = 400 km case has the mass sink spread over

the largest area, so the vortex experiences a long period of

incubation, with the PV increasing to only ~ 1.3f by the end of

the mass sink. The R0 = 300 km case also experiences long

incubation, with the PV increasing to ~ 1.7f by the end of the

mass sink. In contrast, the PV in the R0 = 200 km case increases

to ~ 100f in 72 h when developing from a resting initial state.

However, if the R0 = 200 km case were initialized with P (0,

0) = 5f, it could reach a core PV of ~ 100f in less than 24 h.

Such a vortex might be said to be preconditioned for rapid

development. The most detailed observations and analyses of a

rapidly intensifying hurricane are those of Hurricane Patricia,

which occurred in the northeast Pacific in October 2015.

The potential vorticity analysis of Martinez et al. (2019)

indicates that Hurricane Patricia could be roughly

interpreted as the preconditioned R0 = 200 km case,

although any detailed comparison would involve the

important roles of frictional boundary layer pumping and

moist physical processes.
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As a final illustration of the remarkable intensification

that can result with the second type of forcing, Figure 9 shows

the results of two nonlinear primitive equation model

integrations using the forcing in Eq. 27 with ts = 3 h. The

right three panels show the time evolution of u (r, t), v (r, t),

and h(r, t) − �h for the parameter settings R0 = 300 km and ϵ =
0.44, while the left three panels show the corresponding

results for R0 = 200 km and ϵ = 0.99. Since V � πR2
0
�hϵ, the

same total volume of fluid is removed in each case. However,

the vortex intensification is quite different in the two cases,

with the ϵ = 0.99 case intensifying to hurricane strength and

the ϵ = 0.44 case intensifying to only about 4 m s−1. This is

consistent with the sensitivity of PV evolution illustrated in

Figures 7, 8.

5 Concluding remarks

It is important to note that the simple axisymmetric shallow

water model framework of this work does not include

environmental effects and the frictional boundary layer, both

of which certainly play a role in the rapid intensification

process. Nevertheless, the nonlinear results presented here

provide what we believe is an important part of the puzzle

and are consistent with the notion that intensity forecasting is a

difficult problem. For example, suppose (quite hypothetically)

that we have a tropical cyclone with its core diabatic forcing

(convection) confined by the absolute angular momentum

surface R = R0. As can be see from Figures 7–9, if that

diabatic forcing is able to remove 99% of the original mass

inside that R0 surface over the next 24 h, then that tropical

cyclone will undergo rapid intensification, but if the forcing

only removes 50% of the original mass, then it will only slightly

intensify. This does not mean that larger storms, i.e., storms

with larger R0 values, cannot undergo rapid intensification, just

that such a larger storm may require a longer incubation period

before rapid intensification can occur.

Concerning the frictional boundary layer, consider a

region bounded by two R-surfaces and two lower

tropospheric θ-surfaces just above the boundary layer,

i.e., an (R, θ)-pseudovolume. The removal of mass from

such a pseudovolume involves both diabatic processes and

boundary layer pumping. Boundary layer pumping may play a

dual role, helping to keep the diabatic heating radially

confined so that it collapses with the R-surfaces, but also

limiting the percentage of mass that can be removed from that

(R, θ)-pseudovolume. We might conclude that accurate

determination of the location and magnitude of

both frictional and diabatic mass fluxes is necessary

for forecasting rapid intensification. The inclusion of

environmental effects, such as vertical shear, would

require fully three-dimensional arguments and thus a more

FIGURE 7
The final, dimensionless core potential vorticity P (0,∞)/f as a
function of ϵ � V/(πR2

0
�h), as given by Eq. 31 and shown by the

displayed formula. Note that the scale on the ordinate is
logarithmic. If we regardR0 as given, the abscissa is ameasure
of the total volume of fluid removed by the mass sink. This graph
implies that it is the removal of the last 10% of the initial volume of
fluid inside R0 that can rapidly spin up the PV from 10f tomore than
100f. Since P � (f + ζ)(�h/h), large values of P are associated with
large values of the absolute vorticity (f + ζ) and small values of the
fluid depth h.

FIGURE 8
Plots of P (0, τ)/f, as given by Eq. 31 for the three choices
τs =3,6,12 h, and for the three choices R0=200,300,400 km. The
time evolution of P (0, τ)/f is plotted for 0≤ τ ≤72 h, and the volume
parameter is chosen to be V � 3.174 × 1013 m3. This specified
value of V is 99.0% of the initial volume inside the potential radius
R0=200 km, 44.0% of the initial volume inside the potential radius
R0=300 km, and 24.8% of the initial volume inside the potential
radius R0=400 km.
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detailed PV analysis or a generalized omega equation

analysis (DeMaria, 1996; Wang and Zhang, 2003), which is

an important topic for future research. While the

present paper certainly does not solve the rapid

intensification problem, perhaps it better defines the nature

of the problem.

In closing we note that it can be argued that inertia-gravity

waves generated by tropical cyclones are simply “the zero-PV

icing on the cake” of what is fundamentally a balanced, potential

vorticity phenomenon. Although there is merit to this argument,

the observational monitoring of inertia-gravity waves as they

propagate upward into the stratosphere and mesosphere can

FIGURE 9
Panels (A–F) show the nonlinear primitive equation solutions obtained from Eq. 1 for the radial flow u (r, t), the azimuthal flow v (r, t), and the
deviation depth h(r, t) − �h for the forcing in Eq. 27 with ts =3 h. Panels (A-C) use the parameters R0=200 km and ϵ =0.99, while panels (D-F) use
R0=300 km and ϵ =0.44. Since V � πR2

0
�hϵ, the same volume of fluid is removed in each case. For the ϵ =0.44 case shown in (D-F), the maximum

azimuthal winds are only about 4 m s−1, while for the ϵ=0.99 case shown in (A-C), themaximumazimuthal winds increase to hurricane strength.
The gray regions indicate initial regions where the plotted field is zero.
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reveal information about eyewall convection. Some of this

information might be of practical use in the prediction of

rapid intensification. Inertia-gravity waves excited by inner

core tropical cyclone convection can sometimes be observed at

mesosphere levels by airglow observations from the Earth’s

surface or from low Earth orbit (Miller et al., 2012, 2015). For

example, Suzuki et al. (2013) described inertia-gravity wave

patterns in the mesopause region caused by tropospheric

convection in Typhoon Pongsona on 10 December 2002.

Concentric rings of inertia-gravity waves in the OH airglow

were observed simultaneously by all-sky imagers in a Japanese

network of surface stations located between 31.0N and 43.5N.

Such ground-based optical measurements require clear-sky

conditions, so must be obtained at some distance from the

tropical cyclone core in order to avoid persistent cirrus

overcast. Such concentric mesospheric airglow waves can also

be observed from space (Yue et al., 2014). As a recent example,

Figure 10 shows a nocturnal Suomi-NPP VIIRS Day/Night Band

image that captured concentric mesospheric airglow waves

propagating upward from Super Typhoon Surigae near the

time of its peak intensity on 17 April 2021. Concerning

evidence from data at stratospheric levels, signatures of

stratospheric inertia-gravity waves that have large vertical

wavelengths can be found in Atmospheric Infrared Sounder

(AIRS) radiance measurements in the 4.3 μm CO2 waveband.

Such measurements detect the wave-induced perturbations in

stratospheric temperature at levels between 30 and 40 km. Using

such data, Hoffmann et al. (2018) searched for an association of

stratospheric inertia-gravity waves with the intensification of

tropical cyclones. They found a statistical correlation between

stratospheric inertia-gravity wave activity and tropical cyclone

intensification, lending support to the idea that variability in

inertia-gravity wave signatures as a result of changing storm

behavior may constitute a useful diagnostic tool for rapid

intensification. This interesting possibility led Tratt et al.

(2018) to propose a satellite mission concept for monitoring

stratospheric inertia-gravity waves from geostationary orbit,

which would open up the possibility of continuous

monitoring. Although the theoretical results presented here

are limited to shallow water dynamics, they do highlight some

of the subtleties that are involved in linking inertia-gravity wave

activity to rapid intensification. Thus, as research on this topic

evolves with the use of full physics numerical models, it

would not be surprising to encounter subtleties in the

relationship of stratospheric inertia-gravity wave activity to

rapid intensification.

An important result presented here is the nonlinear,

inhomogeneous, Klein-Gordon equation (Eq. 24), which

describes essential aspects of the rapid intensification of the

potential vorticity and azimuthal wind fields in a tropical

cyclone. Although this equation has an unfamiliar form, it

may be of interest to note a relevant point made by Weinberg

(1977, page 131) concerning results derived from sound

physical and mathematical principles: “This is often the

way it is in physics—our mistake is not that we take our

theories too seriously, but that we do not take them seriously

enough. It is always hard to realize that these numbers and

equations we play with at our desks have something to do with

the real world.”
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FIGURE 10
A nocturnal (several hours before sunrise) Suomi-NPP VIIRS Day/Night Band image (0.7 μm) showing concentric mesospheric airglow waves
that have propagated upward from the convective core of Super Typhoon Surigae near the time of its peak intensity on 17 April 2021, when it was just
east of the Philippines. From Bachmeier (2021).
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