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Sulfur dioxide (SO2) is one of the main pollutants in China’s atmosphere, but the

spatial distribution of ground-based SO2 monitors is too sparse to provide a

complete coverage. Therefore, obtaining a high spatial resolution of SO2

concentration is of great significance for SO2 pollution control. In this study,

based on the LightGBM machine learning model, combined with the top-of-

atmosphere radiation (TOAR) of Himawari-8 and additional data such as

meteorological factors and geographic information, a high temporal and

spatial resolution TOAR-SO2 estimation model in eastern China (97–136°E,

15–54°N) is established. TOAR and meteorological factors are the two variables

that contribute the most to the model, and both of their feature importance

values exceed 30%. The TOAR-SO2 model has great performance in estimating

ground-level SO2 concentrations with 10-fold cross validation R2 (RMSE) of

0.70 (16.26 μg/m3), 0.75 (12.51 μg/m3), 0.96 (2.75 μg/m3), 0.97 (2.16 μg/m3), and

0.97 (1.71 μg/m3) when estimating hourly, daily, monthly, seasonal, and annual

average SO2. Taking North China as main study area, the annual average SO2 is

estimated. The concentration of SO2 in North China showed a downward trend

since 2016 and decreased to 15.19 μg/m3 in 2020. The good agreement

between ground measured and model estimated SO2 concentrations

highlights the capability and advantage of using the model to monitor

spatiotemporal variations of SO2 in Eastern China.
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1 Introduction

In past decades, China’s industrialization has accelerated, resulting in more serious

environmental problems (Li et al., 2014). SO2 is a primary source of air pollution and

directly affects human health, causing various cardiovascular and respiratory diseases

(Sunyer, 2003; Johns and Linn, 2011; Li et al., 2015; Song et al., 2016; Wang et al., 2018). In

addition, as a main precursor of sulfate, SO2 increases the frequency of haze events and
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causes substantial damage to the ecological environment (Zhu

et al., 2011; Lee, 2015; Calkins et al., 2016).

In recent years, China has successively built a series of SO2

ground monitoring stations. These stations can provide data

sources for SO2-related research. However, the small number and

uneven distribution render limited spatial coverage of ground-

based SO2 monitors (Yu et al., 2018). Compared with ground

monitoring, satellite observation has a wide coverage, and there is

a good correlation between SO2 column concentration and

ground-level SO2 concentration, mainly using polar orbiting

satellites. Therefore, the model based on SO2 column

concentration from satellite observation has become an

effective tool to obtain ground-level SO2 concentration with

high spatial resolution (Ialongo et al., 2016; Liu et al., 2016).

At present, satellite instruments widely used in SO2 column

concentration monitoring are the Global Ozone Monitoring

Experiment (GOME) (Eisinger and Burrows, 1998), the

Atmospheric Infrared Sounder (AIRS) (Carn, 2005), the

Ozone Monitoring Instrument (OMI) (Yang et al., 2007; Li

et al., 2017; Zhang et al., 2017; Li et al., 2020a) and the

Scanning Imaging Absorption Spectrometer for Atmospheric

Chartography (SCIAMACHY) (Lee et al., 2011). Based on

satellite remote sensing, these studies successfully estimated

the ground-level SO2 concentration using statistical methods,

which filled the gap in observational data.

However, polar orbiting satellites can only observe daily data

on the concentration of SO2 columns, and these data are a

combination of observations taken at two different times.

That is to say, the input data to the model have low temporal

resolution and are not observed at the same time. By comparison,

some geostationary orbit satellites can observe panoramic TOAR

once an hour. Himawari-8 is an advanced geostationary orbit

satellite (Yoshida et al., 2018) launched by the Japan

Meteorological Agency (JMA). Its TOAR data covers a wide

area of eastern China with high temporal resolution, including

16 bands ranging from visible to near-infrared light. Therefore,

the Himawari-8 TOAR has great advantages in building a high

spatial and temporal resolution estimation model of ground-level

pollutant concentration, which has been widely used in many

related studies (Zang et al., 2018; Wei et al., 2021; Xu et al., 2021;

Song et al., 2022a; Chen et al., 2022c). However, to the best of our

knowledge, the Himawari-8 TOAR has not been applied to

ground-level SO2 concentration estimation so far.

Compared with statistical models, machine learning

algorithms have better data processing ability for high-

dimensional data and can better solve nonlinear

relationships, providing it with better application prospects

in SO2 estimation (Tripathy et al., 2021). Therefore, this study

aims to estimate ground-level SO2 concentration in eastern

China based on the Light Gradient Boosting Machine

(LightGBM) machine learning model, combined with

Himawari-8 TOAR and auxiliary data such as

meteorological factors and geographic information.

2 Data and methods

2.1 Data

2.1.1 Ground SO2 observations
The SO2 ground observation data used in the study came

from the National Environmental Quality Monitoring Center of

China, which can be obtained from its official website at http://

www.cnemc.cn/en/. The quality assurance and validity judgment

of SO2 data are controlled according to HJ818-2018 technical

specification. The study area in this paper is the eastern China

(97–136°E, 15–54°N), and hourly SO2 data from approximately

1800 SO2 ground monitoring stations from 1 September 2015, to

31 August 2021, are used. The spatial distribution of these

stations is shown in Figure 1. It can be seen that the stations

are only sparsely distributed in the west and north of the

study area.

2.1.2 Himawari-8 TOAR
Himawari-8, the world’s first geostationary weather

satellite capable of obtaining color images, was launched by

JMA in 2014, and data became available in 2015. The

Advanced Himawari Imager (AHI) contains a total of

16 bands from visible light to near-infrared wavelengths,

named B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11, B12,

B13, B14, B15, and B16, respectively (Yoshida et al., 2018).

Details of 16 bands information of the Advanced Himawari

Imager (AHI) instrument on Himawari-8 satellite is shown in

Table 1. However, the observation range of Himawari-8 is

limited to 80°E −200°E and 60°S-60°N, so no valid data can be

obtained in China’s Tibet, Xinjiang and western Sichuan

(Song et al., 2022a). The Himawari-8 TOAR data used in

this paper have a temporal resolution of 1 h and a spatial

resolution of 5 km.

2.1.3 Meteorological factors and geographic
information

Considering that meteorological conditions will affect the

formation, accumulation and diffusion of SO2 (He et al., 2017),

various meteorological factor values are added to the model.

The meteorological factors used in this study are from the

European Centre for Medium-Range Weather Forecasts

(ECMWF) EAR-5 reanalysis datasets (Hersbach et al., 2020),

which have an hourly temporal resolution and a spatial

resolution of 0.25°×0.25° or 0.1°×0.1° (as Table 2 showed).

Meteorological factors used in this study mainly include

boundary layer height (BLH), relative humidity (RH),

surface pressure (SP), 2 m temperature (TM), and 10 m U

and V winds (U10, V10) (Li et al., 2019b; Song et al., 2022b).

In addition to meteorological factors, geographic information

also affects SO2 concentrations. The geographic information

selected in this paper mainly includes land cover type (LUCC),

altitude (height) and population density (pd). LUCC is
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FIGURE 1
Distribution map of SO2 monitoring stations. The color of the stations indicates the hourly average SO2 concentration of the ground
observation site. The bottom map shows the population density distribution. The area in the red box in the figure is North China, which is the most
polluted region in eastern China.

TABLE 1 Details of 16 bands information of the Advanced Himawari Imager (AHI) instrument on Himawari-8 satellite.

Type Band Center wavelength (μm) Spatial resolution (Km) Main scientific objectives

Visible light (blue) B1 0.46 1 Aerosol

Visible light (green) B2 0.51 1 Vegetation, aerosol

Visible light (red) B3 0.64 0.5 Low cloud, fog

Near infrared B4 0.86 1 Vegetation, aerosols, cirrus clouds

Near infrared B5 1.6 2 Cloud phase

Near infrared B6 2.3 2 Particle size

Shortwave infrared B7 3.9 2 Low clouds, fog, fire, land

Water vapor B8 6.2 2 upper troposphere water vapor

Water vapor B9 7.0 2 Middle troposphere water vapor

Water vapor B10 7.3 2 Lower troposphere water vapor

Infrared B11 8.6 2 Cloud phase state

Infrared B12 9.6 2 O3

Infrared B13 10.4 2 Cloud, genting Information

Infrared B14 11.2 2 Cloud, sea temperature

Infrared B15 12.3 2 Cloud, sea temperature

Infrared B16 13.3 2 CO2, genting high
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represented by high and low vegetation indices (LH, LL) from

EAR-5, height is from SRTM-3 data (spatial resolution of 90 m)

jointly measured by NASA and the National Imaging and

Mapping Agency (NIMA), and pd is from NASA

Socioeconomic Data and Application Center (spatial

resolution of 0.04°×0.04°). The distribution of population

density in eastern China is shown in Figure 1.

2.2 Methods

2.2.1 Data matching
First, through the bilinear interpolation method, the spatial

resolution of various meteorological factors and geographic

information is adjusted to be consistent with the grid

resolution of Himawari-8 (0.05°×0.05°). Then, hourly SO2

TABLE 2 Details of the data used in the study.

Variables Implication Unit Spatial resolution Temporal resolution Data source

SO2 SO2 observation data μg/m³ site Hourly CEMC

TOAR Himawari-8 L1 TOAR k 0.05°×0.05° Hourly JAXA

BLH Boundary layer height m 0.25°×0.25° Hourly ECMWF

TM 2 m temperature K 0.1°×0.1° Hourly ECMWF

RH Relative humidity % 0.25°×0.25° Hourly ECMWF

U10 10 m u component of wind m/s 0.1°×0.1° Hourly ECMWF

V10 10 m v component of wind m/s 0.1°×0.1° Hourly ECMWF

SP Surface pressure Pa 0.1°×0.1° Hourly ECMWF

LL Low vegetation index — 0.1°×0.1° Hourly ECMWF

LH High vegetation index — 0.1°×0.1° Hourly ECMWF

HEIGHT Altitude m 30 m Yearly NASA

PD Population density Km-2 0.04°×0.04° Yearly SEDAC

FIGURE 2
Feature importance for Himawari-8 satellite bands in the models of four seasons, where the blue dashed line represents the x=0.02 line.
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ground station observations are matched against the established

grid. If there is one station in the grid, the observed value of the

station is the data for that grid, and if there is more than one

station in the grid, the average of the data from these stations is

the grid value. The latitude and longitude range of the study area

after data matching is 97–136°E, 15–54°N; the study area,

contains a total of 6,087,672 data points.

2.2.2 Bands selection
After testing, we find that when the feature importance of a

variable is less than 2%, it will not only degrade the model

performance, but also increase the computation amount, which

wastes the storage space and running time. Therefore, we take 2%

as the threshold of feature importance to select TOAR bands. It

should be noted that the feature importance only represents the

contribution of each variable to the model, but cannot represent

the physical reasons why these variables affect the ground-level

SO2 concentrations. In this way, we pick out suitable bands in

each season as part of the input data. Figure 2 shows the feature

importance for Himawari-8 satellite bands in the models of four

seasons. Based on the results of Figure 2, the final bands are

selected as Table 3.

2.2.3 Light gradient boosting machine
LightGBM is a decision tree algorithm based on the

histogram algorithm. Its main idea is still to use weak

classifier (decision tree) iterative training to obtain the optimal

model, but two new technologies gradient-based one-side

sampling (GOSS) and exclusive feature bundling (EFB) are

added, which allows it to quickly record data characteristics

(Ke et al., 2017). At the same time, LightGBM uses a depth-

limited leafwise algorithm to filter out leaf splits with low gain,

reducing the algorithm overhead. It is precisely based on these

optimizations that LightGBM can save considerable running

time and storage space compared with the traditional decision

tree algorithm to achieve the purpose of rapidly processing

massive data (Ma et al., 2022).

The model performance is described by three indicators:

coefficient of determination (R2), mean absolute error (MAE),

and root mean square error (RMSE). Their definitions are as

follows (Chen et al., 2022b):

R2 � 1 − ∑n
i�1(ŷi − yi)2∑n
i�1(yi − �y)2 (1)

MAE � 1
n
∑n

i�1
∣∣∣∣ŷi − yi

∣∣∣∣∣∣∣ (2)

RMSE �
�������������
1
n
∑n

i�1(ŷi − yi)2
√

(3)

where ŷi represents the predicted value of the model, yi
represents the true value, �y represents the mean of the true

value, and n represents the total sample.

In this study, the comparison between the performance of

LightGBM and other machine learning models in Himawari-8

TOAR data is shown in Table 4. We choose LightGBM model in

this study because of its good performance and short

running time.

3 Results and discussion

3.1 Model cross validation results

To test the performance of the model, we apply 10-fold cross

validation (Chen et al., 2019; Chen et al., 2022a). The data is split

into ten parts, nine for training the model and one for validating

the results, and the process is repeated ten times. Based on 9:

00–16:00 (this article uses Beijing time, which is 8 h earlier than

Universal Time), the 10-fold cross validation result of the

validation dataset is shown in Figure 3. R2 is 0.64–0.72, RMSE

is 11.89 μg/m3-19.9 μg/m3, MAE is 5.56 μg/m3-9.65 μg/m3, and

the fitting slope is 0.62–0.69. The results estimated by the model

are slightly lower than the observations. During the time period

of 9:00–16:00, the performance of the model varies with time.

Generally, it shows a trend of first rising and then decreasing. The

model performs best in the period of 13:00–14:00 (R2 is 0.72).

This is because meteorological conditions such as high

temperature and atmospheric instability at noon are

conducive to the diffusion of pollutants. And the solar

radiation is strongest at this time, so the TOAR will also be

stronger, thus generating the best radiation signal received by the

satellite.

As shown in Figures 4A–D, the model performs best in

winter with a 10-fold cross validation R2 of 0.72. Performance is

the worse in summer with a R2 value of only 0.51. R2 in spring and

autumn are 0.62 and 0.65. This may be related to the complex

and changeable meteorological conditions in summer and the

highest concentration of SO2 in winter (Wei et al., 2019; Zang

et al., 2019). Therefore, the TOAR-SO2 model can effectively

capture high SO2 events in winter over eastern China.

The 10-fold cross validation results based on daily, monthly,

seasonal, and annual average SO2 are shown in Figures 4E–H.

The performance of TOAR-SO2 model has been significantly

improved when estimating monthly, seasonal, and annual

average SO2 with R2 (RMSE) of 0.96 (2.75 μg/m3), 0.97

(2.16 μg/m3) and 0.97 (1.71 μg/m3). In contrast, the model is

ordinary when estimating the daily average SO2, but R
2 (RMSE)

TABLE 3 Bands selected by the model in different seasons.

Spring B1, B3, B4, B5, B6, B7, B8, B9, B10, B12

Summer B1, B3, B4, B5, B6, B7, B8, B9, B10, B12, B15, B16

Autumn B1, B3, B4, B5, B6, B7, B8, B9, B10, B12, B16

Winter B1, B3, B4, B5, B6, B7, B8, B9, B10, B12
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can still reach 0.75 (12.51 μg/m3). It can be seen that the larger the

time scale, the better the estimation effect of the TOAR-SO2

model. This proves that using TOAR-SO2models to estimate SO2

concentrations is reliable.

To test whether the model has better performance in regions

with high annual average SO2 concentrations, this paper

conducts a 10-fold cross validation of 348 cities in eastern

China with SO2 ground-truth data records and then screened

out the proportion of cities with R2 values between 0.8 and 0.9,

0.7–0.8, 0.6–0.7, 0.5–0.6, and 0–0.5 in the top 20, top 50, top 100,

top 150 cities and all cities in eastern China by pollution level

from 2016 to 2020. In Figure 5, the results show that with the

increase of SO2 pollution, the proportion of cities with R2 values

between 0.8 and 0.9 increases significantly. At the same time,

cities with R2 values between 0.7 and 0.8 generally show the same

but only 10% of these cities are among the top 20 polluted cities.

The proportion of cities with R2 values between 0.5 and

0.7 doesn’t change significantly. However, for cities with R2

values lower than 0.5, the proportion of SO2 decreases

significantly with increasing SO2 concentration. It can be seen

TABLE 4 Performances Comparisons of Machine Models in Himawari-8 TOAR data.

Model R2 RMSE MAE Runtime (s)

LightGBM 0.70 16.15 7.43 4,738.90

Random Forest (RF) 0.65 17.47 7.90 37,074.70

Gradient Boosting Decision Tree (GBDT) 0.30 24.63 11.77 21,307.60

Linear Regression 0.20 26.20 13.23 50.12

Extra Tree 0.68 16.71 7.47 29,056.92

FIGURE 3
Hourlymodel 10-fold cross validation results based on samples, which the light dashed line is the perfectly fitted line, that is, the 1:1 relationship,
LT represents Beijing time, and N represents the total sample amount.
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that the model has a better estimation effect in areas with severe

SO2 pollution and the estimation result is basically close to the

site data.

In conclusion, the TOAR-SO2model established in this study

can accurately estimate the SO2 concentration in eastern China.

The estimated result is slightly lower than the observation. The

TOAR-SO2 model performs best in winter and in areas with

severe SO2 pollution, and it works well when estimating monthly,

seasonal, and annual average SO2. Therefore, the SO2 estimated

by the TOAR-SO2 model can provide reliable data for

monitoring the spatial variation and temporal trend of SO2

pollution in eastern China.

3.2 Feature importance of the TOAR-SO2
model

The feature selection of the TOAR-SO2 model adopts the

backward selection method (Li et al., 2020b), that is, the variables

with low feature importance are filtered out, and only the

variables with high feature importance are retained. The

feature importance of selected variables in each season is

shown in Figure 6A. The results show that TOAR and

meteorological factors are the two variables that contribute

the most to the model, and both of their feature importance

values exceed 30% in each season. The high feature importance

of meteorological factors indicates that they have a great

influence on SO2 concentration (Xie et al., 2015; Liu et al.,

2017). The feature importance of the time element is between

7.7% and 10%.

Among the various meteorological factors used in the model,

U10, V10 and BLH contribute the most to the model, followed by

RH, SP, and TM (Figure 6B). Wind speed can change the

concentration of SO2 by changing the diffusion and transport

speed of SO2, and BLH is related to the stability of the

atmosphere and will directly affect the vertical mixing and

long-distance diffusion of pollutants (Miao et al., 2018).

Besides, some studies have shown that BLH can also have

affect wind speed (Rigby and Toumi, 2008). In addition, the

high RH environment can accelerate the heterogeneous

absorption of SO2 by aerosols, resulting in the conversion of

SO2 to sulfate (Zhang et al., 2015b; Wang et al., 2016; Fu and

Chen, 2017). The SP and TM are related to the height of the

boundary layer and the strength of the turbulence in the

FIGURE 4
Similar to Figure 3, except for spring (A) summer (B) autumn (C)winter (D) daily (E)monthly (F) seasonal (G) and annual (H) average 10-fold cross
validation results of Himawari-8 TOAR-SO2 model based on samples.
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FIGURE 5
The proportion of cities with R2 values in the top 20, top 50, top 100, and top 150 of SO2 pollution cities and all cities in eastern China from
2016 to 2020.

FIGURE 6
(A) The feature importance of all variables in different seasonal models, and (B) the feature importance of meteorological factors.
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atmosphere (Zhang et al., 2015a; Mentes and Eper-Papai, 2015),

which also affect the SO2 concentration.

3.3 Spatial distribution of SO2 in eastern
China

By inputting the hourly data of each variable into the model,

the hourly SO2 concentration in eastern China is estimated, and

then the spatial distribution of the mean value of SO2 between

2016 and 2020 is calculated (Figure 7A). The result shows that the

distribution of SO2 concentrations has obvious regional

differences, which are generally high in the north and low in

the south (the average concentration in the north is 21.75 μg/m3,

and the average concentration in the south is 18.05 μg/m3). The

average concentration of SO2 in North China is the highest,

reaching 22.21 μg/m3. This is due to the existence of a large

number of coal mining enterprises in these areas, coupled with

the multivalley basin topography, resulting in a large

accumulation of SO2. The lowest annual concentration of SO2

is found in the southeastern and northeastern regions of China.

Compared with Figure 7B, it can be seen that the results predicted

by the model are generally consistent with the observation.

Figure 7C shows the annual average SO2 concentration

predicted by the model of the 10 cities with the most serious

SO2 pollution in the ground monitoring data. There is a certain

deviation between the predicted results of individual cities and

the actual situation, but most cities are close to the actual

situation. According to the results, the concentration of SO2

in these cities gradually decreased from the high value in 2016 to

less than 20 μg/m3 in 2020.

The mean values of SO2 in spring, summer, autumn and

winter from 2016 to 2020 are estimated, and their spatial

FIGURE 7
(A) The spatial distribution of the annual mean value of SO2 between 2016 and 2020 predicted by the model (μg/m3), (B) the spatial distribution
of the annual average SO2 observation between 2016 and 2020 (μg/m3), and (C) the annual concentration changes predicted by the model of the
10 cities with the most serious SO2 pollution (μg/m3).

FIGURE 8
Spatial distribution of the seasonal mean of SO2 predicted by
the model (μg/m3).
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FIGURE 9
The intraday variation of SO2 concentration predicted by the model (μg/m3).

FIGURE 10
Spatial distribution of annual mean values of SO2 in North China from 2016 to 2020 (μg/m3).
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distributions are shown in Figure 8. The results show that the

concentration of SO2 demonstrates obvious seasonal differences,

and the concentration of SO2 in winter is significantly higher

than that in spring, summer and autumn, which is related to the

large number of residents burning coal for heating in winter;

furthermore, the stable atmospheric structure and low

precipitation in winter are not conducive to wet deposition

and diffusion of SO2 (Calkins et al., 2016; Zhao et al., 2016).

The concentration of SO2 reaches the highest value in winter

(25.88 μg/m3), then begins to decrease in spring (16.07 μg/m3),

decreases to the lowest value in summer (14.22 μg/m3), and

increases again in autumn (16.82 μg/m3). This phenomenon

indicates that the concentration of SO2 is continuous in the

temporal scale.

This study also estimates the hourly mean value of SO2

between 9:00 and 16:00 in eastern China, and the results are

shown in Figure 9. In general, the SO2 concentration keeps

declining between 9:00 and 16:00, with the highest

concentration at 9:00 and the lowest at 16:00. The

concentration in the morning is generally higher than that in

the afternoon. This is because the temperature in the morning is

lower than that in the afternoon, and the structure of the

atmosphere is more stable, which is not conducive to SO2

diffusion. The intraday variation of SO2 concentration in

TABLE 5 Performance comparison of SO2 model.

References Model Model
performance

Temporal
resolution

Spatial
resolution

Instrument Region Study
period

R2 RMSE MAE

Shams et al.,
2021

artificial neural networks 0.87 0.45 0.32 daily 0.15°×0.25° — Tehran,
Iran

2015

multiple linear regressions 0.71 3.03 — daily 0.15°×0.25°

Li et al., 2020c random forest 0.64 17.06 — daily 0.25°×0.25° — China 1973–2014

Huang et al.,
2017

land use regression models 0.83 1.50 — daily 100×100 m — Nanjin,
China

2013

Li et al., 2019a random forest-
spatiotemporal Kriging

0.62 10.36 — daily 0.25°×0.25° OMI China 2014–2015

Wei et al., 2022 Space-Time Extra-Tree 0.84 10.07 4.68 daily 0.1°× 0.1° MERRA-2 China 2013–2020

This Study LightGBM 0.70 16.26 7.47 hourly 0.05°×0.05° AHI Eastern
China

2016–2020

0.75 12.51 6.06 daily

FIGURE 11
Comparison of annual average SO2 concentrations in eastern China between our results and the ChinaHighSO2. (A–E) the results of
ChinaHighSO2, and (F–J) the results of our study.
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southern China is not obvious, and SO2 concentration maintains

a low level throughout the day.

Figure 10 shows the spatial distribution of the annual average

concentration of SO2 inNorth China (the specific location in Figure 1)

estimated by themodel from 2016 to 2020. InNorth China, the region

with the most serious SO2 pollution, the annual average concentration

of SO2 keeps declining from 2016 to 2020. In 2016, the SO2

concentration exceeded 40 μg/m3 in many areas. In 2017, the SO2

concentration decreased significantly, and the number of areas above

40 μg/m3 was greatly reduced. Within these areas, the SO2

concentration decreased most in western Shanxi Province, western

Hebei Province and central Inner Mongolia, but remained at a high

level in northern Ningxia. In 2018, the SO2 concentration further

decreased, and only a few areas exceeded 40 μg/m3. By 2020, the SO2

concentration in 90.52% of the North China was lower than the

national ambient air quality SO2 level 1 concentration limit of 20 μg/

m3. In general, SO2 pollution in North China has been effectively

alleviated in the past 5 years, which is closely related to the wide

application of flue gas desulfurization (Duan et al., 2016) and the

government’s relevant policies to strengthen the control of SO2

emissions such as coal desulfurization. In addition, SO2 pollution

levels have also been affected by the new coronavirus pneumonia

epidemic (Fan et al., 2020; Ran et al., 2020).

4 Discussion

In this study, we build a TOAR-SO2model with high spatial and

temporal resolution over eastern China. The model performs well

and can provide reliable SO2 data for remote areas lacking ground

monitoring stations, which is of great significance for SO2 pollution

control. The comparison of model performance between this study

and other studies is shown in Table 5. In studies that cover a large

area rather than just a city, the Space-Time Extra-Tree (STET)model

(Wei et al., 2022) has the best effect, followed by our model. But our

model has higher temporal and spatial resolution compared with the

STETmodel. Figure 11 shows the comparison of annual average SO2

concentrations in eastern China from 2016 to 2020 between the

dataset estimated in this study and the ChinaHighSO2 dataset

estimated by the STET model. In general, the two have a good

consistency, especially during 2018–2020. When estimating the

annual average concentration of SO2, the R2 of ChinaHightSO2

(0.98) is slightly higher than that in this study (0.97), but our RMSE

(1.71 μg/m3) and MAE (0.82 μg/m3) are better than the RMAE

(2.46 μg/m3) and MAE (1.35 μg/m3) of ChinaHightSO2. Overall,

both of these twomodels can be considered reliable in estimating the

annual average SO2 concentration.

5 Conclusion

In this study, we apply Himawari-8 TOAR data to build a

TOAR-SO2 model with high spatial and temporal resolution

based on the LightGBM machine learning model. The TOAR-

SO2 model can effectively capture high SO2 events in winter, and

works well when estimating monthly, seasonal, and annual

average SO2 with R2 (RMSE) of 0.96 (2.75 μg/m3), 0.97

(2.16 μg/m3) and 0.97 (1.71 μg/m3). The concentration of SO2

in North China estimated by the model showed a downward

trend since 2016. Overall, the good agreement between ground

measured and model estimated SO2 concentrations highlights

the capability and advantage of using the model to monitor

spatiotemporal variations of SO2 in Eastern China.

In the future, we need to improve the accuracy of the model

in summer and extend the prediction range to the whole of China

to obtain more accurate hourly concentrations of ground-level

SO2 with wider coverage. In addition, models established by

machine learning methods lack interpretability. In the next step,

we will improve the interpretability of the model by combining

machine learning methods with the atmospheric chemistry

model considering chemical mechanism.
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