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Increasing the frequency range of physics-based predictions of earthquake

groundmotions requires to account for small-scale heterogeneities, which can

only be described in a stochastic way. Although many studies have addressed

the impact of random heterogeneities on ground motion intensity parameters

obtained by numerical simulation, very few have verified the accuracy of their

numerical solutions or controlled the scattering regime they were simulating.

Here we present a comprehensive analysis of SH wave propagation in 2D

random media which covers a broad range of propagation regimes from

ballistic to diffusive. The coherent and incoherent parts of the wavefield are

examined independently. The random media consist in correlated density and

velocity fluctuations described by a von Kármán autocorrelation function with a

Hurst coefficient of 0.25 and a correlation length a = 500m. The Birch

correlation coefficient which relates density to velocity fluctuations takes

4 possible values between 0.5 and 1, and the standard deviation of the

perturbations is either 5% or 10%. Spectral element simulations of SH wave

propagation excited by a plane wave are performed for normalized

wavenumbers (ka) up to 5. Analysis of the decay of the coherent wave

amplitude, obtained through different averaging procedures, allows for a

direct measure of the scattering attenuation, which we successfully

compare with the predictions of the Dyson mean field theory. We also

present the comparison between the energy envelopes measured from the

synthetics and their theoretical counterpart provided by the radiative transfer

theory and the diffusion approximation. Excellent agreement is found between

numerical simulations and theoretical predictions of radiative transfer theory for

themean intensity. The numerical study highlights the difference of attenuation

length between themean field and themean intensity. In the forward scattering

regime, the peak intensity appears to decay exponentially over a length scale

known as the transport mean free path. Furthermore, the fluctuations of

intensity in the ballistic peak exhibit a transition from Log-normal to

Exponential statistics. This transition occurs for a propagation distance of the

order of the mean free path, which offers an alternative method of estimating

this parameter.
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1 Introduction

Heterogeneities exist at all scales in the Earth (Sato, 2019) and

have to be taken into account for a realistic estimation of

earthquake ground motions (e.g., Imperatori and Mai, 2012;

Takemura et al., 2015; Hu et al., 2022). In the range of frequencies

considered in seismic hazard assessment (up to few tens of Hz),

the shortest S wavelengths vary from hundreds of metres, in the

source region, to tens of metres, in the near-surface sedimentary

layers. Accounting for the heterogeneities that influence the

propagation of those wavelengths is critical and poses a

number of difficulties for physics-based approaches. First, the

description of these small-scale heterogeneities cannot be

deterministic. In the current state-of-practice, the propagation

media are usually considered as random and several realisations

have to be considered to obtain robust estimates of the effect of

the heterogeneities on seismic wave propagation. This represents

a significant additional computational cost for grid-based

approaches such as finite difference or finite element methods.

Second, the statistical properties of small-scale heterogeneities

can only be constrained from rare direct near-surface

measurements (Wu et al., 1994; Holliger, 1996; Shiomi et al.,

1997; Dolan et al., 1998), and more generally have to be inferred

from their (cumulative) effect on recorded seismic waveforms,

from the ballistic phases to the seismic coda. This in turn requires

the use of specific methods capable of extracting statistical

information on the propagation medium without relying on

the computation of full waveforms.

The problem of recovering the characteristics of small-scale

heterogeneities is common to different branches of applied

physics such as non-destructive evaluation, medical and

seismic imaging, to cite a few examples only. In all these

fields, radiative transfer theory (RTT, also known as transport

theory) has emerged as a key tool for modeling and inverting for

the scattering and absorption properties of media with micro-

structure (Turner and Weaver, 1994; Margerin, 2005; Arridge

and Schotland, 2009). RTT models the transport of energy in

heterogeneous media based on the two-point correlation

function of the fluctuations in elastic parameters. As such, it

only describes the modulation of the envelope of the seismic

signals but does not provide information on the details of the

waveforms. Correlation functions of the von Kármán type have

been almost universally adopted in seismological studies. They

provide reasonable representations of the small-scale fluctuations

in the Earth (see Sato, 2019, for a review) with the aid of only

three parameters: correlation length, standard deviation of the

fluctuations and Hurst exponent controlling the distribution of

the variance over all possible length scales. While originally

introduced on a phenomenological basis (e.g., Chandrasekhar,

1960; Wu, 1985; Zeng, 1993; Sato, 1994), RTT has nowadays

acquired solid theoretical foundations. In particular, transport

equations for elastic waves have been derived in infinite space

based onmultiple scattering theories (Weaver, 1990) or two-scale

expansion methods (Ryzhik et al., 1996). In spite of this great

simplification of the physics, the radiative transfer equation

(RTE) has the reputation of being notoriously difficult to

solve. Indeed, only a few analytical solutions for canonical

cases can be found in the literature (Paasschens, 1997).

Fortunately, with nowadays computational power, Monte-

Carlo (MC) simulations offer a convenient tool to produce

numerical solutions in a variety of cases of seismological

interest (Shearer and Earle, 2004; Sanborn et al., 2017). In

seismology, RTT is still an active area of research. A currrent

Frontier in the field concerns the coupling between surface and

body waves which occurs in the vicinity of the free surface in a

half-space or slab geometry (Tregoures and Van Tiggelen, 2002;

Margerin et al., 2019; Borcea et al., 2021; de Hoop et al., 2022; Xu

et al., 2022). Another topic of interest is the treatment of random

media with a correlation length which is large compared to the

wavelength. Because it relies on a perturbative approach (Born

approximation), the transport equations for continuous random

media found in the literature break down in the high-frequency

(geometrical optics) limit. Sato and Emoto (2018) proposed to

remedy this deficiency by dividing the power spectrum into a

short-scale and a long-scale component. The former is treated via

the traditional Born approximation and the latter by the phase

screen approximation. The theory involves a free parameter

which separates the short- and long-scale components, which

is determined by comparisons between MC simulations of the

transport process and envelopes obtained from waveform

simulations using the finite difference method. The work of

Sato and Emoto (2018) provides a concrete illustration of the

key interplay between simulations of wave propagation in

random media and MC simulations in the development and

validation of transport theory (see also Przybilla et al., 2006;

Wegler et al., 2006; Przybilla and Korn, 2008).

Direct (ab initio) numerical simulation of seismic wave

propagation offer the possibility to consider arbitrarily

complex random media (for example heterogeneous

background media, composite random fluctuations) and to

explore different scattering regimes and their transitions

without approximations. With the advent of mature

computational codes and the computational power available,

it is now feasible to simulate tens of realizations of 3D random

media in realistic ranges of size and frequency and to perform

comprehensive parametric studies in 2D. Since the pioneering

article of Frankel and Clayton (1986), many studies have

exploited the potential of numerical simulation to predict the
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effect of random heterogeneities on the seismic wavefield. The

impact of scattering by heterogeneities, in the crust or in near-

surface sedimentary layers, on the prediction of earthquake

ground motion is nowadays an active field of research

(Hartzell et al., 2010; Imperatori and Mai, 2012; Imperatori

and Mai, 2015; Takemura et al., 2015; Savran and Olsen,

2019; Scalise et al., 2021; Tchawe et al., 2021; van Driel et al.,

2021; Hu et al., 2022). However, despite considerable efforts to

account for scattering in the estimation of ground motion, many

of the results presented in these numerical studies are difficult to

appreciate or to extrapolate because i) they often lack a

verification phase to ensure that the targeted random media

are well implemented and ii) the scattering regimes considered

are not sufficiently described to allow for unambiguous physical

interpretation. This last point is particularly critical since

inversion of scattering and absorption properties based on

RTT cannot resolve the full power spectrum of heterogeneities

but provide instead scale lengths characterizing the propagation

regime such as the scattering mean free path or even more

appropriately the transport mean free path (Gaebler et al.,

2015). As further documented in the rest of the paper, these

quantities control the main characteristics of the seismogram

envelopes (see also Sato et al., 2012). We therefore argue that

realistic simulations of ground motions should target specific

value for the scattering mean free paths rather than ad-hoc or a

priori estimates for the correlation length and variance of small-

scale heterogeneities.

In this article, we present a comprehensive analysis of the

propagation of SH waves in 2D random media by combining ab

initio numerical simulation and RTT. This simple physical

setting allows us to consider a large set of von Kármán

random media and to simulate wave propagation in a broad

range of frequency and propagation regimes, from ballistic to

diffusive. We believe that our study is unprecedented in this

respect. We carefully verify the implementation of the random

media by comparing direct measures of the scattering mean free

path to their theoretical estimates. This part of the study relies on

different methods for averaging the wavefield. We discuss in

detail the role of spatial vs. ensemble averaging, considering a

number of realizations of the random media which has no

equivalent in previous studies. In the second part of the work,

the mean intensities derived from the numerical simulations are

compared to those predicted by RTT as proposed by several

authors [e.g., Przybilla et al. (2006), Emoto and Sato (2018)]. We

pay particular attention to the apparent attenuation of the

ballistic peak of seismic waves, which is a key parameter in

seismic hazard evaluation. The attenuation study is

complemented with an analysis of the fluctuations of the

ballistic intensity. The combination of the two viewpoints

provides insight into the evolution of the ballistic peak with

propagation distance and illustrates the transitions between

different propagation regimes.

The organisation of the manuscript is as follows: Section 2

provides a review of useful concepts to address wave propagation

in random media, in particular mean field and radiative transfer

theories, and presents the collection of data sets obtained by

numerical simulation. Comprehensive analyses of the results

obtained by transport theory and numerical simulations are

shown in Section 3 and followed by some conclusions in

Section 4.

2 Materials and methods

2.1 Wave propagation in random media

In this work, we consider the propagation of a scalar

wavefield u governed by the 2-D elastodynamic Equation in

anti-plane geometry:

ρ(x) z
2u(t, x)
zt2

− ∇ · (μ(x)∇u(t, x)) � f(t, x), (1)

where µ and ρ denote, respectively, the rigidity and density of the

medium and x is the position vector.

The symbol f (t, x) represents an external source. The local

velocity is defined by υ(x) � ��������
μ(x)/ρ(x)√

and is assumed to

fluctuate randomly in space:

υ(x) � υ0(1 + ξ(x)) (2)

In Eq. 2, υ0 � 〈υ(x)〉 denotes the ensemble average velocity

and ξ(x) = δv(x))/v0 represents the zero mean fractional

fluctuation of velocity. A decomposition similar to (Eq. 2) is

assumed to hold for the density fluctuations:

ρ(x) � ρ0(1 + ]ξ(x)) (3)

where ρ0 is the ensemble average density and ] is a scaling factor
between density and velocity fluctuations known as Birch

coefficient (Sato et al., 2012). In Earth’s crust, the correlation

between velocity and density is broadly supported by borehole

observations (e.g., Shiomi et al., 1997). To lowest order in

perturbations, scattering in disordered media is governed by

the correlation properties of the disorder. For the representation

of random elastic fluctuations in seismology, the most widely

accepted form of auto-correlation function R is of von Kármán

type:

R(r) � 〈ξ(x − r/2)ξ(x + r/2)〉 � 1
2H−1Γ(H) (ra)

H

KH(ra), (4)

where r = |r| and the brackets 〈〉 indicate an ensemble average,

i.e., an average over an infinite sample of realizations of random

media sharing the same correlation properties. In Eq. 4, a is the

correlation length of the fluctuations, H represents the Hurst

exponent, Γ(H) is the Gamma function and KH is the modified

Bessel Function of order H. Note that the definition (Eq. 4)
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implies spatial stationarity (or statistical uniformity) as well as

isotropy of the random fluctuations. The Fourier Transform of R

is the power spectral density of fluctuations also termed

heterogeneity power spectrum P. In the case of von Kármán

media, it is given by:

P(k) � 4πΓ(H + 1)ε2a2
Γ(H)(1 + a2k2)H+1. (5)

By isotropy, P depends only on the modulus of the

wavenumber of the fluctuations (k = |k|). The power spectrum

(Eq. 5) exhibits power-law behavior for length scales 2π/k (much)

smaller than the correlation length a. This behavior is largely

supported by direct measurements of velocity and density

fluctuations over a broad range of scales ranging from rock

samples in the laboratory to logging data in boreholes (see

Sato, 2019, for a review). The broadband nature of

heterogeneity in geological materials is a challenge for seismic

wavefields computations in seismology. As an example, popular

numerical methods such as finite difference or finite elements

require the artificial introduction of a cut-off wavenumber kc
beyond which the power spectrum is assumed to be 0 (i.e., P (k) =

0 for k ≥ kc). For comparison with seismic data, it is important to

assess the effects of cut-offs on the computed wavefield. More

generally, it is crucial to control the level of scattering produced

by small-scale heterogeneities in numerical models. Indeed,

scattering is a key process controlling the attenuation of direct

waves, the broadening of seismograms and the fluctuations of

waveforms. In what follows, we briefly summarize the main

ingredients and predictions of transport methods and refer the

reader to Weaver (1990), Ryzhik et al. (1996) for in-depth

derivations.

2.2 Mean field theory

One of the most well-known and important manifestation of

scattering by small scale heterogeneities is the attenuation of

direct waves. There exists a variety of approaches to measure

direct wave attenuation that lead to significantly different

estimates (e.g., Sato, 1982; Wu, 1982), possibly also dependent

on the observation scale (Shapiro and Kneib, 1993). From the

theoretical point of view, the simplest quantity to be derived from

simulations of wave propagation in random media is the

ensemble average field 〈u(x)〉. This quantity is also called the

coherent field since the averaging procedure selects the portion of

the wavefield that has maintained the exact same propagation

direction from emission to detection. The part of the wavefield

that has been scattered at least once sees its phase fluctuate

randomly from realization to realization and is eliminated by

ensemble averaging. The mean field is governed by the Dyson

equation (Frisch, 1968; Rytov et al., 1989) whose solution

predicts an exponential decay of the coherent amplitude with

a length scale known as the scattering mean free path ℓ. The

scattering mean free path is a central quantity in transport theory

as it also represents the mean distance between two scattering

events for multiply-scattered waves.

The exact solution of the Dyson Equation is available only in

simple cases such as scalar waves in exponentially correlated

random media (corresponding to the Hurst exponent H = 1/2).

Fortunately, the mean free path may be approximately evaluated

by applying the Born approximation to the calculation of the

mean energy scattered off a plane wave incident on a

representative elementary volume of random medium (REV)

embedded in an otherwise homogeneous background with

density ρ0 and velocity v0 (Sato, 1984). The typical linear

dimension L of the REV should fulfill the scaling conditions

a ≪ L ≪ ℓ which guarantees that it contains a large number of

heterogeneities yet only scatters a small fraction of the energy of

the incident wave. By normalising the energy scattered per unit

time by the volume of the REV and the incident energy flux of the

plane wave, one obtains an estimation of the scattering

attenuation (in km−1) or inverse mean free path (ℓ−1). This

heuristic method is valid only for sufficiently low frequencies

(ωa
����
〈ε2〉

√
/c0≪ 1) (Stanke and Kino, 1984;Weaver, 1990). In the

high-frequency limit (ω→∞), the Born approximation predicts

an unbounded increase of the scattering attenuation which

eventually violates the scaling condition a ≪ L ≪ ℓ. Careful

examination of the Dyson Equation in fact reveals that ℓ is close

to a in the so-called geometrical optics limit ωa/c0 ≫
����
〈ε2〉

√
.

Following the heuristic method outlined above, the following

general expression for the scattering attenuation in 2-D antiplane

geometry is obtained:

ℓ
−1 � k3β

8π
∫

2π
[〈ε2ρρ〉( − 1 + k̂ · r̂)2 + 4〈ε2ρβ〉( − 1 + k̂ · r̂)k̂ · r̂

+ 4〈ε2ββ〉(k̂ · r̂)2]P(kβ |̂r − k̂|)dr̂, (6)

where k̂ and r̂ denote the propagation direction of the incident

and scattered wave, respectively. In Eq. 6 〈ε2ρρ〉, 〈ε2ββ〉 and 〈ε2ρβ〉
represent, respectively, the variance of the fluctuations in density,

velocity and the covariance between the two. It is worth noting

that at a given central frequency ω, the argument of the power

spectrum (kβ |̂r − k̂|) varies between 0 and 2kβ = 2ω/c0. Eq. 6

therefore implies that, from the perspective of scattering

attenuation, waves of frequency ω do not resolve length scales

smaller than πc0/ω. This property is particularly important for

full wavefield simulations since it determines the smallest

heterogeneity length that needs to be faithfully represented in

the synthetic random models.

Making use of Birch law and assuming random media of von

Kármán type, Eq. 6 leads to:

ℓ
−1 � k3βa

2Γ(κ + 1)
2Γ(κ) ∫

2π

(] − cos θ(2 + ]))2
(1 + 4k2βa

2sin2θ2)κ+1 dθ, (7)
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where θ denotes the scattering angle. From Eq. 7 the scattering

attenuation may be easily evaluated numerically. To gain insight

into the frequency dependence of scattering attenuation we

provide some simple approximations to ℓ
−1 in the low- and

high- frequency regimes. In the case (kβa≪ 1), the denumerator

of the integrand in (Eq. 7) may be approximated by the constant

1 over the full range of integration. In such a case the angular

dependence is entirely governed by the numerator which directly

depends on the nature of the elastic perturbations, i.e., on the

particular form of correlations among the elastic parameters ρ

and β. In the case of the Earth, the two quantities are generally

positively correlated, so that scatterers present contrasts of

impedance with respect to the background medium. This

gives rise to large lobes of scattering in the backward

direction. After a simple integration of the trigonometric

polynomial, one finds:

ℓ
−1 ≈

k3βa
2πΓ(κ + 1)(4 + 4] + 3v2)

Γ(κ) (kβa → 0). (8)

The cubic frequency dependence is characteristic of the so-

called Rayleigh regime in 2-D, corresponding to wavelengths

much larger than the size of the scatterers. In the intermediate

frequency regime, also known as stochastic regime (Stanke and

Kino, 1984), we remark that the integrand is the product of a

smooth function (numerator) times a function which is sharply

peaked in a cone of typical angular width θ = O (1/kβa) around

θ = 0. Based on these observations, we perform the following

approximations (Yang et al., 2011): (1) replace the numerator by

its value at θ = 0, (2) substitute sin (θ/2) with θ/2 in the

denominator, (3) introduce the new variable ψ = kβaθ and

integrate from ψ = −∞ to ψ = +∞. After application of this

procedure, one obtains:

ℓ
−1 ≈

2
��
π

√
k2βaΓ(κ + 1/2)
Γ(κ) (1< kβa≪ 1/ �����

〈ε2ββ/〉
√ ). (9)

Hence, in the frequency regime where the wavelength is of

the order of (or smaller than) the size of the scatterers,

attenuation is found to grow like ω2. In 3-D, attenuation

exhibits the same frequency dependence in the stochastic

regime as in 2-D so that the transition from low to high

frequencies is far more visible in the former situation. Let us

finally remark that (Eq. 9) is deceptively simple since it suggests

that scattering attenuation is independent of the Birch parameter

]. There are in fact corrections terms to (Eq. 9) that depend on ].
This will become apparent when we consider applications to

different types of random media. The asymptotic dependencies

predicted by (Eqs 8, 9) are compared to the exact solution of (Eq.

6) in Figure 1 for a von Kármán medium with correlation length

a = 500 m, Birch coefficient ] = 1 and standard deviation of the

fluctuations 5%.

In seismology, the ensemble averaging procedure is

somewhat out of reach experimentally. Even if seismic

stations were readily movable, one would still have to assume

that the underlying medium is statistically homogeneous, which

is difficult to control. Hence, we have to accept that seismic

measurements always mix the coherent, mean wave with the

incoherent, scattered waves. By considering the second moment

of the field, i.e., the energy density carried by the waves, transport

(or radiative transfer) theory provides a consistent framework to

treat on the same footing the coherent and incoherent parts of the

wavefields. A brief summary of this approach is provided in the

next section.

2.3 Transport theory

Transport equations describe the ensemble average

propagation of energy density in a random medium. They

may be derived from the wave equation by considering the

statistical mean of Wigner distribution of the wavefield in the

limit where temporal and spatial scales are both well separated.

This means that one considers the slow temporal modulation of

fields that rapidly oscillates at the central frequency ω.

Analogously, in the spatial domain, one imagines wave

packets with a slowly varying envelope that modulates the

amplitude of short wavelength oscillations (λ = 2πc0/ω). We

refer the reader to the classical papers by Weaver (1990) and

Ryzhik et al. (1996) for in-depth treatments based on statistical

physics and mathematical approaches, respectively. Here we

simply recall the form of the transport Equation:

( z

zt
+ ck̂ · ∇r + τ−1)e(t, r, k̂) � τ−1 ∮p(k̂, k̂′)e(t, r, k̂)dk̂′

+ S(t, r, k̂),
(10)

where the following notations have been introduced: c, the wave

velocity, k̂ the propagation direction, τ −1 = cℓ−1, the inverse

FIGURE 1
Rayleigh and stochastic regimes in scattering attenuation.
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scattering mean free time, e (r, k̂, t), the specific energy density at

position r and time t, ∮ dk̂′, an integral over all propagation

directions, p(k̂, k̂′), the scattering pattern (or phase function)

and S (r, k̂, t), the energy source term. The specific energy density

is proportional to the amount of energy propagating in direction

k̂ per unit volume and is related to the wavefield u introduced in

the previous section by a Wigner-Ville transform:

e(t, r, k̂) � C∫∫〈u(t − θ/2, r − x/2)u(t + θ/2, r + x/2)〉eiωθ−iωk̂·x/cdθd2x

(11)

with C a normalization factor which depends on the wave type.

(Eq. 11) defines the specific energy density as the angular power

spectral density of the wavefield at time t, position r and

frequency ω, implicit in the left-hand side of Eq. 11. Note that

the wavefield u has been filtered in a narrow frequency band of

interest beforehand. More will be said on this point in Section

3.2.1. The time-frequency representation of e is key in transport

theory, since as illustrated in the previous section, the scattering

mean free time τ depends strongly on the frequency of the

propagating waves. Note that the dependence of τ on ω is

implicit in (Eq. 10). Similarly, the position-wavenumber

representation enables one to take into account the angular

dependence of the scattering. More precisely, the probability

for a wave propagating in direction k̂′ to be scattered into

direction k̂ is given by

p(k̂, k̂′) � N(] − k̂ · k̂′(2 + ]))2

Φ(∣∣∣∣∣k̂ · k̂′
∣∣∣∣∣ω/c) (12)

with N a normalization constant such that ∫p(k̂, k̂′) � 1. We

note that p is independent of k̂′ in statistically isotropic media.

The RTE (Eq. 10) is classically interpreted as a local energy

balance (Chandrasekhar, 1960). We may also interpret the

transport Eq. as a mathematical model for random walks (e.g.,

Rudnick and Gaspari, 2004). In this analogy, a step represents the

coherent propagation of waves between two scattering events

upon which the propagation direction is randomized. The

probability density function (PDF) for the step length

distribution is exponential with parameter the scattering mean

free path ℓ, while the PDF for the scattering angle θ is given by

p(k̂, k̂′) with cos θ = k̂ · k̂′. Such an interpretation may be

succintly justified as follows. On the LHS of (Eq. 10), the

inverse of the differential operator is the coherent energy

propagator (Sato, 1994; Paasschens, 1997), which describes the

propagation of waves in between two scatterings. On the RHS,

the weighted integral with kernel p(k̂, k̂′) is the scattering

operator which models the randomization of the propagation

directions. By iteratively solving Eq. 10 one generates a multiple

scattering series with increasing orders of scattering. The

complete solution is obtained by summing walks with no

collisions (coherent energy), one collision (single-scattering

term), two collisions (double scattering term). In this work,

we shall exploit this analogy to numerically solve (Eq. 10) by

the MC method (see e.g., Lux and Koblinger, 2018, for an in-

depth treatment).

As outlined above, the multiple-scattering process tends to

randomize the directions of propagation in the random medium.

Hence, we may expect that at sufficiently long lapse time the

specific intensity departs only slightly from isotropy. When this

regime sets in, a diffusion Eq. for the energy density integrated

over all propagation directions [e (t, r)] can be derived from the

RTE (e.g. Kourganoff, 1969; Weaver, 1990):

( z

zt
−D∇2)e(t, r) � S(t, r) (13)

where the diffusion constant in 2-D is defined as:

D � cℓ*
2
. (14)

The formula for the diffusivity of seismic waves features the

transport mean free path ℓ
p as a new length scale:

(ℓ*)−1 � k3β〈ε2ββ〉
8π

∫
2π
(] − k̂ · r̂(2 + ]))2Φ(kβ∣∣∣∣∣̂r − k̂

∣∣∣∣∣)(1 − k̂ · r̂)dr̂
(15)

Comparing (Eqs 15, 7), we may write ℓp = ℓ/(1−g) where g is

the mean cosine of the scattering angle. Physically, ℓp represents

the propagation distance required to randomize the propagation

direction of a plane wave incident on the randommedium. In the

Rayleigh regime, backscattering is dominant (g < 0) and the

transport mean free path is generally smaller than the scattering

mean free path. Note that ℓp is always greater than ℓ/2 so that the

two length scales do not differ very much in the low-frequency

regime. The formula analogous to (Eq. 8) for the transport mean

free path is given by:

(ℓ*)−1 ≈ k3βa
2πΓ(κ + 1)(4 + 8] + 5v2)

Γ(κ) (kβa → 0). (16)

When one approaches the stochastic regime, the

scattering pattern becomes more and more strongly peaked

in the forward direction. In the high-frequency limit, g

approaches 1 and the transport mean free path can largely

exceed the scattering mean free path. The simple method used

to obtain an asymptotic expansion of ℓ in the stochastic

regime cannot be applied to obtain an estimate of ℓ
p

because the (1−cos θ) term in the numerator of (Eq. 15)

evaluates to 0 in the forward direction. In the exponential

case used for the numerical simulations, it is possible to

obtain closed form expressions for the transport mean free

path using symbolic computation softwares such as

Mathematica™ but the final formulas are not particularly

illuminating. Nevertheless, their expansion for large ka

suggests that the transport mean free path increases

logarithmically for large ka. Note that this result is specific

to the case κ = 1/2. The key message here is that the frequency
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dependence of the transport mean free path contains

information on the Hurst exponent.

The diffusion model would not be complete without the

prescription of the initial and boundary conditions. In the

numerical simulations, we consider a plane wave incident in

direction ẑ on a slab of random medium of thickness H with

absorbing conditions at the top (z = 0) and bottom (z = H).

Adapting the method of (Zhu et al., 1991) to the 2-D case, we find

that the diffuse energy density should satisfy the following set of

boundary conditions:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e(t, x, z) − πℓ*

4
ze(t, x, z)

zz
� 0 at z � 0

e(t, x, z) + πℓ*
4

ze(t, x, z)
zz

� 0 at z � H

(17)

with x the coordinate perpendicular to z [r = (x, z)]. For the

initial condition, we simply consider that the total energy is

injected diffusively at a distance ℓp from the lower boundary at

time t = tp (with t = 0 the time at which the incident plane wave

enters the random medium). By diffuse injection, we mean that

the initial direction of energy propagation is uniformly

distributed in [0, 2π]. In spite of its crudeness, this

approximation gives satisfactory results in many cases of

interest.

2.4 Numerical modelling: SEM solution

Numerical simulations of SH wave propagation in 2D

elastic random media are performed with the specfem2D

code, which implements the Spectral Element Method (SEM,

e.g., Komatitsch and Vilotte (1998), Chaljub et al. (2007)) in

space and a second order finite difference scheme in time. The

computational domain consists of a square of size L = 314 km

with periodic conditions on the lateral edges and absorbing

conditions on the upper and lower edges. The domain is

meshed with 106 squared elements of size 314 m and an

order N = 4 is used to define the local polynomial bases.

Random media are defined by superimposing velocity and

density fluctuations on a homogeneous background medium

with shear wave velocity V0 = 3.14 km s−1 and density ρ0 =

2,500 kg m−3. The fluctuations of density are correlated to

those of velocity through dρ/ρ0 = ] dV/V0, where ] is the Birch
coefficient which we restrict to the four possible values: 0.5,

0.67, 0.8, and 1. The fluctuations are further defined by a von

Kármán auto-correlation function (ACF) with typical crustal

values: correlation length a = 500 m, Hurst exponent κ = 0.25,

and standard deviation ε = 5% or 10%. Eight different random

media are therefore considered corresponding to the four

values of ] and the two values of ε. The implementation of

the fluctuations follows the classical spectral approach (see

e.g., Sato et al. (2012)): the fluctuations are first defined in the

Fourier domain from the square root of the modulus of the

ACF as the amplitude spectrum (according to Eq. 5) and a

uniformly distributed random phase, then transported back to

the spatial domain by the inverse Fourier transform. Finally,

we apply a cosine taper on the fluctuations along a 5 km thick

layer as we approach the lateral edges in order to be consistent

with the periodic boundary conditions. Note that with our

choice of the background velocity and of the correlation

length, the normalized wavenumber ka, which characterizes

the scattering regime, is equal to the frequency f.

The interaction of a given seismic wavelength λ with the

randommedium requires all heterogeneities with size larger than

λ/2 to be well discretized (see Section 2.2). Assuming a minimum

of 5-6 points per seismic wavelength, this requirement is

naturally satisfied (with 2.5–3 points) but fluctuations with

size smaller than λ/2 have to be eliminated first in order to

avoid spatial aliasing at the discrete level. This is achieved by

applying a (4 poles, 2 passes) Butterworth low-pass filter (below

ka = 10) to the ACF before the inverse Fourier transform. With

this choice of the discretization parameters, we consider that the

propagation of SH waves in random media is accurately

simulated for frequencies up to at least 5 Hz. An example of

realization of random fluctuations, corresponding to standard

deviation ε = 5%, is given in Figure 2A. Note that for subsequent

analyses which require ensemble averages, we performed

60 realizations of each of the eight random media. The media

are further excited by a plane wave with vertical incidence. The

choice of the plane wave is intended to simplify subsequent

analyses of amplitude decay with distance since no geometrical

spreading needs to be considered. For each of the

480 simulations, we record the particle velocity at three sets of

receivers, Wi, Ci and Ei, located at the same vertical position Zi
and separated by 50 km in the horizontal direction (see

Figure 2B).

Different averages will be considered for each random

medium and each vertical position Zi: i) ensemble average,

corresponding to the average over the three receivers Wi, Ci

and Ei (considered as independent) and over the

60 realizations of the random medium; ii) horizontal

spatial average, corresponding to the average over all

(about 5,000) Gauss-Lobatto-Legendre gridpoints located at

vertical position Zi (white line in Figure 2B); iii) ensemble-

space average corresponding to the average over the

60 realizations of the horizontal spatial average.

For the source time function, we use a Dirac delta function

which we band-pass filter between 10−1 Hz and 8 Hz with

Butterworth filters of different orders (see Figure 3A).

The red trace in Figure 3B shows an example of particle

velocity recorded at z = 150 km for one realization of the

random medium of Figure 2. The black trace corresponds to

the coherent wave, which is obtained here as the space average

at distance z.
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3 Results

3.1 Mean wavefield scattering attenuation

The scattering attenuation can be estimated directly from the

amplitude decay of the coherent wave with distance. The

measurement process is illustrated in Figure 4 for the random

medium of Figure 2. The top figures show the seismic sections for

the central receivers Ci (left) and for the coherent wave (right).

The Fourier amplitude of the coherent wave is displayed as a

function of frequency for different distances (bottom left) and as

a function of distance for different frequencies (bottom right).

From the latter, we measure at each frequency, f, the scattering

mean free path, ℓ(f), by fitting an exponential decay exp [−z/

2ℓ(f)]. Note that as the propagation distance and frequency

increase, the Fourier amplitude may decrease so much that

the measurement of the decay is no longer robust. In such

case, we use a threshold value for the amplitude which is

around 5% and 15% of the maximum amplitude and chosen

by visual inspection. Note also that the coherent wavefield used in

Figure 4 is obtained by ensemble-space averaging.

Corresponding figures for the other averages (space,

ensemble) are presented in Supplementary Figure S1 of the

supplementary material.

The estimates of scattering attenuation, defined as the inverse

of the scattering mean free path, ℓ−1 (f), are shown in Figure 5 as a

function of frequency. For each of the eight random media,

different estimates are shown, corresponding to different

FIGURE 2
(A) 2D fluctuations defined by a von Kármán ACF with correlation length 500 m, Hurst exponent 0.25 and standard deviation 5%. The colorbar
indicates the amplitude of the fluctuations in %. (B) snapshot of an up-going plane wave in the random medium with a Birch coefficient ] = 1. Red/
blue colors indicate positive/negative particle velocity. At a given propagation distance Zi, 3 receivers are defined:Wi (west), Ci (centre) and Ei (east).

FIGURE 3
(A) source time function (top) with its Fourier amplitude spectrum (bottom) showing energy uniformly distributed between 0.1 Hz and 8 Hz. (B)
particle velocity obtained after 150 km of propagation for a single realization of the random medium of Figure 2. The red curve corresponds to a
single receiver whereas the black curve corresponds to the spatial average along the horizontal white line of Figure 2B.
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FIGURE 4
Waveforms and Fourier spectra for the case ] = 1 and ε = 5%. Top: seismic sections of particle velocity for one single realization (A) and for the
coherent wavefield obtained by ensemble-space average (B) Bottom: Fourier amplitude spectra of the coherent wavefield as a function of frequency
(C) and source-receiver distance (D) Color bars represent the range of propagation distance and frequency, respectively.

FIGURE 5
Comparison of scattering attenuation estimates obtained with different measures of the coherent wavefield: ensemble average (dotted lines),
space average (dashed lines) and ensemble-space Average (solid lines). Left (resp. right) figure corresponds to random media with ε = 5%
(resp. ε = 10%).
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averaging procedures used to define the coherent wavefield:

dotted lines correspond to the ensemble average, dashed lines

to the space average and solid lines to the ensemble- space

average. Results were obtained in the frequency range between

0.1 and 5 Hz with a step of 0.1 Hz. As can be seen, the ensemble

average can not be used beyond 3 Hz (resp. 1 Hz) for fluctuations

standard deviation ε = 5% (resp. ε = 10%). The horizontal space

average, obtained for a single realization of each random

medium, yields robust estimates for all cases with ε = 5% but

cannot be used above 4 (resp. 2) Hz for Birch coefficients below

0.67 (resp. 0.5) when ε = 10%. The ensemble-space average is the

only procedure that yields stable estimates throughout the ranges

of frequency and random parameters considered. Note that for

high levels of scattering (e.g. ε = 10%, ] = 0.5, f > 3 Hz), the

scattering mean free path becomes comparable, and even shorter,

than the minimum inter-station distance (5 km). In such regime,

it would be possible to get more stable estimates by adding more

receivers at short propagation distance (before the amplitude of

the coherent wave gets too attenuated). Finally, it is worth noting

that spatial averaging only already provides a reasonably accurate

estimate of the scattering mean free path. This property can be

advantageously exploited to estimate (scattering) attenuation

from a single realisation of disorder, like in real seismic data

acquisition, or to reduce the computational cost of numerical

simulations.

A comparison between theoretical and numerical scattering

estimates is shown in Figure 6. The numerical estimates, referred

to as SEM, rely on the ensemble-space average to define the

coherent wavefield and the theoretical estimates are obtained by

solving (Eq. 7). We retrieve the behaviour illustrated in Figure 1,

with an increase of scattering attenuation with frequency like f 3

in the low-frequency, Rayleigh regime, and like f 2 in the

intermediate-frequency, stochastic regime.

The results show a very good agreement between SEM

estimates and theoretical calculations. As mentioned earlier,

some instabilities of the SEM estimates are observed at high

frequency for ] = 0.5 and ε = 10%, when the scattering mean free

path tends to be comparable or shorter than the minimum inter-

station distance. Note also that there is a slight tendency for the

SEM estimates to underestimate the theoretical predictions in the

Rayleigh regime.

3.2 Comparisons of SEM and RTT
intensities

3.2.1 Temporal source term in RTT
The purpose of this section is to clarify our strategy to

compare energy envelopes derived from RTT and SEM full

wave simulations. We remind the reader that the former

theory predicts the ensemble average intensity for quasi-

monochromatic waves propagating in a random medium

(Ryzhik et al., 1996). In sharp contrast with the wave Eq.,

RTT operates on quantities that depend quadratically on the

wavefield. In seismology, energy envelopes of seismograms are

most often defined as the smoothed squared envelope of the

analytic signal derived from the observed wavefield ur [e.g. Emoto

and Sato (2018)]. Because propagation effects are generally

frequency dependent, it is important to localize the

observations in the frequency domain by filtering the data

prior to envelope computation. Taking this into account, we

write:

ur(t) � G(t) ⊗ f(t) (18)
where G(t) can be understood as the impulse response (Green’s

function) of the wave equation, f (t) is a source term (applied

force) and ⊗ denotes the convolution product. Note that f

incorporates some narrow- band filtering around circular

frequency ω0. To alleviate notations, we drop the spatial

dependence of field quantities in (Eq. 18) and following. We

FIGURE 6
Comparison of scattering attenuation between SEM (dashed lines) and the analytical solution (solid lines). SEM solution corresponds to the
ensemble-space average approach and the theory is given by the solution of Eq. 7. (A) Cases ε = 5%; (B) Cases ε = 10%.
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may now introduce the seismogram energy envelope E(t) as

follows:

E(t) ∞ 〈|u(t)|2〉 � 〈ur(t)2 + ui(t)2〉 (19)

where ui is the Hilbert transform of ur, u is the (complex) analytic

signal derived from ur and the brackets denote an averaging

operation. In practice, ensemble averaging is replaced by

smoothing in the temporal domain. In the present work, the

intensities derived from SEM simulations were averaged over

180 independent realizations of the random medium

(60 realizations and three independent receivers Wi, Ci, and

Ei, see Section 2.4). To understand the impact of filtering on the

energy envelopes derived from RTT, we decompose the intensity

over its different frequency components as follows:

〈|u(t)|2〉 � 4 ∫+∞
0

∫〈Ĝ(ω1)Ĝ(ω2)*〉f̂(ω1)f̂(ω2)*e−i(ω1−ω2)tdω1dω2

(2π)2 (20)

where the hat denotes the Fourier transform (FT) of a given

function. In (Eq. 20), the pre-factor 4 takes into account the

relation between the FT of the real and analytic signals: û(ω) =

2H(ω)ûr(ω) with H the Heaviside function; the (2π)−2 factor in

the integral results from the Fourier transform convention (see

for instance Aki and Richards, 2002). For the source term, we

ideally think of a function of the form:

f(t) � s(t) cos(ω0t) (21)
where ω0 is the observation frequency and s(t) is an envelope

function which varies over a characteristic time T such that

ω0T ≫ 1. We also demand that ŝ(ω) converges (up to some

pre-factor) to a delta function in the limit T → ∞. As a

consequence, we may localize the spectrum of u in an

arbitrarily small neighborhood of ω0. Typical examples for

s(t) are given by the boxcar function Π(t/T), the half

exponential H(t)e−t/T or the Gaussian e−t2/2T2
. Much more

general examples can be found in the applied mathematics

litterature (e.g., Stakgold and Holst, 2011). Thanks to the

localizing nature of ŝ, the spectrum of f may be approximated

by ŝ(ω − ω0)/2. Returning to the Fourier decomposition (Eq.

20), we introduce barycentric coordinates in the frequency

domain ω = (ω1 + ω2)/2, Ω = (ω1 − ω2) to obtain:

〈|u(t)|2〉 � 1

(2π)2 ∫−∞
0

dω ∫2ω
−∞

〈Ĝ(ω + Ω/2)Ĝ(ω − Ω/2)*〉

ŝ(ω − ω0 + Ω/2)ŝ(ω − ω0 − Ω/2)*e−iΩtdΩ
(22)

The dominant contributions to the integrals come from the

intervals |ω − ω0| ≤ B/2, |Ω| ≤ B where B∝ 1/T is the bandwidth

of the envelope s(t). Physically, ω and Ω describe the fast

oscillations of the wave and the slow modulation of the

seismogram envelope, respectively (Lagendijk and Van

Tiggelen, 1996). Note that for all practical purposes, the

integration regions may be extended from −∞ to + ∞. If we

now assume that the scattering properties vary little inside the

frequency band of interest, we may evaluate the ensemble average

product of the Green’s function at the central frequency ω0 (or in

fact any other convenient frequency within the band). The

intensity Green’s functions at the central frequency ω0 may

then be defined as:

I(t,ω0) � 1
2π

∫+∞

−∞
〈Ĝ(ω0 + Ω/2)Ĝ(ω0 − Ω/2)*〉e−iΩtdΩ. (23)

The solution to the transport (Eq. 10) provides an

approximation to I (t, ω0) which, according to (Eq. 22) must

be convolved with a source term S(t) whose FT is given by:

Ŝ(Ω) � 1
2π

∫+∞

−∞
ŝ(ω + Ω/2)ŝ(ω − Ω/2)*dω (24)

By a simple change of variable this is recognized as the auto-

correlation of S^(ω) which in turn yields the following

approximation for the seismogram envelope in the time domain:

〈|u(t)|2〉 ≈ I(t;ω0) ⊗ S(t) with S(t) � |s(t)|2 (25)

Eq. 25 shows that in the ideal case where the time scale of the

envelope is much larger than the period of the waves, the Green’s

function of the RTE should be convolved with the squared

envelope of the source term of the wave equation. In practice,

we rarely reach this perfect separation of scales. For example, the

common practice in seismology is to filter the data in a frequency

band f0 ± f0/3 with a two-pass Butterworth filter with 4 poles. We

also adopt this choice in this work. An additional difficulty stems

from the fact that MC simulations average the intensity over a

finite volume, in contrast with SEM simulations where intensities

are evaluated at a point. To circumvent these difficulties, we

therefore identified the source term |s(t)|2 by deconvolving the

numerical Green’s functions of RTE from the SEM intensity in a

homogeneous medium (see Figure 7). This operation is

performed independently for each central frequency of

interest at a receiver located 5 kms away from the energy

injection surface in the SEM simulations. The deconvolution

process and the retrieved source function are depicted in

Figure 7. The Green’s function of the RTE in scattering media

is then systematically convolved with the identified source term

before comparison with the average intensities derived from the

SEM simulations. A similar strategy was adopted by Margerin

and Nolet (2003) in their modeling of PKP precursors.

3.2.2 Analysis of RTT and SEM energy envelopes
To examine critically the potential of RTT at modeling the

transport of intensity in a random medium, we compare MC

simulations of RTT and full wave SEM simulations for a variety

of epicentral distances ({50, 100, 150} kms), frequency bands

([0.5, 1] Hz, [1, 2] Hz and [2, 4] Hz), Birch correlation

coefficients ({0.5, 0.67, 0.8, 1}) and RMS velocity

perturbations ({0.05, 0.1}). The Hurst exponent is fixed at

0.25, which corresponds to random media that are relatively
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rich in small-scale heterogeneities, thought to be representative

of geological materials (Sato, 2019). Referring back to Figures 1,

6, this parametric study allows us to explore a variety of

propagation regimes from ballistic/single-scattering (t ≪ τ,

with t the lapse-time and τ the scattering mean free time) to

diffusive (t≫ τ) in the Rayleigh and stochastic frequency regions.

To facilitate the discussion, we summarize in Table 1 the main

characteristics of the random media we considered.

Figures 8, 9 show systematic comparisons between SEM and

RTT energy envelopes. To suppress statistical fluctuations, the

outputs of the full wave simulations have been averaged over

180 realizations.

For the vast majority of cases considered, we find very

reasonable agreement between SEM and RTT energy

envelopes. This result is quite remarkable considering the

fact that the numerical experiments cover almost all

propagation regimes that are likely to be met in practice. In

the details, we observe that the fit between ab initio

simulations and RTT is not uniform in the model

parameter space. The worst fits are generally observed for

scattering media with small values of ], large perturbations

(ε = 10%), which correspond to increasing strength of

scattering. In Figure 9, we find that while RTT reproduces

rather well the general envelope shape, it tends to slightly

underestimate the amplitude of the ballistic peak and the coda

level for the largest propagation distances. The slight

discrepancies may find their source in at least three non-

trivial differences between the two approaches. First, we may

invoke the treatment of BC at the top and bottom of the

model. On the one hand, absorbing conditions are perfect in

MC simulations of RTT because any seismic phonon that

escapes the propagation medium automatically terminates its

random walk. In SEM simulations, the implementation of

absorbing BC is less efficient [we used the old implementation

of Stacey (1988) instead of the PML implementation of

Komatitsch and Martin (2007)], so that waves that strike

the boundary at large incidence angles get partially

reflected, which may in turn explain the largest energy level

FIGURE 7
Identification of the source term in the radiative transfer equation. At a distance z = 5 km from the source in a non-scattering medium, the
energy density predicted by RTT (A) is deconvolved from the intensity computed by SEM simulations (B) to obtain the source time function (C) This
example corresponds to the frequency band [1, 2] Hz.

TABLE 1 Scattering (ℓ) and transport (ℓp) mean free paths for the set of randommedia considered in Figures 8, 9. The central frequencies correspond to
the analyzed frequency bands ([0.5, 1], [1, 2] and [2, 4] Hz).

Case ℓ(f) ℓ
p(f)

f = 0.75Hz f = 1.5Hz f = 3Hz f = 0.75Hz f = 1.5Hz f = 3Hz

] = 1, ε = 5% 315.5 85.5 21 278.6 131.8 77.9

] = 0.8, ε = 5% 229.4 58.2 13.7 221.7 103.9 60.35

] = 0.67, ε = 5% 173.3 41.9 9.6 180.5 83.8 47.9

] = 0.5, ε = 5% 107.8 24.6 5.5 125.8 57.4 32.0

] = 1, ε = 10% 78.7 22.4 5.5 69.5 32.9 19.5

] = 0.8, ε = 10% 57.4 14.6 3.4 55.6 25.9 15.1

] = 0.67, ε = 10% 43.5 10.5 2.4 45.1 20.9 11.9

] = 0.5, ε = 10% 26.9 6.1 1.4 31.5 14.4 8.0

Frontiers in Earth Science frontiersin.org12

Celorio et al. 10.3389/feart.2022.1033109

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1033109


in the coda. The second source of discrepancy is the finite

frequency band used in the simulations. Indeed, scattering

attenuation depends strongly on frequency in the Rayleigh

regime and slightly less so in the stochastic regime. Hence, it is

probably incorrect to assume that the scattering properties are

more or less uniform in a given frequency band. In the

Rayleigh regime, we did find by direct computations that

changing the central frequency from 0.5Hz to 1 Hz (for

instance) does increase significantly the level of

backscattering in the coda. This may explain the slight

underestimation of the coda level for ] = 0.5, 0.67 visible

in the low-frequency band for ε = 10%. Our third point is

motivated by the observation that the discrepancy between

SEM simulations and RTT is amplified as ] decreases and ε

increases (compare the left panels in Figures 8, 9). In both

cases, this corresponds to an increase in the strength of the

scatterers. This therefore suggests that part of the issue stems

from the Born approximation which underlies the

computation of the scattering properties in RTT. The

limitations of Born approximation have been previously

noted in the literature, even for scatterers of moderate

contrasts (Korneev and Johnson, 1993; Gritto et al., 1995).

Additional work will be needed to determine the dominant

factor at the origin of difference between RTT and SEM at low

frequency.

In the intermediate-to-high frequency regions ([1, 2] Hz, [2, 4]

Hz), Figures 8, 9 (middle and right panels) provide illustrations of a

variety of classical multiple-scattering phenomena that are

remarkably well captured by RTT, as attested with the overall

good match with the SEM simulations. This includes the

FIGURE 8
Mean intensity comparisons between SEM and radiative transfer theory solution. Results are shown for three frequency bands [0.5 1], [1 2] and [2
4] Hz, and for three different distances, at 50, 150 and 250 km. Red line corresponds to SEM intensities and the black lines are the radiative transfer
theory solution. Cases ε = 5%.
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attenuation of the signal, the broadening of the ballistic pulse and the

coda generation, which result in a decrease of the coherent to

incoherent energy ratio (see for example middle panels in

Figure 8). This transfer of energy from the coherent to the

incoherent component of the wavefield is in fact the key process

described by RTT. The spatio-temporal dependence of the coherent-

to-incoherent energy ratio forms the basis for the determination of

scattering properties in seismology and acoustics (Fehler et al., 1992;

Hoshiba, 1993; De Rosny and Roux, 2001). In the case where the

propagation distance of the ballistic wave exceeds the transport

mean free path (see in particular the right panels in Figure 9), the

energy envelopes develop a shape characteristic of diffusive

propagation, with a delay from the onset of the signal to the

peak that increases like R2/D with R the hypocentral distance and

D the diffusivity of the waves. In Supplementary Figure S2 of the

supplementary material, we verify that the diffusion model

developed in Section 2.3 provides an excellent match to the

SEM envelopes. The overall accuracy and relative simplicity of

the diffusion approximation makes it particularly attractive to

model the transport of seismic energy through very strongly

scattering media such as planetary regoliths (Dainty et al.,

1974; Gillet et al., 2017; Karakostas et al., 2021) or volcanoes

(Wegler and Lühr, 2001; Wegler, 2003; Del Pezzo, 2008). At

sufficiently long lapse-time, we note the progressive

homogenization of the spatial distribution of seismic

energy, which underpins the so-called coda normalization

method (Aki, 1980). Having described in some details the

spatio-temporal dependence of the ensemble average intensity

in random media, we investigate the intensity fluctuations in

the ballistic peak and the coda in the next section.

FIGURE 9
Same as Figure 8 for cases ε = 10%.
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3.3 Intensity distributions

Although RTT per se does not make predictions on the

deviation of the intensity from its mean value, closely related

multiple-scattering theories provide some insight on this issue

(Rytov et al., 1989). SEM simulations offer a unique

opportunity to test the predictions of these theories in

some detail. In atmospheric optics, the magnitude of

intensity fluctuations as quantified by the scintillation index

β2 � 〈I2〉/〈I〉 − 1, which has been traditionally used as a

diagnosis of the propagation regime (Rytov et al., 1989).

One typically distinguishes between a weak fluctuation

regime (β ≪ 1) and a strong fluctuation regime (β ≈ 1). By

comparison, intensity fluctuations have only very recently

attracted the attention of seismologists (Hoshiba, 2000;

Müller and Shapiro, 2003; Nakahara and Carcolé, 2010;

Yoshimoto et al., 2015; Emoto and Sato, 2018). As pointed

out by Yoshimoto et al. (2015), it is of seismological interest to

predict the statistical distribution of intensity. Indeed, peak

ground velocity (or acceleration) are considered as key

parameters in the context of seismic hazard evaluation. In

the present work, we follow Emoto and Sato (2018) and make

use of the statistics of intensity as a diagnosis of the

propagation regime of seismic waves.

It is generally accepted that the statistical distribution of

intensity fluctuations differ between the ballistic peak and the

coda part. A clear and concise exposition of the basic theory

accounting for this difference is provided by Goodman

(2015). Here, we shall simply recall the basic distributions

that are thought to be representatives of intensity fluctuations

around the ballistic peak and in the coda. In the former case,

treating the propagation medium as a succession of random

phase screens along the direct ray path, perturbation theory

yields:

F ln(I) � 1
σ

���
2π

√ ∫I

0
exp

−(lnx − μ)2
2σ2

dx (26)

with Fln the cumulative distribution function (CDF) of the Log-

normal distribution. In (Eq. 26), µ and σ respectively denote the

mean and the standard deviation of the logarithm of intensity.

In the case of the coda, the wavefield is thought to be a

superposition of many waves with random uncorrelated

phases. The central limit theorem then asserts that the field

is gaussian, which in turn implies that the intensity (of the

derived analytic signal) is exponentially distributed:

F exp(I) � 1 − exp
−I
μ

(27)

To let the reader appreciate the relevance of these

distributions to characterize intensity fluctuations in

random media, we estimated the empirical CDF of

intensity from SEM simulations, as well as the two basic

statistics µ and σ. This task was carried out in short time

windows of duration 1/fc (fc the central frequency of the

filtered data) around two lapse-times T1 and T2

corresponding to the arrival time of the ballistic peak and

the late coda (T2 = T1 + 80 s), respectively. 180 realizations of

the random medium were employed for the analysis. To

investigate different propagation regimes, we compare the

empirical CDF with the predictions of the Log-normal and

exponential distributions at two different propagation

distances (5 kms and 150 kms) from the source. Typical

results are shown in Figure 10 at central frequency 1.5 Hz

in the case ] = 0.5 and ε = 5%, corresponding to a scattering

mean free path ℓ = 24.6 km (see Table 1). At short distance

from the source (Figure 10 top), we observe that the Log-

normal and exponential distributions provide excellent match

to the intensity fluctuations of the ballistic peak and of the

coda, respectively. At large distance from the source, the

intensity in the coda is unsurprisingly still governed by an

exponential distribution. Much more intriguing is the

observation that the intensity of the ballistic peak follows

an exponential distribution rather than a Log-normal one. The

logical explanation for this somewhat paradoxical outcome is

that the ballistic peak is composed of multiply-scattered

waves. This interpretation is in fact consistent with the

value of the scattering mean free path (24.6 km), which

implies that the coherent wave has already been almost

completely converted to scattered waves at a distance of

150 km from the source. What makes the peak visible is

that the single scattering process occurs preferentially

around the forward direction. This is attested by the value

of the ratio ℓp/ℓ (> 2), which is a classical measure of scattering

anisotropy (ℓp/ℓ > 1 implies dominant forward scattering).

The fraction of scattered waves that keeps propagating around

the forward direction gives rise to a ‘quasi-ballistic’ peak,

whose attenuation properties will be further investigated in

Section 3.4.

We will now focus on the intensity distribution of the

ballistic peak and its dependence with distance in order to

identify the transition from log-normal to exponential

behavior. This analysis will give us clues on the crossover

between different scattering regimes as the propagation

distance z increases: notably from ballistic for z ≤ ℓ to quasi-

ballistic for ℓ ≤ z ≤ O (ℓp). Emoto and Sato (2018) performed a

similar study in the time domain. More precisely, they

investigated the lapse-time dependence of the intensity

distribution using an ensemble of full waveform simulation

in a set of von Kármán media with different statistical

parameters. They found that for most cases, the distribution

changes from log-normal to exponential just after the ballistic

peak. Furthermore, for certain levels of scattering and distance

ranges, they could observe the crossover at earlier lapse-times

(i.e., in the ballistic peak). Following the procedure of Emoto
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FIGURE 10
Distribution of intensities at distances (A) 5 km and (B) 150 km from the source for the case ] = 0.5, ε = 5% in the [1, 2] Hz frequency band (Left)
Ensemble of 180 realizations of SEM intensities (grey lines) and their mean value (black line); (Center and Right): Complement of the CDFs of
intensities around lapse times T1 and T2 corresponding to the ballistic peak and the late coda (as indicated by the dashed red lines in the left panels).
The solid blue and red lines show the fitted Log-normal and exponential CDF. The black dashed line represents the empirical complementary
CDF from SEM simulations.

FIGURE 11
Distance dependence of intensity distributions at the ballistic peak for cases ε = 5%. Blue and red lines are the log-normal and exponential
distributions, respectively. The dotted black line corresponds to the value of scattering mean free path for each specific central frequency.
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and Sato (2018), we use the mean absolute error (MAE) to

quantify the agreement between the empirical intensity CDF

and the predictions of the Log-normal and exponential

distributions. Precisely, the MAE is defined as

(1/N)∑N
i�1|Oi − Ei|, where N is the number of data and Oi, Ei

are the observed and expected values of the CDF, respectively.

As illustrated in Figure 10, Log-normal and exponential CDF

were calculated in short windows of size 1/fc around the ballistic

peak as a function of the distance from the source.

In Figure 11 we show the distance dependence of MAE of the

Log-normal and exponential distributions in three frequency bands

([0.5, 1]Hz, [1, 2] Hz, [2, 4] Hz) in the case ] = 0.8, ε = 5%. Except in

the strongest scattering medium (lower right panel), Figure 11

illustrates that the peak intensity distribution is invariably Log-

normal at short distance from the source. Conversely, at large

distance from the source, we find that the intensity is governed

by an exponential probability law, at the exception of the most

weakly scattering medium (upper-left panel). Therefore, it is

meaningful to track the critical distance Rc at which the

transition between the two probability distributions occurs. As

outlined previously, this critical distance marks the transition

from a ballistic regime where the peak intensity is dominated by

the coherent wave to a “quasi-ballistic” regime where the peak is

mostly composed of forward-scattered waves. The key idea is to use

Rc as a proxy for the scattering mean free path. To test this

possibility, we denote by a vertical dashed line the epicentral

distance corresponding to the scattering mean free path in

Figure. The visual comparison of Rc with ℓ indeed confirms

some correlation between the two quantities. In Figure 12, we

investigate systematically the dependence of Rc on ℓ for all the

cases considered in Table 1. The results clearly suggest thatRc =O(ℓ)

and could be used as an upper bound for the scattering mean free

path. We are not aware of field observations of the statistical

transition seen in SEM simulations.

3.4 Peak intensity attenuation

Since the pioneering works of Wu (1982) and Sato (1982), it

is widely accepted that the so-called “direct waves” are in fact a

mixture of the coherent and incoherent components of the

wavefield. Besides the confounding effect of absorption, the

fact that the coherent field is not readily accessible in

seismology severely complicates the interpretation of

attenuation measurements. The purpose of this section is to

shed some light on this issue.

We pointed out in Section 3.3 that for propagation distances

typically larger than the mean free path, forward-scattered waves

can form a peak of intensity which propagates in a quasi-ballistic

fashion. We now investigate specifically the attenuation

characteristics of this peak. We first filter the waveforms

obtained from SEM simulations in narrow frequency bands 5/

6f0, 7/6f0 with f0 increasing from 0.5 Hz to 5 Hz by increment of

0.5 Hz. We used a two-pass Butterworth filter with 4 poles.

Intensities are then calculated using the definition (Eq. 19)

and averaged over 180 realizations (ensemble average of

intensities). The operation is repeated every 5 kms for

propagation distances ranging from 5 kms to 300 kms. Finally,

at each frequency, we normalize the average intensities by the

maximum value sup I (z, t). Normalized peak intensities are

displayed as a function of distance for each frequency in

Figure 13. Note that since a logarithmic scale is used on the

vertical axis, an apparent linear behavior corresponds to an

exponential decay in space. Such a behavior is clearly

observed at all frequencies at sufficiently short distance from

the source. As distance increases the apparent exponential

behavior eventually breaks down. This feature is particularly

clear for the strongest scattering media for which an abrupt

change of the slope can be observed in the peak intensity decay

curve. This corresponds to the transition towards the diffusion

FIGURE 12
Scaled critical distance Rc/ℓ as a function of ℓ. Colors stand for the three frequency bands. The circles denote the cases at which Rc takes values
either larger than the maximum epicentral distance (300 km) or shorter than the minimum (5 km).
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regime where the maximum intensity is reached in the coda.

Similar to Section 3.1, the range of propagation distances for

which the intensity decay can be considered exponential was

determined by visual inspection resulting in threshold values of

intensities ranging from 5% to 10% of the maximum intensity.

The apparent attenuation length of the peak intensity (ℓI) is

subsequently determined by a simple linear regression of the

logarithm of intensity with distance. The results (with respective

uncertainties) are shown in Figure 13 (upper right panel). While

peak intensity attenuation increases with frequency, comparison

with Figure 6 reveals that both its magnitude and frequency

dependence differ significantly from the predictions of mean field

theory. In other words, the apparent decay length of the peak

intensity is not the scattering mean free path.

As discussed in Section 2.3, scattering anisotropy leads to the

introduction of the transport mean free path ℓ
p as a new length

scale in RTT. In particular, ℓp appears as the step length of the

diffusive process that approximates the solution of the transport

problem. It is also the key length scale controlling the broadening

of energy envelopes with distance (Gusev and Abubakirov, 1999).

Using real data examples, Gaebler et al. (2015) demonstrated that

ℓ
p is so far the only scattering property that can be inferred with

some confidence from seismological observations. These facts

put forward ℓ
p as the natural scale length to quantify the peak

intensity decay with distance. To put this idea to the test, we plot

in Figure 13 (bottom) the normalized intensity rescaled by the

factor exp [z/ℓp(f)] as a function of z/ℓp. Remarkably, we observe

at all frequencies that, up to a distance of the order of order ℓp,

attenuation of the ballistic peak of intensity is very well predicted

by the transport mean free path in the case ] = 0.5 and ε = 0.5%.

In the case where scattering is weakly anisotropic (i.e., in the

lower frequency range), we even find that the exponential decay

regime extends beyond 2 transport mean free paths. Note that at

low frequency, the scattering and transport mean free path differ

in general very little. In this regime, Zhang et al. (1999) found

through theoretical and experimental investigations that

scattered waves display quasi-ballistic behavior up to a

propagation distance of three mean free paths. Although these

authors did not investigate the peak attenuation, their findings

agree qualitatively with the results shown in Figure 13.

To further document the key role played by ℓ
p in seismic

attenuation, we compare in Figure 14 the peak intensity

attenuation ℓ
−1 estimated from SEM simulations with the

theoretical predictions for ℓ
p−1 and ℓ

−1 for the set of random

media listed in Table 1. For reference, we also show the

attenuation of the peak particle velocity of the coherent

wavefield (ensemble-space average), which was previously

discussed at length in Section 3.1. Figure 14 provides a solid

confirmation that ℓp is indeed a very good approximation to the

apparent attenuation length of the peak intensity for a broad

range of random media. We recall that the exponential decay of

the peak intensity remains valid up to a distance of the order of ℓp

FIGURE 13
Measurement of peak intensity attenuation. (A) Peak intensity decrease with distance (solid lines) and the fitted exponential regression (dashed
lines), the colorbar represents different central frequencies ranging from 0.5 to 5 Hz with a frequency step of 0.5 Hz. (B) Peak intensity attenuation
and bar errors. (C) dependence of scaled intensity I × exp (z/ℓp) versus z/ℓp. Case ] = 0.5 ε = 5%.
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with a range of validity which is bit broader when scattering is

weakly anisotropic. The Figure also illustrates very clearly that

the scattering attenuation length of the mean field and mean

intensity differ very largely in the forward scattering regime. This

difference is explained by the fact that the mean field represents

the pure coherent (unscattered) component, whereas the mean

intensity is a mixture of coherent and incoherent (scattered)

waves. The waves scattered around the forward direction exhibit

a quasi-ballistic behavior with the transport mean free path as the

key controlling length scale (Gusev and Abubakirov, 1999).

4 Conclusion

While it is broadly accepted that small-scale

heterogeneities play a key role in realistic simulations of

ground motions at high-frequencies, the validation of their

implementation remains in our opinion a blind spot. The most

comprehensive source of information on small-scale

heterogeneities is the inversion of envelope characteristics

with the aid of RTT (Abubakirov and Gusev, 1990; Fehler

et al., 1992; Hoshiba, 1993; Wang and Shearer, 2017; Sato,

2019). Due to the limited data coverage, this approach offers

access to frequency dependent scattering attenuation lengths

(the scattering and/or transport mean free paths) but not to the

full power spectrum of heterogeneities. Hence, to simulate the

correct propagation regime and reproduce reasonably well the

characteristics of seismograms, it is important to verify that

the mean free path of the numerical model of wave

propagation matches the one of the targeted area in the

frequency band of interest. With the aid of scattering

theories for the mean field and the mean intensities, we

have shown in this paper that this task is completely

manageable over a broad range of frequencies up to

fluctuations of 10% which are typical of the crust. An

exception is the very-high frequency limit, which remains

challenging both numerically and theoretically (Sato and

Emoto, 2018). Full wave simulations also offer access to the

statistical distribution of intensity. We payed particular

attention to the ballistic peak and found a transition from a

log-normal to an exponential distribution at a distance from

the source of the order of the scattering mean free path. This

implies that in many cases of interest, the ballistic peak is in

fact composed of a superposition of multiply-scattered waves,

FIGURE 14
Peak intensity attenuation (dashed blue line) and comparison with transport mean free path (solid blue line), peak velocity attenuation of the
coherent wave (dashed black line) and scatteringmean free path (solid black line). Transport and scatteringmean free paths plots correspond to their
analytical solutions. Attenuation of the peak intensity is obtained from the ensemble average of the 180 realizations and the peak velocity
corresponds to the ensemble-space average coherent wavefield (A–D) cases ε= 5% and (E–H) cases ε= 10%. (A,E) correspond to the case ν= 1,
(B,F) to ν = 0.8, (C,G) to ν = 0.67 and (D,H) to ν = 0.5.
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in spite of its “coherent” appearance. This finding has at least

two important implications. In seismic hazard assessment,

because it is heavy-tailed, the log-normal distribution allows

for larger deviations of the intensity from its mean value than

the exponential distribution. Having access to the correct

propagation regime is therefore important to estimate the

typical uncertainty in full wave simulations or in ground

motion prediction equations. The full wave simulations also

illustrate that the attenuation of the ballistic peak does not

follow the attenuation of the coherent wave. While this has

been known for a long time (Sato, 1982; Wu, 1982), there have

been debates in the literature on the relevant length scale,

with several authors advocating the transport mean free path

as the key quantity (Gusev and Abubakirov, 1999; Gaebler

et al., 2015). Here, we show by direct comparison with full

wave simulations that the ballistic peak indeed exhibits an

apparent exponential decay with the transport mean free path

as attenuation length. We note that this result has been obtained

for randommedia that are richer in small-scale than the usual one

with exponential correlation and that further numerical work is

needed to investigate the validity of this result for a broader range

of Hurst exponents. It nevertheless implies that the basic relation

Qsc = ωl/v found in the literature, while theoretically correct, has

little relevance to the apparent attenuation seen in typical

seismograms.
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