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Accurate detection of P-wave arrivals has important applications in real-time

seismic data processing, such as earthquake monitoring and earthquake early

warning. The Sichuan and Yunnan regions, where the China Seismic

Experimental Site (CSES) is located, has frequent strong earthquakes and

large amount small earthquakes, resulting in serious earthquake disasters. In

this paper, we modify the UNet++ network structure and use 490,000 event

waveform data and 78,000 noisy data from theCSES as the data set, and analyze

the effects of the training set quality, labeled data and loss function on the

model performance to obtain a new P-wave detection model-CSESnet. The

recall, precision and F1 score of this model are 94.6%, 85.4% and 89.7%,

respectively. The tests in Beijing Capital Circle (BCC) indicates the

performance of the CSESnet decrease little and has good generalization.

The test in Luxian M6.0 earthquake shows that CSESnet can also predict the

P-wave arrival times of large earthquakes and process strong motion data very

well. CSESnet provides a new detection model to improve the earthquake

detection capability in CSES.
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1 Introduction

In earthquake waveforms, P-wave, S-wave and surface wave are the three main groups

of wave trains. P-wave is the first wave group to arrive in an earthquake due to its faster

propagation speed than S-wave and surface wave. Automatic detection of P-wave is very

important for real-time seismological studies, such as earthquake early warning and

earthquake rapid reporting (Ma et al., 2013). In addition, accurate picking of P-wave

arrivals can provide reliable basic data for high-precision earthquake location and body

wave travel time tomography (Lei, 2000; Di Stefano et al., 2006; Husen et al., 2009; Lomax

et al., 2009; Tian et al., 2009).
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Sichuan-Yunnan region is located on the southeastern

margin of the Tibetan Plateau. Due to the eastward extrusion

of the crustal material of the Tibetan Plateau, the geological

tectonic movement is very active. Moderate and strong

earthquakes occur frequently in this region. There have been

25 earthquakes with magnitude larger than 7.0 in history (Yi

et al., 2002; Wen, 2018). According to statistics from the China

Earthquake Networks Center, one earthquake of magnitude

M8.0 (Wenchuan earthquake), two earthquakes of magnitude

M7.0 (Lushan earthquake and Jiuzhaigou earthquake), and more

than 20 earthquakes of magnitude M6.0–6.9 have occurred in the

region since 2000, caused huge casualties and property damage.

In recent years, the frequency of microseismic activity in

Sichuan-Yunnan region has increased rapidly with industrial

activities, such as shale gas exploitation and reservoir storage (Lei

et al., 2019). The average number of earthquakes in this region is

more than 40,000 per year, accounting for about 42% of the

annual number of earthquakes in Chinese mainland (Dai et al.,

2019).

In order to reduce earthquake disasters, the China

Earthquake Administration (CEA) has started to build an

earthquake early warning system in Sichuan-Yunnan region

since 2016 (Peng et al., 2021). Currently, there are more than

3400 seismic stations in Sichuan and Yunnan, including

516 broadband stations, 575 acceleration stations, and

2313 low-cost micro-electro-mechanical systems (MEMS)

accelerometer stations. The average inter-station distance is

15 km. The system successfully provided early warnings for

the 21 May 2021 Yangbi M6.4 earthquake in Yunnan and the

16 September 2021 Luxian M6.0 earthquake in Sichuan.

Current earthquake detection algorithms in early warning

systems mainly use traditional methods, such as STA/LTA

and AIC to detect earthquakes (Allen, 1978; Leonard and

Kennett, 1999; Ma et al., 2013; Wenzel and Zschau, 2014; Wu

and Lin, 2014). Although the detection efficiency is high, it

cannot effectively distinguish P and S-waves, the picking

accuracy of P-wave is low, and it needs tune parameters at

different stations. Jamming signals generated by lightning,

traffic activity, instrument calibration, or instrument

malfunction occasionally cause false triggers in the

earthquake early warning system, resulting in unnecessary

economic losses and public panic (Li et al., 2018; Zhang et al.,

2021). The false triggers caused by calibration signals occurred

in the earthquake warning system on 5 October 2021,

indicating that the earthquake detection algorithm of the

warning system needs to be further improved. Since 2021,

the CEA has started to build the China Seismic Experimental

Site (CSES) in Sichuan-Yunnan region, covering an area of

780,000 km2, with more than 700 new broadband seismic

stations and more than 300 short-period seismic stations

planned. By then, the number of seismic stations in the

experimental site will reach nearly 5,000 seismic stations.

There is an urgent need to develop new automatic

processing algorithms for both earthquake early warning

and real-time data processing for the large number of

seismic stations in the CSES.

In recent years, deep learning-based earthquake detection

methods represented by U-net have been rapidly developed (Zhu

and Beroza, 2019; Liu et al., 2020; Ross et al., 2020; Jiang C. et al.,

2021; Jiang Y. et al., 2021). At present, the better deep learning-

based seismic phase picking algorithms are developed based on

the U-net structure, such as PhaseNet (Zhu and Beroza, 2019),

Unet_cea (Zhao et al., 2019), APP (Liu et al., 2020), RED-PAN

(Liao et al., 2022). U-net (Ronneberger et al., 2015) was first

applied in the field of medical image segmentation. These seismic

phase picking algorithms leverage the ability of U-net to apply

the two-dimensional image information identified by the target

or target boundary to one-dimensional waveform sequence data

to identify the seismic phase position information (i.e., seismic

arrival time). U-net adopts a symmetric downsampling-

upsampling structure: the downsampling part consists of

multiple convolutional network layers, and the upsampling

part uses multiple deconvolution layers that increase layer by

layer. The two parts are symmetrical one by one. Among them,

the upsampling layer in the U-net structure also combines the

high-resolution feature information (skip connection) generated

by the convolution (downsampling path) of the same layer to

obtain more accurate information. U-net can better solve the

information lost in the downsampling stage in the convolution

operation by fusing feature information layer by layer. However,

due to the inherent hierarchical model structure of U-net, U-net

may lose edge information of large targets or small target

information in downsampling and upsampling (Zhou et al.,

2018). To solve the problem of insufficient capture detail

features of U-net, Zhou (Zhou et al., 2018) proposed the

UNet++ network with the addition of multi-scale feature

fusion, which achieves better target segmentation than U-net.

In this paper, we selected UNet++ (Zhou et al., 2018) as the

backbone network, and modified its network structure according

to the characteristics of earthquake waveforms. The earthquake

detection model CSESnet was trained using 490,000 event

waveform data and 78,000 noise data from 2013 to 2019 in

Sichuan-Yunnan region. The generalization of the model was

tested using data from the BCC. The model was used to detect the

recent moderate-to-strong earthquakes in CSES. The processing

performance of the method on velocity and acceleration records,

as well as the feasible application prospects in earthquake early

warning in Chinese mainland, were analyzed.

2 Data

In this study, 3-component event waveforms above

ML1.0 recorded from 2013 to 2019 by the seismic network in

Sichuan-Yunnan region (Longitude: 96.0° to 109.0°E; Latitude:

21.0° to 35.0°N) were collected as training data, using
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161,234 events recorded by 270 stations (Figure 1). The sampling

rate is 100 Hz. There are a total of 497,303 waveforms. The

magnitude distribution, epicentral distance, signal-to-noise ratio,

and P-wave travel time curve statistics of the dataset are shown in

Figure 2 and Figure 3. We divided the dataset (497, 303 event

waveforms) into three groups: training set, validation set, and test

FIGURE 1
Distribution of seismic stations and earthquake epicenters in Sichuan-Yunnan region.

FIGURE 2
Magnitude distribution of the training set (A), signal-to-noise ratio distribution of the training set (B).
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set. Among them, the training set has 397,303 waveform data

(about 80%), which is used for model training. The validation set

has 50,000 (about 10%), which is used for model tuning and

model selection. The test set has 50,000 (about 10%) for testing

the model performance. PhaseNet (Zhu and Beroza, 2019) does

not use noise data in the training set, which would make it

possible to detect noise as earthquake. To improve the detection

ability of the model, we added 78,000 noise data to the training

dataset. The noise data is waveforms from 35 s to 5 s before the

arrival of the P-wave of the earthquake. Some waveforms

containing earthquakes are excluded based on the earthquake

catalog and theoretical arrival times.

Since earthquake location and early warning mainly use

relatively close stations, we only select waveforms from

stations within 120 km epicentral distance, corresponding to

an S-P travel time difference of about 15 s (Figure 4). The

training data are three-component waveform data. In order to

include the complete P-wave train in the training data as much as

possible, we select a 5 s window before the P-wave and a 25 s tail

wave after the P-wave arrival time, for a total of 30 s waveform

window. To reduce the sensitivity of the model to the P-wave

arrival time and improve the generalization of the model, the

starting point of the time window is randomly distributed 5 s

before the P-wave arrival, and the length of the time window

remains 30 s.

The quality of the dataset, such as signal-to-noise ratio,

epicentral distance, and label quality, has an important impact

on the model performance (Zhang et al., 2016; Mousavi et al.,

2020; Northcutt et al., 2021). To ensure the quality of the training

set and the accuracy of P-wave arrivals, the datasets used in this

paper all use the manually processed earthquake waveform and

phase arrival information. To further screen the data, we use the

theoretical travel time curves to filter out the data with large

deviations (> 3 s) from the theoretical P-wave travel time.

Figure 3 shows the filtered P-wave travel time curves.

In order to preserve as many of the original features of the

P-wave as possible, the data is preprocessed by removing the

mean and linear trend, and amplitude standardization. The

amplitude is divided by the standard deviation of the data

after removing the mean. The amplitude standardization

process ensures that the waveform data of different

magnitudes are in the same order of magnitude, reduces the

influence of large variance data, and speeds up the convergence of

the model during training.

3 Methods

3.1 Network model

The process of earthquake detection is similar to image

recognition. While identifying earthquakes from continuous

waveforms is similar to distinguishing the contours of a target

in image vision, phase picking is similar to accurately locating

the boundaries of this target (P-wave arrival time). However,

unlike 2D/3D arrays for image processing, the earthquake

waveforms to be detected are 1D time series data. We adopt

the UNet++ network structure (Zhou et al., 2018) as the

backbone network and modify it according to the

characteristics of earthquake waveform data and earthquake

phase arrival picking. It mainly includes: changing the input

data from 2D to 1D; adding batch normalization (Batch

Normalization, BN for short) to the network nodes to

improve the training speed and accuracy of the model;

replacing MaxPooling with a convolution of step size four

(strided convolution for short) to improve the sensitivity of

spatial location (Soomro et al., 2019); and using all

convolution operations for the down sampling branch

(convolution retains spatial information), which is different

from the traditional convolution-activation-pooling

FIGURE 3
P-wave travel time curve of the training set.

FIGURE 4
S—P time difference distribution.
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operation (pooling corrupts spatial information in

segmentation task), so it is more sensitive to the seismic

phase position.

Figure 5 shows the structure of the modified network. The

input is the 1D earthquake waveform data in three channels, and

the output is the probability distribution function (pdf) of the

P-wave in a single channel. The last layer of the network gives the

probability of the P-wave by a sigmoid function with values

between [0, 1]. According to the preset value of the threshold the,

if it is greater than the (e.g., 0.5), it is considered as a P-wave. The

peak of the pdf is chosen as the predicted arrival time of the

P-wave. The other part with smaller pdf than the threshold is

considered as “noise” (possibly real noise or S-wave).

The feature map in UNet++ networks can be expressed by

the following equation:

x0,0 � H0 Input( ) (1)

xi,j �
H xi−1,j( ), i> 0, j � 0,

H xi,k[ ]j−1
k�0, u xi+1,j−1( )[ ]( ), j> 0

⎧⎪⎨⎪⎩ (2)

Where, H0(·) denotes the combined function operation of

convolution, activation and batch normalization. x0,0 denotes

the feature map obtained by operating on the input three-

channel waveform. xij denotes the feature map indexed by

downsampling path i (i ≥ 1) and skip link j. H(·) denotes a

non-linear combinatorial function with convolution, activation,

and convolution operations with step size. u(·) denotes an

upsampling operation, which can be implemented by

transposing the convolution. [] denotes the feature fusion

operation (concatenation) for channel stacking. For example,

the end node of the network x0,4 is the result of the computation

of H([x0,0, x0,1, x0,2, x0,3, u(x1,3)]), i.e., x0,0, x0,1, x0,2, x0,3 and

x1,3 transposed convolution (upsampling) in the channel

dimension (the last dimension of the multidimensional array)

for feature superposition, and then convolution and activation

operations to obtain a feature map of dimension 3001x 8

(number of sampling points × number of channels). This

feature map is convolved by 1 × 1 channel, and then

downscaled to obtain the seismic phase probability

distribution by sigmoid classification function. It can also be

seen from the calculation of the end nodes of the network that the

output of the entire UNet++ network “degenerates” to a U-net

network if x0,4 is assumed to beH([x0,0, u(x1,3)]). It is clear that
the UNet++ incorporates more feature information by

redesigned skip-connections, embedding varying depth layers

than the U-net, and is therefore more sensitive to seismic phase

detection.

3.2 Batch normalization processing

Previous studies (Ioffe and Szegedy, 2015; Ba et al., 2016;

Ulyanov et al., 2016; Wu and He, 2018; Yao et al., 2021) have

shown that Batch Normalization (BN) can accelerate the training

FIGURE 5
Structure of CSESnet earthquake detection network. The rectangular block indicates that operations such as convolution, batch normalization
and activation functions that constitute the convolution block. The featuremap is denoted by xi,j; the black arrow indicates the convolution operation
with stride of four; the blue arrow indicates the deconvolution operation (actually done by transpose convolution); the purple arrow represents the
skip connections between the network node modules. The value of the skip connections leading from the same node to different nodes is the
same vector for copying (the purple Copy arrow in the legend), and skip connections introduced from different nodes to the same node are feature
vectors for the channel dimension concatenate operation (purple Concatenate arrow in the legend). The Batch Normalization and
Convolution+Stride in the red dashed box are the improvement parts of the original UNet++ in this paper.
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speed of network models and improve model accuracy, which is a

major breakthrough in the field of deep learning. There is no batch

normalization layer in the original UNet++ network. To prevent the

problems of slow gradient update and slow model convergence

caused by uneven distribution of inputs in each hidden layer of the

neural network, we add a batch normalization layer BN to the

convolutional block (convolutional and non-linear activation layers)

of the UNet++ network. Batch normalization can be expressed by

Eqs 3–5. Eqs 3, 4 normalize the input features in the middle hidden

layer of the network, so that each feature has a mean of 0 and a

variance of 1. Eq. 5 is a linear transformation of the normalized data

(Eqs 3, 4) to restore the expressiveness of the data itself.

μB � 1
m| | ∑i∈B

xi (3)

σ2B � 1
m| | ∑i∈B

xi − μB( )2 + ϵ (4)

zi � γ
xi − μB��

σB
√ + β (5)

Where μB and σB in Eqs 3, 4 are the mean and variance of the input

feature xi of the hidden layer of the network with batch size m. ε is a

very small positive number to prevent the variance from being 0. In

Eq. 5, γ and β are the trainable parameters such as scaling and

translation coefficients introduced after the batch normalization

operation. The initial values of γ and β are set to 1 and 0, respectively,

and the final values are obtained by the model training.

3.3 Label functions

The training model generally uses manually labeled P-wave

arrival time information as label data. There are three types of arrival

labels commonly used: rectangular (Zhao et al., 2019), triangular,

and Gaussian distribution (Zhu and Beroza, 2019; Mousavi et al.,

2020). In this study, the seismic phase arrival labels are represented

by the truncated Gaussian probability distribution function (pdf)

(Eq. 6), that is, the location of the manually picked P-wave seismic

phase is the center of the Gaussian distribution (the point where the

peak of the pdf is 1) at a set standard deviation σ of the Gaussian

function (width of theGaussian distribution). Different widths of the

Gaussian distribution affect the arrival picking accuracy of the

model.

f x( ) �
0, x≤ − σ,

1���
2π

√
σ
e− x−μ( )2/2σ2 , −σ <x< σ,
0, x≥ σ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(6)

3.4 Loss function

The design of the loss function is an important component

of deep learning model training. UNet++ essentially classifies

each sample point in the earthquake waveform (P-wave or

noise). The sample points corresponding to the P-wave

seismic phase are used as positive samples, which account

for a small proportion of the sample points in the entire

waveform time window. This imbalance of positive and

negative samples can cause the loss function to be

dominated by non-seismic phase sample points, and the

model is not easily converged during training and

insensitive to the judgment of seismic phase sample points.

For this reason, we use a weighted cross-entropy loss function

to solve the problem of positive and negative sample

imbalance (Eq. 7).

BCE p, p̂( ) � − βp log p̂( ) + 1 − β( ) 1 − p( )log 1 − p̂( )( ) (7)

Where BCE is balanced cross entropy; p is the true probability

distribution of the seismic phase; p̂ is the predicted probability

distribution of the seismic phase; β is the weighting factor of

cross-entropy, and its value can be obtained by estimation and

experiment. By adjusting β, the weight of P-wave seismic phase

sample points is increased to balance the positive and negative

samples.

3.5 Training model

We use the Adam optimizer to train the model on the

training set. The learning rate adopts a dynamic adjustment

strategy, and the initial learning rate is set to 0.01 and the

learning rate is reduced by a factor of 0.1 every 20 epochs.

Each model was trained for 100 epochs. Use the validation set

to select hyperparameters for the training model, such as

learning rate, batch size, and number of convolutional

kernels. Finally, the training model consisting of the set of

hyperparameters with the smallest value of the loss function

was finally selected as the optimal model, and the β in the

cross-entropy loss function was chosen as 5 after a series of

tests. In the training, it was found that the batch size, the

selection of the learning rate, and the selection of the σ value of
the Gaussian distribution of the label function would affect the

model performance.

4 Results and Discussion

4.1 Evaluation metrics

Model evaluation plays a very important role in the

seismic phase picking algorithm. Only by choosing

appropriate evaluation metrics that match the seismic

phase picking problem, can the performance of different

models be assessed objectively. The accuracy of the phase

arrivals and the number of detections are the two main
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indicators both for traditional and deep learning methods. In

the field of deep learning seismology, precision, recall and

F1 score are three key metrics for evaluating the performance

of each model. In this paper, we define precision (P), recall (R),

F1-score (F1), mean error (μ), standard deviation (σ), mean

absolute error (μabs), and standard deviation of absolute error

(σabs) based on the error of predicting arrival time versus

manually-picked arrival times.

PrecisionP � TP
TP + FP

RecallR � TP
TP + FN

F1 scoreF1 � 2
P × R

P + R

Where, TP (true positive) is the number of picks which

peak probability greater than 0.3 (positive picks) and the

residuals between the predicted and the manual phases are

less than 0.5 s (true picks). FP (false positive) is the number of

picks which peak probability greater than threshold 0.3 and

the residuals are larger than 0.5 s. FN (false negative)

represents the number of picks (non-TP) that are not

picked up. μ is an average calculated based on the

difference between the predicted and manually picked

phase arrival times. σ is the standard deviation of the

difference between the predicted and manually picked

phase arrival times. μabs is an average calculated from the

absolute value of the difference between the predicted and

manual picks. σabs is the standard deviation calculated from

the absolute value of the difference between the predicted and

manual picks.

4.2 Model improvement

The improvements to the original UNet++ network

structure in this paper mainly include two aspects: adding

BN and replacing the maximum pooling with strided

convolution. In order to evaluate the improved effect, we

conducted four tests (Table 1). Among them, the original

UNet++ model has been improved to handle one-dimensional

three-channel waveform data. The BN model adds a batch

normalization layer (BN) to the original UNet++ model. The

strided convolution model is adopted to replace the max

pooling layer in the original UNet++ model with a strided

convolution (with step size of 4). The BN+ strided convolution

model adds a batch normalization layer (BN) to the original

UNet++ model and replaces the maximum pooling layer with

a step size convolution.

The four models are trained with the same dataset, the

same network configuration (loss function and optimization

algorithm), and the same hyperparameters (learning rate,

number of batches, training epoch, etc.). As can be seen in

Table 1, with the addition of the batch normalization layer

(BN) and the replacement of the strided convolution to the

final model, the recall rate (R) is improved by only 1%, but the

precision (P) is improved significantly, about 7%. The mean

(μabs) and standard deviation (σabs) are reduced by 1%. The

experimental results show that the improvements, such as

batch normalization and strided convolution replacement,

can improve the precision of the seismic phase and reduce

false pick (FP).

4.3 Label function

The picking accuracy of the seismic phase arrival time is

related to the signal-to-noise ratio of the waveform, the type

of seismic phase and the dominant frequency. Generally,

P-wave seismic phase pickup error is less than S-wave, and

high frequency signal pick up error is lower than low

frequency signal. Optimizing the labeling of the arrival

time can further improve the accuracy of arrival detection.

At present, U-net-based seismic phase picking models

mostly use Gaussian distribution functions in labeling the

arrivals of training samples, such as PhaseNet (Zhu and

Beroza, 2019), APP and APP++ (Liu et al., 2020; Jiang

et al., 2021), and ARRU-Net (Liao et al., 2021). However,

previous studies did not discuss in detail the effect of label

width on precision and recall. The seismic phase arrival time

is represented by Gaussian distribution, which is actually a

regularization technique for label smoothing. Follow Zhu

et al. (2019) and Liao et al. (2021), a truncated Gaussian

distribution function representation is used in this study. We

tested different window lengths of the Gaussian distribution

function (0.1 s, 0.15 s, 0.2 s, 0.3 s, and 0.4 s, Figure 6A), and

TABLE 1 Performance comparison after different improvements.

No. Model Recall Precision F1 μabs(s) σstd(s)

1 UNet++ original model 0.936 0.787 0.855 0.051 0.081

2 Adding BN 0.942 0.813 0.873 0.049 0.082

3 strided convolution 0.929 0.811 0.866 0.054 0.083

4 BN+ strided convolution 0.946 0.854 0.897 0.047 0.077
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generated training label datasets according to different

window lengths. Model training is performed on different

labeled datasets. The same test dataset is used to evaluate the

effect of the window length (standard deviation σ) of the

Gaussian distribution function on model performance.

To fully test the effect of this parameter on the model, we

set the residuals of predicted and manual picks to five

intervals of [−0.1, 0.1]s, [−0.2, 0.2]s, [−0.3, 0.3]s, [−0.4,

0.4]s, and [−0.5, 0.5]s to evaluate the changes in precision,

recall, and F1-score. As can be seen from Figure 6, as the

window length of the Gaussian distribution function

increases, the precision changes slightly, and the recall is

gradually increasing and then decreasing. At 0.4 s length, the

precision decreases sharply [from 95% to 92%, RES

(residual) = 0.5]. When the Gaussian window length was

0.2 s, the recall reached 95%. The experimental results show

that the variations in precision, recall and F1-score can be up

to 11% when using different window lengths. When the

window length is 0.2 s, the training model had the best

evaluation metrics and the highest F1-score. Liao et al.

(2021) also got similar conclusions.

4.4 Test results

We use a test set to evaluate the performance of the CSESnet

model. The test set is composed of 50,000 randomly selected

earthquake waveforms from the 2013–2019 dataset, which does

not include in the training set. The test results of the CSESnet are

shown in Table 2. The model predicted 59,195 P-wave phases. In

addition to P, R, F1, μ, σ, μabs, and σabs, we also use the picking

rate as a quantitative metric to directly test the percentage of

predicted seismic phases in a certain picking error. The picking

rate is defined as the number of true positive picks divided by

manually picked phases in [−0.2, 0.2]s. On the test set, the

picking error in [−0.2, 0.2]s was 44,316, with a picking rate of

88.6%. Figure 7 shows the picking error (Tpred-Tmanual)

distribution of the arrival times automatically picked by the

CSESnet model and manually labeled phase. As seen in

Table 2, the recall (R) is significantly higher than the

precision (P), and the model is less likely to miss the manual

picks, which is also in line with the initial expectation of our

model—to improve the recall rate. In the seismic phase picking

stage, trying to detect as many phases as possible within a

FIGURE 6
Labeling functions with different truncated Gaussian distribution widths (standard deviations) and their effects on the performance of the
training model. Illustration of different truncated Gaussian distribution window lengths (A). Effect of truncated Gaussian window width on precision
(B). Effect of truncated Gaussian window width on recall (C). Effect of truncated Gaussian window width on F1 score (D). RES in the figure indicates
the absolute value of the residuals of predicted and manual picks.

Frontiers in Earth Science frontiersin.org08

Li et al. 10.3389/feart.2022.1032839

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1032839


reasonable range without missing the phases, because it is

difficult to automatically complete the missed phases in the

subsequent processing, but the detected phases can be

eliminated by phase association.

4.5 Model generalization in BCC

In order to evaluate the generalization ability of the

CSESnet, we selected the Beijing Capital Circle (BCC) as

the test area. The geological structure of the BCC is

completely different from that of Sichuan-Yunnan region.

This region has thick deposit basin and its seismic

waveforms differ from those in Sichuan-Yunnan region.

We selected 36,000 waveform data from the BCC from

2018 to 2021 for test and compared the detection

performance of CSESnet and PhaseNet. The magnitude

distribution of the test data in BCC was ML1.0 to 4.0. It

can be seen in Table 3 that the recall of CSESnet has a

slightly drop (about 3%) and a relatively large reduction in

precision (about 10%) when used in BCC. It shows that even if

the area is changed, CSESnet can ensure that the seismic

phases are detected with low missing rate (the ratio of

missed detections and ground truth). In contrast, the recall

of PhaseNet in BCC is 79%. Compared with the test results in

Northern California (Zhu and Beroza, 2019), the recall

dropped from 96% to 79%. It indicates that it may miss a

large number of earthquakes if PhaseNet is directly applied to

BCC. Figure 8 shows the distribution of the picking error

(Tpred-Tmanual) between the prediction and manual picking of

the two models on the test set of the BCC. Among them,

within the time error range of [−0.2, 0.2]s, our model picks up

31,666 P-wave seismic phase data, with a picking rate of 87%,

while PhaseNet picks up 26,947 P-wave seismic phases, with a

picking rate of 74%. This indicates that the seismic phase

picked by the CSESnet is more accurate than PhaseNet.

4.6 Application in Luxian M6.0 earthquake

At present, most of the earthquake detection models are

mainly tested with micro and small earthquakes. There are few

researches focusing on the detection of moderate and strong

earthquakes. If these deep learning models can be used for large

earthquakes, and the picking accuracy is high, then they will have

extensive applications in the earthquake early warning systems,

i.e., they can reduce the false triggering of EEW, improve the

arrival picking accuracy, and then improve the precision of

earthquake location.

In order to test the effectiveness and generalization of

CSESnet, especially for the detection of moderate and strong

earthquakes and whether it can be used for detection of

TABLE 2 P-wave picking performance of CSESnet and PhaseNet on test set and STEAD.

Dataset Model Recall Precision F1 μ(s) σ(s) μabs (s) σstd (s)

Test set CSESnet 0.946 0.854 0.897 −0.005 0.009 0.047 0.077

PhaseNet 0.885 0.915 0.899 0.026 0.110 0.068 0.091

STEAD CSESnet 0.968 0.930 0.949 0.002 0.036 0.006 0.036

PhaseNet 0.966 0.939 0.952 0.005 0.091 0.046 0.076

FIGURE 7
Error distribution of predicted versus manually picked phases
for CSESnet and PhaseNet on the test set. The histogram indicates
the distribution of the arrival pickup error Tpred-Tmanual of the
CSESnet and PhaseNet on the test set.

TABLE 3 Comparison of the performances of CSESnet and PhaseNet in BCC.

Recall Precision F1 μ(s) σ(s) μabs (s) σstd (s)

CSESnet 0.920 0.765 0.835 −0.022 0.083 0.044 0.073

PhaseNet 0.790 0.877 0.831 0.002 0.093 0.051 0.077
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earthquake signals recorded by different instruments (e.g.,

velocity and acceleration records), we selected the Luxian

M6.0 earthquake that occurred on 16 September 2021 in

Sichuan Province as an example. This earthquake is a

strong earthquake that has occurred in CSES in recent

years, and was recorded very well by the surrounding

densely distributed broadband and acceleration seismic

stations. We used CSESnet and PhaseNet to detect the

waveforms of the Luxian earthquake and compared their

performances.

The stations within 120 km epicentral distance have two

types of sensors, such as broadband seismometers and

accelerometers. Among them, there are 24 broadband

seismometers and 63 accelerometers. The test results are

shown in Table 4. Within the time error range of [−0.2, 0.2]s,

CSESnet picks up 73 P-wave seismic phase data, with a picking

rate of 83.9%. While PhaseNet picks up 56 P-wave seismic

phases, with a picking rate of 64.3%.

In the detection of all stations, the recall rate of CSESnet is

about 7% higher than that of PhaseNet, and its precision is about

2% higher, lower mean value and standard deviation (Table 4).

Although CSESnet only uses broadband velocity waveforms

during training, the detection performance on acceleration

waveforms is also good. The index, such as precision, recall

and F1-score are higher than those of the PhaseNet by about 3%–

10%. Although the training data of PhaseNet contains a variety of

instruments, such as high broadband (HH), broadband (BH),

short-period (EH) velocity waveforms and high-gain (HN)

acceleration waveforms (Zhu and Beroza, 2019), while

CSESnet was trained with pure broadband waveform data,

also achieved high performance metrics. This shows that

CSESnet has good generalization for different instrument

types, and can be used for processing acceleration waveforms.

About 84% of the seismic stations in CSES are accelerometer

stations. CSESnet provides a new algorithm for P-wave detection

in CSES.

5 Conclusion

In this paper, we trained an earthquake detection model-

CSESnet with 490,000 earthquake waveform data and

78,000 noise waveform data from 2013 to 2019 in Sichuan-

Yunnan region with improved UNet++. We tested and

compared the performance of CSESnet with PhaseNet.

CSESnet shows higher recall and better generalization than

PhaseNet. CSESnet can detect both small and strong

earthquakes, as well as processing waveforms recorded by

acceleration and MEMS instruments. CSESnet can accurately

identify P-waves and pick precise arrival times. These

advantages suggest that CSESnet can be adopted in

earthquake early warning systems after extensive tests.

CSESnet doesn’t adopt a fully connected layer and can

process waveforms less than 30 s. It can be used not only for

real-time detection of short-time windows, but also for detection

of long-time windows or continuous waveforms.

FIGURE 8
Comparison of the prediction results of CSESnet and
PhaseNet in BCC. The blue bars indicate the distribution of the
arrival picking error Tpred-Tmanual of the CSESnet. The red bars
indicate the distribution of the arrival picking error of
PhaseNet on the same dataset.

TABLE 4 Comparison of the performances of CSESnet and PhaseNet with Luxian M6.0 earthquake data.

Model Station type Number Recall Precision F1 μ(s) σ(s) μabs (s) σstd (s)

CSESnet

all stations 87 0.931 0.871 0.90 0.023 0.131 0.086 0.102

vel records 24 0.958 0.920 0.939 0.071 0.094 0.083 0.082

acc records 63 0.921 0.853 0.885 0.005 0.139 0.087 0.108

PhaseNet

all stations 87 0.862 0.852 0.857 0.052 0.174 0.134 0.124

vel records 24 0.958 0.920 0.939 0.206 0.141 0.206 0.140

acc records 63 0.825 0.825 0.825 −0.015 0.142 0.101 0.10

Note: vel records represent earthquake waveforms recorded by broadband velocity type seismometers. acc records represent earthquake waveforms recorded by accelerometers.
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In the follow-up work, we will further improve the network

structure so that it can detect both P- and S-waves

simultaneously. We will further reduce the false detection rate

and improve the generalization ability of the current model by

adding more abundant noise datasets, waveform records of

accelerometers and MEMS waveforms.
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