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As the dominant shrub community plant in the Mu Us Sandy Land, S. vulgaris is

the key factor of ecological environment restoration in the Mu Us Sandy Land, It

is of great significance to explore the estimation and inversion of content based

on spectrum for ecological environment evaluation and intervention in Mu Us

Sandy Land. The SVC HR-1024 portable feature spectrometer and SPAD

502 chlorophyll meter were used to study Mu Us Sandy Land of S. vulgaris.

The best band is screened by correlation matrix method, the best vegetation

index is screened by Structural Equation Modeling model, and then the best

inversion model is established by different mathematical modeling methods.

Results revealed that the vegetation indices and chlorophyll content were

correlated, combining the six vegetation indices revealed that 610–690nm

and 700–940 nm were the bands with the highest correlation. In the selection

of optimal vegetation index, NDVI, ratio vegetation index and mNDVI perform

best and are suitable for subsequent modeling. Of the four models, the partial

least squares model had the best fitting effect (R2 > 0.91). The univariate linear

regression model had the simplest processing procedure, but its accuracy was

unstable (R2 = 0.1–0.9). multivariate stepwise regression accuracy is also

appropriate (R2 > 0.8). The stability of BP neural network modeling is not

high. Compare the four methods, PLS and multivariate stepwise regression

have their own advantages, and the accuracy is higher, you can make a choice

according to the demand as the late modeling method.

KEYWORDS

S. vulgaris, Mu Us Sandy Land, model prediction, PLSR, SEM

OPEN ACCESS

EDITED BY

Haikuan Feng,
Beijing Research Center for Information
Technology in Agriculture, China

REVIEWED BY

Yu Zhao,
Beijing Academy of Agricultural and
Forestry Sciences, China
Fan Yiguang,
Beijing Academy of Agriculture and
Forestry Sciences, China

*CORRESPONDENCE

Guang Yang,
yg331@126.com

SPECIALTY SECTION

This article was submitted to
Environmental Informatics
and Remote Sensing,
a section of the journal
Frontiers in Earth Science

RECEIVED 31 August 2022
ACCEPTED 28 November 2022
PUBLISHED 09 January 2023

CITATION

Wang N, Yang G, Han X, Jia G, Li Q, Liu F,
Liu X, Chen H, Guo X and Zhang T
(2023), Study of the spectral
characters–chlorophyll inversionmodel
of Sabina vulgaris in the Mu Us
Sandy Land.
Front. Earth Sci. 10:1032585.
doi: 10.3389/feart.2022.1032585

COPYRIGHT

© 2023 Wang, Yang, Han, Jia, Li, Liu, Liu,
Chen, Guo and Zhang. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 09 January 2023
DOI 10.3389/feart.2022.1032585

https://www.frontiersin.org/articles/10.3389/feart.2022.1032585/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1032585/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1032585/full
https://www.frontiersin.org/articles/10.3389/feart.2022.1032585/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.1032585&domain=pdf&date_stamp=2023-01-09
mailto:yg331@126.com
mailto:yg331@126.com
https://doi.org/10.3389/feart.2022.1032585
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.1032585


Introduction

The Mu Us Sandy Land is located in the southeast of the

Ordos Plateau (Cheng et al., 2021), desertification in the region

has become increasingly serious in recent decades due to the

dramatic increase in human activities and the effects of climate

change. Plants are important factors of ecological environment

restoration in sandy land, how to better monitor plant growth,

thus, effective and timely intervention before plant degradation is

the key to current research on sandy plants. The dynamic

changes of chlorophyll content of plant leaves are an

important indicator of plant growth status and nutrient status

(Liang et al., 2016; Shuang et al., 2021), therefore, monitoring and

estimating the chlorophyll content of plants are now the focus of

vegetationmonitoring studies. Spectral monitoring technology in

recent years because of its fast and non-destructive

characteristics, It has become an important tool to analyze the

estimation and inversion of chlorophyll content (Tong et al.,

2020), vegetation water content (Yan et al., 2022), soil

physicochemical properties (Pinheiro et al., 2017) and biomass

(Zheng et al., 2019) etc. These results have efficiently deciphered

the spectral characteristics of plants and their unique patterns,

providing a theoretical basis for subsequent remote sensing

monitoring and plant management.

Vegetation index has been one of the most effective, simple and

commonly used methods to characterize vegetation. It is one of the

research hotspots to establish a model combining chlorophyll and

vegetation index to quantitatively estimate vegetation chlorophyll

content. The model using the first derivative of the spectrum and

chlorophyll has the ability of quantitative inversion of plant growth

parameters, This method can effectively overcome the drawbacks

brought by remote sensing technology, such as low resolution,

climatic conditions at the time of image capture, time period, etc

(Cao et al., 2017). Zhang et al. established the model of winter wheat

chlorophyll by using the vegetation index randomly combined with

the original spectrum and the first-order differential, the results

showed that one session of differencing enhanced the correlation

between vegetation index and winter wheat chlorophyll, meanwhile,

the monitoring of vegetation index is better than the original

spectrum, It shows the importance of suitable vegetation indices

for green crop monitoring (Zhang et al., 2022). Sun et al. compared

the correlation between the original band spectrum, first-order

differential spectrum, vegetation index and wavelet coefficient

and maize canopy chlorophyll, results also showed that the

highest accuracy was achieved with the model built with

vegetation index, followed by the model built with first-order

differentiation, both with R2 > 0.6 (Sun et al., 2022). Some

scholars also mainly compare different vegetation index, but

different plants or crops do not have the same sensitivity to

different vegetation index (Miao and Zhang, 2018; Zhang et al.,

2018). The current research progress can be seen that the technique

of hyperspectral inversion chlorophyll model is relatively mature,

among them, one-dimensional linear and multiple linear regression

models have been widely used to construct the relationship between

spectral characteristics and chlorophyll content, and generally the R2

can reach above 0.8 (Atherton et al., 2016; Sun, 2019). With the

development of science and technology, many scholars have tried to

use the machine algorithm of big data platform for chlorophyll

inversion, but the variation and uncertainty of the input parameters

can affect the accuracy of the model, also this algorithm is not

applicable to all vegetation types (Li et al., 2016). Some scholars also

use physical model to invert chlorophyll, but the algorithm of

physical model is complicated, the process of inputting variables

contains more uncertainties, and the accuracy is not improved

much, so physical models are not suitable for general use

(Mahmoud and Done, 2018). All three compared, the linear

regression modeling based on two or more bands is more

sensitive in terms of the information characterized than the

single band, It can also eliminate to a certain extent the problem

of overfitting of bands caused by too many multi-bands (Shuang

et al., 2021). Tong et al. showed that although the rich spectral

information can provide various information on vegetation in more

detail, too detailed band information will bring some interference to

the inversion model (Tong et al., 2016). Ke et al. used statistical

models, physical models, and a mixture of both models to estimate

the leaf area of crops, The results showed that high correlation bands

could enhance the sensitivity of the model to LAI, but the low

correlation band will reduce the accuracy of the model (Ke et al.,

2016). Therefore, the selection of characterization sensitive bands

and vegetation index is important for the improvement of model

accuracy. At present, choosing the best band or choosing the high

correlation coefficient are the two methods commonly used.

However, the method of selecting the best band only considers a

single relationship between chlorophyll and spectrum, and the

indirect effects of other values will be ignored. And while the

selection of the best index method is highly accurate, more

problems can be considered in band combination, but there is

no guarantee that all vegetation indices and chlorophyll will have the

greatest correlation. Therefore, Cheng et al. combined the two

methods with the proposed optimal index-correlation coefficient

method, spectral data and chlorophyll content of winter wheat was

analyzed and the three most sensitive bands were finally extracted. It

is also proved that the optimal index-correlation coefficient is more

accurate than the single method (R2 = 0.83) (Cheng et al., 2015). But

the disadvantage of this approach is that it is impossible to assess the

importance of each variable in the process. Chen et al. combined the

RF algorithmwithK proximity regression and theirmodel wasmore

reliable in predicting the LAI of maize (Chen et al., 2020). Thus, in

the current inversion model for vegetation spectra and other

eigenvalues, it is mainly used for the screening of bands,

improvement of accuracy needs further verification. There is still

great research space for selecting the best band and the best

vegetation index.

In summary, most of the current studies on spectral-

chlorophyll inversion models have focused on agricultural

crops, and fewer studies have applied such studies to the
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inversion of sandy vegetation. Structural Equation Modeling

(SEM) allows for the simultaneous measurement of observed

variables, latent variables, and the influence relationships and

pathways between each variable (Li et al., 2022). There are also

few studies that use SEM to extract optimal vegetation index,

therefore this study attempts to select the optimal vegetation

index using structural equation modeling, selecting the best band

by correlation matrix method, chlorophyll prediction model

using the best vegetation index and the best band selected by

the two. In order to realize high precision spectral - chlorophyll

inversion of S. vulgaris in Mu Us Sandy Land, provide theoretical

basis for regional desertification land management and

restoration of degraded ecological environment.

Methods

Study area

The Mu Us Sandy Land (37°27’−39°22’N, 107°20’–111°50’E)

(Guo et al., 2021) has a total area of 4 × 104 km2. The

midwestern part is a wavy plateau with the highest altitude

(1,600 m) (Karnieli et al., 2014). Dunes of various types account

for 77% of the total area and mobile dunes account for 47%

(Liang and Yang, 2016). The annual rainfall fluctuates greatly,

increasing from 250 to 440 mm from the northwest to

southeast. Most of the precipitation is concentrated to the

summer and the intensity of precipitation is the highest in

August, which usually lasts for several days and up to >10 days.
Therefore, drought and flood disasters easily occur, of which

drought is more frequent (Zhou et al., 2020). The annual

average temperature ranges from 6.0 to 9.0°C (7.6°C

average), the average temperature in January ranges from (−)

8.7°C to 12°C, and the average temperature in July ranges from

20°C to 24°C. The potential evaporation ranges from 2100 to

2500 mm. The main soil type is chestnut soil, which is alkaline

and lacks organic matter and nutrients. The northwest consists

of desert steppe, which changes from steppe to forest-steppe in

the southeast. Grasslands account for 90% of the total area.

Most of the vegetation grows on sandy girders. The vegetation

types include sandy, meadow, halophytic, and marsh

vegetation, of which sandy vegetation accompany all types of

sandy land and has the largest area (Han et al., 2020).

Acquisition of spectral data

Spectral data were measured using SVC HR-1024 portable

ground object spectrometer (Spectra Vista, USA). The spectral

range was 350–2,500 nm, the number of channels was 1,024, and

the spectral resolution was ≤3.5 nm within

350–1000 nm, ≤8.5 nm within 1000–1850 nm, and ≤6.5 nm
within 1850–2500 nm. The minimum integration time was

1 ms and the signal acquisition method was Bluetooth

transmission (Yang and Li, 2014).

Field measurements of the plant spectrum were greatly

affected by the solar altitude angle (clear and cloudless

weather should be selected for measurement). The

measurement time ranged from 10:00 to 14:00 (Niu Y. L.

et al., 2017). Spectral measurements of ground objects in the

study area were carried out in early May andmid-July 2019. Dark

current collection and whiteboard calibration were required

before measurement. In the event of obvious weather changes,

such as strong wind, it was necessary to calibrate again with a

whiteboard and every time the location changed. To ensure the

accuracy of the test results, samples were randomly collected. A

total of 70 groups were measured with 5 replicates per group

(350 total). A group of samples is: The spectrometer measures the

same location of a plant five times at the same time, that is, the

spectrometer probe does not do anything at the same location of

the plant, but the measurement is repeated five times (Although

they are in the same position, the five data are different because

the reflection of the spectrum and the change of the environment

will affect the measurement results). Five repetitions were used

for subsequent spectral data fusion. Among them, originally

decided to choose the 55 groups were used for the model

establishment and 15 groups were used for model verification.

But since the final data has outliers, after eliminating four sets of

data and considering the accuracy of the modeling set and the

validation set, it was finally decided that 46 sets would be used for

modeling and 20 sets for validation. For the measurements, the

measurement time of each spectral datapoint was 5 s and the

measurement height was 50 cm from the probe to the ground

object. The sampling points in the study area are shown in

Figure 1. The top view of spectral data acquisition is shown in

FIGURE 1
Distribution of major specimens and sample plots in the Mu
Us Sandy Land.
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Figure 2A. The monitoring range of the spectrometer probe is

presented in Figure 2B. The identification of S. vulgaris refers to

“flora of China” and “Chinese Virtual Herbarium.” The number

of S. vulgaris is LZD0000136.

Determination of the chlorophyll content

The chlorophyll content was measured using a Soil Plant

Analysis Development Unit (SPAD) 502 chlorophyll meter

(Konica Minolta, Japan). The SPAD-502 chlorophyll

meter does not damage plants. During the spectral

measurements, the selected plants were measured in an area

with a diameter of 22 cm around the center of S. vulgaris. We

took a total of 560 measurements. The chlorophyll content was

measured 8 times in each plot. The average value was used as the

chlorophyll SPAD value corresponding to the spectral data.

Fusion of the spectral data

First, the SVC HR-1024 software of the ground object

spectrometer was used to eliminate bands with large

variations within the spectral curve data. A normal spectral

curve has no intersection and is smooth. Then, the SIG File

Overlap/Matching function was used to match the data.

Finally, the SIG File Merge function was used to merge the

data and output the data into Excel format. As already shown

above, the same plant will be measured 5 times, 5 times is a set

of data, 5 times is actually a representative of the state of a

plant, so 5 times repeated measurement is to reduce the

measurement error, and the fusion process of spectral data

is to fuse this set of (5 times) data through the software (SVC-

HR1024) that comes with the spectrometer through the

professionally set steps to 5 groups of data accuracy and

fuse them into one set of data. The fusion process of 5 sets

of data is the same as taking the average, but the fusion process

is carried out under the software’s own function, which

improves the accuracy and efficiency of the data.

FIGURE 2
Top view of themeasured spectral data (A). Schematic diagram of the spectral data and chlorophyll content measurements (B). Position A is the
probe position of the spectrometer. Elliptical area B is the area that was monitored by the probe. The probe was 50 cm away from the S. vulgaris
canopy. Whenmeasuring the chlorophyll content, it was within the rangemonitored by the probe. The radius of the chlorophyll monitoring area was
28.86 cm.

FIGURE 3
Comparison of the spectral smoothing effect before and
after smoothing. The red dotted line is before smoothing and the
black solid line is after smoothing. The impact of noise in the
1800–2500-nm band was obvious. After smoothing, the
noise error was reduced and the accuracy of the data was
enhanced.
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Smoothing of the spectral data

Due to differences in band responses to the energy during

the spectral data measurements, the spectral curves always had

noise, so the data curves needed to be smoothed to eliminate the

small amount of noise contained in the signals. Common

smoothing methods include the moving and static average

methods. The moving average method includes three-point,

five-point, and nine-point smoothing methods. The five-point

smoothing method was used in this study (Yang and Li, 2014).

A comparison of before and after smoothing is shown in

Figure 3.

Resampling of the spectral data

Resampling of the spectral data was conducted to ensure the

accuracy of the spectral data prediction model established in the

later stage (Niu Y. et al., 2017). ENVI 5.1 (Exelis Visual

Information Solutions USA) was used to resample the spectral

data. The resampling interval was 10 nm.

First-order differential processing

First-order differential processing of the spectral data

eliminates the systematic error of different data, better

eliminates the effects of noise on the data, and results in more

prominent spectral vegetation characteristics. The data after first-

order differential processing were calculated as follows (Wang

et al., 2017) (Figure 4), the first-order differential equation is

shown in Table 1:

R λi( ) � R λi+1( ) − R λi( )[ ]
Δλi

× R, (1)

where R (λi) is the first-order differential spectrum of

wavelengths λi + 1, λi, R (λi) and R (λi + 1) are the original

spectral reflectance at I and I + 1, and Δ(λi) is the wavelength

difference between λi + 1 and λi.

Statistical analysis and modeling

Selection of the vegetation index

The correlation between the spectral data and chlorophyll

content was analyzed using MATLAB R2012a (MathWorks

USA). The selected vegetation indices and calculation formulas

are shown in Table 2. The original spectral band is used to

calculate for the subsequent selection of the optimal band, and

then the selection of amore appropriate vegetation index to prepare.

Extraction of the optimal spectral index
wavelength combination

The original spectral data of the 350–2500-nm band were

selected. The reflectance of any composition was analyzed using

the normalized vegetation index (NDVI), ratio vegetation index

(RVI), and difference vegetation index (DVI), modified simple

ratio (mSR), modified normalized vegetation index (mNDVI),

soil–adjusted vegetation index (SAVI) The correlation between

the chlorophyll content and reflectance was analyzed using

MATLAB R2012a. The formulas are as follows (Chuvieco, 2016):

NI Rλ1, Rλ2( ) � Rλ1 − Rλ2

∣∣∣∣
∣∣∣∣/ Rλ1 + Rλ2

∣∣∣∣
∣∣∣∣, (2)

RI Rλ1, Rλ2( ) � Rλ1/Rλ2, (3)
DI Rλ1, Rλ2( ) � Rλ1 − Rλ2. (4)

Mathematical modeling

The predictionmodel of the chlorophyll content was established

using unary linear regression, multiple stepwise linear regression, the

partial least squares method and BP neural network. The unitary

linear regression model has small input and output, and the

calculation method is convenient and simple, which was

completed using Origin 2017 (Liu and Yang, 2020). The multiple

stepwise linear regression model selects one of the most important

independent variables in the regression equation based on the

weight of each datapoint involved in modeling. It is widely used

in spectral prediction modeling and was completed using SPSS 26

(Liu and Yang, 2020). The partial least squares method is widely

used in the field of spectroscopy. Through the analysis of multiple

FIGURE 4
Spectral data after first-order differential processing
strengthened the change of the absorption valley or reflection
peak at each place.
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independent and dependent variables, their correlation can be

maximized in the modeling process, which was completed using

MATLAB R2012a. The advantages of PLSR: It is a combination of

correlation analysis, principal component analysis and multiple

linear regression analysis. It can reduce the dimension of high

spectral data and use effective data for modeling. PLSR will also

consider the extraction of principal components from independent

variables and dependent variables during modeling, so that the

modeling accuracy is higher. BP neural network consisting of three

input layers and one output layer was constructed for training, the

number of iterations is 12, the learning accuracy is 0.01, and the

training target is less than 0.001 root mean square error. BP neural

network modeling by writing program code in MATLAB R2012a

software. To verify and increase the accuracy of themodel, 66 groups

of data were separated into 46 groups used for the prediction model

data and 20 groups used for the validation model data.

Evaluation of the accuracy of the hyperspectral predictionmodel

was based on the determination coefficient and total root means

square difference. R2 is related to the stability of the model; as the R2

value increases, so does the stability of the model. Moreover, RMSE is

related to the prediction ability of the model; the smaller the RMSE

value is, the higher the accuracy of the established model and the

stronger the prediction ability are (Sun 2017).

Extraction of the optimal vegetation index
from the structural equation model

The structural equation model was developed from a

linear equation. Its uses the Bayesian estimation method to

hypothetically guess the data and various indicators

through the previous empirical theory, and extracts the

relationship between unmeasurable information from the

measured information. Based on the previous retrieval, the

structural equation was used to estimate and test the

relationship between non-directly measurable variables in

psychology, management, and economics (Hekmati et al.,

2020).

The structural equation model was used to screen the

vegetation indices. Different vegetation indices represent

different vegetative chlorophyll and spectra. For

example, the NDVI overcomes disadvantages of the RVI,

limits the value to [−1, 1], and eliminates most changes in

the irradiance conditions related to solar angle, terrain,

cloud shadow, and atmospheric conditions. However, in

areas with dense vegetation, the NDVI tends to

supersaturate early and does not timely reflect the growth

process from yellow to dry during vegetative growth

(Sharafatmandrad and Mashizi, 2020). Therefore, the

vegetation index selected for the final model greatly affects

the accuracy of the model.

In this study, based on the six vegetation indices used

for establishing linear regression model and BP neural

network, the three vegetation indices with the

highest correlation and the red edge parameters were

selected to build SEM, and the lower accuracy was used to

verify the stability of the high correlation of the selected

vegetation indices. Then multiple regression, PLSR and BP

neural network were built with highly correlated vegetation

indices.

TABLE 1 Red-edge parameters.

Red-edge parameters Definition References

Red-edge area (Sr) Sum of first-order differentials within the range of 680–760 nm Liu et al. (2019)

Red-edge position (Dr) Wavelength corresponding to the maximum first-order differential within the range of 680–760 nm Liu et al. (2019)

Red keep out appearance value (Rp) Maximum first-order differential within the range of 680–760 nm Wang et al. (2017)

TABLE 2 Vegetation indices and their respective calculation formulas.

Vegetation indices Calculation formulas References

RVI R800/R680 Niu et al. (2017a)

DVI R800 − R680 Shuang et al. (2021)

NDVI (R800 − R680)/(R800 + R680) Shuang et al. (2021)

mSR (R750 − R445)/(R705 + R445) Shuang et al. (2021)

mNDVI (R750 − R705)/(R750 + R705 − 2R445) Niu et al. (2017b)

SAVI 2 [(R800 − R680)/(R800 − R680 + 2)] Shuang et al. (2021)
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Results

Chlorophyll content statistics of S. vulgaris

As can be seen from Figure 5, the average value of

chlorophyll content in the total sample set was 7.96, and

the mean value of chlorophyll content in the modeling set

was 7.88, 0.08 lower than the total sample average. The mean

value of the validation set is 8.28, that’s 0.32 higher than the

total sample average. The total sample means are below the

median, and the three coefficients of variation of 9.10%,

9.27%, and 8.92% are less than 10%, and the data

variability is smaller.

Analysis of the spectral characteristics and
chlorophyll content of S. vulgaris

Spectral characteristics of S. vulgaris at different periods

(Figure 6). Green plants contain various pigments (e.g.,

chlorophyll, lutein, and carotenoids) in their leaves within the

visible light band, of which, chlorophyll plays the most important

role (Tang et al., 2004). Due to the strong absorption of

electromagnetic waves and other radiation within this band, the

reflection and transmission of leaves are very low. In the 420–450-

nm blue waveband and 620–780-nm red waveband, chlorophyll

strongly absorbs radiationwaves and easily forms absorption valleys.

The reflection between these two absorption valleys is reduced and

forms reflection peaks, which makes plants appear green. If normal

plant growth is inhibited in the visible band, a decrease in the

chlorophyll content will increase the reflection of plants within the

blue-green band and reduce absorption.

The curve obviously showed characteristics of the “five grains and

four peaks” of green plants. Themain characteristics of the vegetation

spectrum are “red valley” and “green peak” within the visible light

band. The red-edge appears between 680–760 nm, which is a

diagnostic spectral feature of vegetation and the red valley forms

high reflection in this band. There is a small reflection peak near the

“green peak” wavelength at 800 nm. As the chlorophyll content

increases, the spectral curve will shift to the right.

Within the near-infrared band, the main influencing factor of

green plants is the cell structure inside the leaves. In this band, the

absorption energy of the leaves is low and the reflection and

transmission are similar. High reflection is formed around

680–1300 nm.

Within the infrared band, the transmission of plants is small and

the absorption and incidence are similar. The main influencing

factor is the water content in plant cells. Generally, two main water

absorption bands are formed around 1400 and 1900 nm.

Correlation of two-band raw spectral
indices with chlorophyll of S. vulgaris

In the correlation analysis between the ratio of the original

spectral reflectance of the two bands, vegetation indices, and

the improved RVI, DVI, NDVI, mSR, mNDVI and SAVI with

chlorophyll (Figure 7). With regard to the RVI, the highest

correlation was detected between the combined bands of

610–680 nm and 700–940 nm. With regard the DVI, the

FIGURE 5
Boxplots of Chlorophyll content of S. vulgaris, lower and
upper box boundaries represent the quartiles (25% and 75%
quantiles, respectively), the whisker is min-max, and the solid lines
across each box are the median.

FIGURE 6
The spectral curves of S. vulgaris represent the law of “five
grains and four peaks.” There is some difference in reflectance, but
the difference is not significant.

Frontiers in Earth Science frontiersin.org07

Wang et al. 10.3389/feart.2022.1032585

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1032585


highest correlation was between the combined bands of

350–430 nm and 650–690 nm. For the NDVI, the highest

correlation was between the combined bands of

470–500 nm, 610–680 nm, and 740–840 nm, the highest

correlation of mSR was found in the combined bands of

790–930 nm and 600–620 nm. The highest correlation of

mNDVI is found in the combined bands of 780–1180 nm

and 1410–1790 nm, the highest correlation of SAVI is found

in the combined bands of 2020–2080 nm and 2280–2310 nm.

Through the comparative analysis, we found that the bands

with the highest correlation between the NDVI and

chlorophyll content were 660 and 790 nm, the RVI was

best at 630 and 720 nm, and the DVI was 360 and 450 nm,

the best mSR performance is 570 and 890 nm, the best mNDVI

performance is 1100 and 1,500 nm and the best performing

SAVI was 2290 and 2050 nm. Therefore, in follow-up

monitoring, we focused on the bands with better

performance to monitor S. vulgaris growth.

Selection of the optimal index

To screen the vegetation index, firstly, all six vegetation

indicators selected in Table 2: RVI, DVI, NDVI, SAVI, mSR

and mNDVI were used for modeling with chlorophyll

(Figure 8A), by building this model, it was found that

FIGURE 7
Correlation analysis of the original band spectrum and chlorophyll content: RVI (A), DVI (B), NDVI (C), mSR (D), mNDVI (E), SAVI (F). Blue
indicates high negative correlation and red indicates high positive correlation.
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among them, mNDVI, RVI and NDVI had the highest

correlation with chlorophyll, their correlations were all

greater than or equal to 0.65 and significantly correlated.

While the correlations between DVI, SAVI and chlorophyll

were <0.5 and none of them were significant, mSR is a negative

correlation.

The high correlation vegetation index selected in the previous

step were then combined with the red-edge parameters to build

the second SEM (Figure 8B), and it was found that the index with

high correlation between red-edge parameters and chlorophyll

were Sr and RP, the correlation coefficient of Sr was as high as

0.96 and RP also reached 0.93, but RP was negatively correlated

with chlorophyll.

In order to verify the accuracy of the selected high correlation

indicators, six vegetation indexes were selected to establish SEM

(Figures 8C–F), which inevitably included the screened high

correlation indicators, namely mNDVI, RVI, NDVI and Sr,

the rest were selected by the correlation size established in the

two models (Figures 8A,B). Finally, it was found that the

characterization of mNDVI, RVI and NDVI was always

relatively stable, but Sr and RP of the red-edge parameters

were not stable, sometimes with correlation <0.5, the

correlation with chlorophyll was high and low in different

combinations. It shows that its correlation with chlorophyll is

more easily affected by other factors. Therefore mNDVI, RVI and

NDVI are best suited for subsequent modeling applications, and

FIGURE 8
Analysis of the relationship between the chlorophyll content and the NDVI, RVI, DVI, mSR, mNDVI, SAVI, red-edge amplitude, red-edge area,
and red-edge position using the structural equation model. The solid and dotted lines represent positive and negative coefficients, respectively. The
thickness of the arrows indicates the size of the standardized path coefficient. R2 represents the proportion of variance interpretation of each
endogenous variable. (A) is the screening vegetation index, (B) is the high correlation vegetation index with red edge parameter, (C), (D), (E) and
(F) are to verify the correlation between vegetation index and red edge parameters.
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the red edge parameters are to be further verified for accuracy in

modeling.

Optimization of chlorophyll inversion
models of S. vulgaris

Univariate linear regression model

The univariate linear regression analysis was conducted on

the spectral data and chlorophyll content (Figure 9). Results

revealed that the SAVI had the best fitting effect (R2 = 0.9), the

second is NDVI, which R2 = 0.89.

With the exception of the DVI, the correlation between other

vegetation indices and the chlorophyll content are greater than

0.5, in which, the R2 values of the mSR and RVI were >0.7; the
applicable condition of the RVI is considered to be “the ratio of

scattering of green leaves in the near-infrared band to chlorophyll

absorption in the red band.” (Tulokhonov et al., 2014). The RVI

is more suitable for studying the spectrum of green plants;

therefore, the effect is ideal when used for the correlation

between the green plant spectrum and chlorophyll content.

Similarly, the mSR corrects the specular reflection efficiency of

the leaves. Thus, the fitting effect of the mSR in this study was

ideal. Although the mNDVI is an improved value of the NDVI, it

is sensitive to small changes in the leaf canopy, gap segments, and

senescence (Malingreau, 1989). In previous studies, it was mostly

used for fine agriculture, vegetation monitoring, and vegetation

stress detection. The mNDVI was selected as it is suitable for

vegetation monitoring. However, according to the linear fitting

results, the measurements used for S. vulgaris monitoring were

not ideal. The mNDVI should be used for spectral monitoring

broad-leaved tree species or monitoring areas with high

vegetation coverage. Therefore, from the results of the one-

dimensional linear regression model, the modeled vegetation

index should be chosen SAVI and NDVI.

Multiple stepwise regression model

An advantage of the multiple stepwise regression analysis

is that the regression equation includes all independent

variables that have a significant effect on the dependent

variables; The red edge parameter and vegetation index

were established separately in this model, and both of them

had three variables. However, the reason why multiple

stepwise regression only showed the first two variables was

that: when p>0.05, the independent variable had no statistical

significance in this model, and correspond variables should be

deleted in the regression model. When p<0.05, this variable is

FIGURE 9
Univariate linear regression analysis fitting the chlorophyll content and the mSR (A), mNDVI (B), RVI (C), NDVI (D), DVI (E), SAVI (F).
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statistically significant in the model and should be retained. It

does not include the regression equation of independent

variables that have no significant effect on the dependent

variables. Stepwise regression analysis is based on this

principle. Its essence is to derive an algorithm for studying

and establishing the optimal multiple linear regression

equation based on multiple linear regression analysis. It

also uses the principle of regression analysis, adopts the

double test principle, and gradually introduces and

eliminates independent variables to establish the optimal

regression equation (Wang et al., 2015).

In this study, the vegetation indices and red-edge parameters

were used as independent variables and the chlorophyll content

as the dependent variable. Two multivariate linear stepwise

regression models were established and the regression

equation was constructed (Table 3). The fitting degree of the

model constructed by the vegetation indices was much higher

than the model constructed by the red-edge parameters. Its RMSE

was also relatively small, thus, the accuracy of the prediction

model was high. Generally speaking, the accuracy of the

multivariate stepwise regression model was higher than the

univariate linear regression model.

Partial least squares regression model

The partial least squares regression models of different leaf

coverage areas were established. We used the vegetation indices

and red-edge parameters as inputs. For better accuracy of the

results, three indices, the mNDVI, RVI, and NDVI, which had

the best characterization of the chlorophyll content, were selected

to establish the partial least squares regression model; the three

vegetation indices and red-edge parameters were used as inputs

(Table 4). Compared to the multiple stepwise regression model,

the partial least squares regression model had higher accuracy,

the correlation coefficients of the vegetation indices and red-edge

parameters models increased, and RMSE decreased to <0.1. The
fitting effect of the model using the vegetation indices as the

inputs was higher than the red-edge parameters.

Based on three regression modeling methods, the model

accuracy established by the partial least square method was

better than the univariate linear regression model and

multivariate linear regression model, and its fitting effect was

the best.

BP neural network analysis

Table 5 lists the BP neural network models constructed based

on the three spectral parameters, with the three spectral

parameters (NDVI, mNDVI, and RVI) as the input layer of

the model and chlorophyll content as the output layer, optimal

accuracy after multiple training implicit layers. The coefficient of

determination R2 is 0.96 and RMSE is 0.08, the accuracy of the

model is high. By comparing the regression models, it can be seen

that the model established by BP neural network has higher

accuracy. The fitted lines of predicted and actual values are

shown in Figure 10.

To determine the accuracy of our filtered optimal vegetation

index, a BP neural network model was established for the red-

edge parameters. Three red-edge parameters (Sr, Rp, Dr) were

used as the input layer and chlorophyll content as the output

layer, optimal accuracy after multiple training implicit layers.

From the results of the modeling, its coefficient of determination

FIGURE 10
Prediction results of SPAD values of chlorophyll spectral reflectance BP neural network model test set. BP neural network model based on
vegetation index (A), BP neural network model based on red-edge parameters (B).
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R2 is 0.46 and RMSE is 0.46, the model accuracy is low. The

regression model is more accurate than the BP neural network in

the model built with red-edge parameters.

Discussion

As a sand-fixing form of vegetation found in fixed and semi-

fixed sandy land, S. vulgaris plays an important role in preventing

wind, fixing sand, and improving the ecological environment. In

this study, we used S. vulgaris obtained from the Mu Us Sandy

Land as the research object. The spectral data and chlorophyll

content of S. vulgaris were measured. Compared to ordinary

broad-leaf trees, the chlorophyll content of S. vulgaris was

generally low. This may be because the leaf type of S. vulgaris

is coniferous and the measurement principle of the chlorophyll

meter is more suitable for broad-leaf trees (Ates and Kaya, 2021).

Even when leaves were covered in small holes, there were some

gaps or the leaves artificially integrated into a cluster. Under these

conditions, the instrument will have measurement or data error

because the leaves are too thick. Therefore, the

spectrophotometer method will continue to be used to

measure the chlorophyll content in subsequent experiments.

In this study, four modeling methods were used to predict

the chlorophyll content of S. vulgaris and the model

verification results were ideal. The modeling results showed

that the modeling methods feasibly predicted the chlorophyll

content of S. vulgaris and monitored its growth by using

spectral characteristic parameters. The univariate linear

fitting effect was unstable, as it depends on the selection of

a vegetation index and different plants are sensitive to

different vegetation indices (Gao et al., 2020); hence, the

univariate linear fitting is not recommended. The fitting

effects of the multiple stepwise regression and partial least

squares methods were good (Hair et al., 2012), the stability of

the BP neural network modeling results is not high, which is

highly dependent on the vegetation input layer selected.; thus,

it is more appropriate to select the multiple stepwise

regression and PLS method for modeling, BP neural

network modeling as a vegetation index as an input layer is

more appropriate.

Among the four methods, the red-edge parameters were

extracted using the first-order differential of the original

spectral data. Although the data processed by the first-order

differential can better reduce human interference and strengthen

its absorption effect on water (Zhu et al., 2020; Sun et al., 2021),

this study focused on the modeling of the visible light band and

chlorophyll content. Therefore, the accuracy of the model

established by the vegetation index was higher than the model

established by the red-edge parameters, was more stable, and

universally applicable for the model established with the

chlorophyll content.

In previous studies on plant hyperspectral characteristics

and chlorophyll, in the models established by the spectral

characteristics of plants and different chlorophyll contents,

the value of the determination coefficient reached >0.8, which
indicated that good correlation can be attained between the

spectral characteristics of green plants and chlorophyll

through the analysis of vegetation indices (Dzikiti et al.,

2010; Xu et al., 2019; Sun et al., 2021). The significance of

this correlation lies within an inversion model of green plant

growth, which can be established using changes in the plant

chlorophyll content. Through the analysis of model data, any

change in green plants during the growth process can be

determined, achieving the timely prevention and control of

diseases and pests, and human regulation.

Due to differences in the growth environment and internal

factors, the spectral reflectance curves of different vegetation

TABLE 3 Multiple stepwise regression model equation.

Parameter Model Model accuracy Test model accuracy

R2 RMSE R2 RMSE

Vegetation indices y = (−0.542) + 5.063NDVI + 7.373RVI 0.938 0.194 0.934 0.124

Red-edge parameters y = (−5.962) + 0.19Rp + 23.114Dr 0.885 0.183 0.820 0.194

TABLE 4 Partial least squares regression equation.

Parameter Model Model accuracy Test model accuracy

R2 RMSE R2 RMSE

Vegetation indices Y = 0.24NDVI + 0.08mNDVI − 0.2RVI + 0.02 0.971 0.094 0.982 0.037

Red-edge parameters Y = − 0.79Rp + 9.4Dr + 0.2Sr + 0.01 0.914 0.091 0.938 0.043
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types are not the same, but they are found in the form of “five

grains and four peaks.” Therefore, this study is applicable to

other vegetation types in addition to S. vulgaris. The

extraction of vegetation indices from the original spectral

reflectance of vegetation is helpful for highlighting the

spectral characteristics of vegetation and establishing a

model. When the operation mode and measurement

conditions change, the wavelength of the preferred

vegetation index also changes. Therefore, this study used

the structural program model to optimize the best

vegetation index for subsequent modeling.

In previous studies, the structural equation model has been

primarily used to study deep-seated correlations between

dependent and independent variables. However, the structural

equation model can mine deep-seated correlations, the structural

equation model is more complex in terms of modeling and analysis.

The purpose of this studywas to construct amodel with a goodfitting

effect between the spectral data and chlorophyll content, and

relatively good operation. Therefore, the structural equation model

was not used tomodelmathematical in this study. However, based on

the advantages of the structural equation model, selection of the

optimal index formining is appropriate.Moreover, themNDVI, RVI,

and NDVI indices were compared and screened out by the structural

equation model with the unselected vegetation indices, the mNDVI

and mSR. The results revealed that the screened mNDVI had higher

accuracy, and the RVI and NDVI indicated that it was feasible to

screen indices with higher accuracy by using the structural equation

model. Because the spectral characteristics of S. vulgaris are the same

as general green plants, the findings of this paper are applicable to

other desert plants.

Conclusion

In this paper, the spectral reflectance and chlorophyll content

of S. vulgaris were measured using an SVC HR-1024 portable

ground object spectrometer and SPAD502 chlorophyll meter.

The data were post-processed using MATLAB R2012a, SPSS26,

and other software. The ground object spectral characteristics,

characteristics of the chlorophyll content, and the relationship

between them were investigated. The results indicated the

following:

1) The spectral curve of S. vulgaris had a reflection peak at

570 nm within the visible band, an absorption valley at

680 nm, and obvious reflection platform within the near-

infrared band, which conforms to the spectral characteristics

of green plants;

2) The vegetation indices and chlorophyll content were

correlated in the original spectral composition of S.

vulgaris. Combining the six vegetation indices revealed that

610–690nm and 700–940 nm were the bands with the highest

correlation;

3) A certain correlation was detected between the vegetation

indices, red-edge parameters, and chlorophyll content. The

fitting effect of the model established by the vegetation index

was better than the model established by the red-edge

parameters. Screening vegetation indices with the SEM

model showed that the highest correlation and the most

stable performance were mNDVI, RVI and NDVI, and the

R2 in the characterization of red edge parameters with

chlorophyll was not stable and therefore not suitable for

subsequent modeling, and the most suitable indices for

modeling were mNDVI, RVI and NDVI.

4) Among the four modeling methods, the PLSmodel had the

highest accuracy (R2 > 0.9) and was the most stable. The

univariate linear regression model had the simplest

processing procedure, but its accuracy was not high,

although linear regression model had a great relationship

with the selected vegetation indices. Results are sometimes

not objective. The lowest R2 was 0.16, while the greatest

was0.90. The R2 of the multiple linear regression model

ranged from 0.88 to 0.94. The accuracy of the BP neural

network established by the vegetation index is high, but the

accuracy established by the red edge parameter is very low,

indicating that the stability is not high. Compare the four

TABLE 5 BP neural network modeling parameters and results.

Input parameters Output parameters Training set Validation set

R2 RMSE R2 RMSE

Vegetation index NDVI chlorophyll 0.96 0.08 0.96 0.12

RVI

mNDVI

Red edge parameters Sr chlorophyll 0.46 0.46 0.38 0.21

Rp

Dr
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methods, PLS and multivariate stepwise regression have

their own advantages, and the accuracy is higher, you can

make a choice according to the demand as the late modeling

method.
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