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Investigation of intra-oceanic subduction can improve our understanding of

plate tectonic processes and the history of continental growth. Evidence for

intra-oceanic subduction in the Paleo-Asian Ocean has recently become an

important focus of research, including the Diyanmiao ophiolite in central Inner

Mongolia, North China. Here, we report a newly discovered occurrence of early

Permian gabbro in the Diyanmiao ophiolite zone. The gabbro yields a weighted

mean zircon U–Pb age of 294.4 ± 2.2 Ma. The gabbro samples are

characterized by moderate SiO2 (47.32–50.51 wt%), low TiO2 (0.26–0.54 wt

%) and K2O (0.04–0.75 wt%), and high Na2O (1.84–4.52 wt%) contents, high

Na2O/K2O ratios (2.92–58.29), and depleted chondrite-normalized light rare

Earth element patterns that are similar to N-MORB. The gabbros show slightly

lower contents of high-field-strength elements (e.g., Nb, Ta, and Ti) and slightly

higher contents of large-ion lithophile elements (e.g., K, Rb, Ba, and U) relative

to N-MORB. In addition, the gabbros show high εNd (t) values (8.0–9.8) that are

similar to those of forearc basalt in the Diyanmiao ophiolite and N-MORB.

Integrating these new data with available results for ophiolite and arc-magmatic

rocks of central Inner Mongolia, we propose that the studied gabbro was

formed during the initial stage of intra-oceanic subduction and that the

Paleo-Asian Ocean was still in a subduction setting during the early Permian.
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1 Introduction

Ophiolites represent fragments of ancient oceanic

lithosphere in continental orogenic belts and record the

magmatic evolution, metamorphic history, and structural

processes of oceanic lithosphere, and also provide important

information on the development and extinction of ancient

oceanic basins (Nicolas, 1989). Ophiolites form in a variety of

plate tectonic settings (e.g., Nicolas, 1989; Dilek and Robinson,

2003; Dilek and Furnes, 2009, 2011, 2014; Kusky, 2011; Santosh

et al., 2016) and are eventually obducted onto continental

margins or incorporated into accretionary prisms and

orogens, thereby serving as marker zones of accretion and

suturing between crustal blocks that were originally separated

by oceanic basins (Dilek and Furnes, 2011). Consequently, the

geology, geochemistry, and geochronology of ophiolites and

spatially associated lithological units provide important

insights into the evolution of major orogenic belts (Shervais

et al., 2004).

The Central Asian Orogenic Belt (CAOB) was formed during

a prolonged process involving subduction, accretion, and

collision of the Paleo-Asian oceanic plate (Dobretsov et al.,

1995). This belt was subsequently superimposed and

transformed by the Mesozoic Mongolia–Okhotsk and Pacific

tectonic regimes. The CAOB is considered the world’s largest

Phanerozoic accretionary orogen and is located between the

Siberian Craton to the north and the Tarim and North China

cratons to the south (Figure 1A). The belt contains intra-oceanic

forearc materials, oceanic islands and seamounts, and ancient

oceanic crust fragments as a result of the subduction of the Paleo-

Asian oceanic plate (Badarch et al., 2002; Windley et al., 2007;

Xiao et al., 2009, 2014; Kröner et al., 2017; Safonova, 2017; Yang

et al., 2017, 2021; Cheng et al., 2019; Ma et al., 2021).

The southeastern part of the CAOB is a key area for exploring

the Paleozoic tectonic evolution of this orogenic belt, as it

contains numerous ophiolite belts, including the

Erenhot–Hegenshan ophiolite belt (EHOB), Linxi belt, and

Xar Moron River belt (XMRB), which are thought to mark

the location of final closure of the Paleo-Asian Ocean (PAO)

(Wang and Liu, 1986; Tang, 1990; BGMRIMAR, 1996; Xiao et al.,

2003; Song et al., 2015; Yuri et al., 2020) (Figures 1B, C).

Although the EHOB is traditionally considered to have

formed in a mid-ocean ridge basalts (MORB) (Nozaka and

Liu, 2002), the formation of most Inner Mongolia ophiolites is

ascribed to a supra-subduction zone (SSZ) environment on the

basis of the geochemistry of their magmatic rocks (e.g., Shervais,

2001). Such ophiolites include the Neo-Tethyan ophiolite in SW

Turkey (Aldanmaz et al., 2009) and the Troodos ophiolite in

Cyprus (Osozawa et al., 2012).

Two models have been proposed for the late Paleozoic

evolution of the PAO. Some studies have suggested that

continuous subduction of the Paleo-Asian oceanic plate

induced multiple accretion events on the Uliastai continental

margin (UCM) and the northern margin of the Sino-Korean

paleoplate during the Paleozoic. The collision of two paleoplates

along the Solonker–Linxi or XarMoron River belts led to the final

formation of the CAOB during the late Permian or Early Triassic

(Windley, 1993; Xiao et al., 2003; Cheng et al., 2014, 2015). Other

studies have argued that the PAO closed during the early or

middle Paleozoic along the EHB or the Xilin Hot–Heihe suture

zone and that the Carboniferous and Permian ophiolites in the

area formed in a rift setting (Xu et al., 2013; Zhao et al., 2015).

The main difference between the two models is whether the

southeastern PAO was in a subduction or extensional tectonic

setting during the late Paleozoic.

During recent work, we identified early Permian gabbro

fragments in the Diyanmiao ophiolitic mélange of

southeastern Inner Mongolia. These fragments represent

northward subduction of the Paleo-Asian oceanic plate

beneath the southern margin of the Siberian plate and formed

after the early Carboniferous–early Permian (Li et al., 2018)

(Figure 2). In this paper, we combine new data on the petrology,

geochronology, and geochemistry of gabbro from the Diyanmiao

ophiolite with results of previous studies in this area to establish

the evolution of the PAO during the late Carboniferous and early

Permian.

2 Geological setting

Five NEE–SWW-trending tectonic zones have been

identified in southeastern Inner Mongolia: the Southern

orogenic belt, the Solonker suture zone, the Northern

orogenic belt (NOB), the EHOB, and the UCM from south to

north (Figure 1B) (Xiao et al., 2003; Jian et al., 2012).

The UCM contains post-collisional basalts, andesites, and

pyroclastic deposits of late Carboniferous–Permian age.

These volcanic–sedimentary sequences overlie Cambrian to

Devonian shallow-marine and continental fine clastic rocks

(Zhang et al., 2011; Li et al., 2014; Anas et al., 2020). The

EHOB lies to the south of the UCM and is characterized by

numerous ophiolite slices, including the Hegenshan,

Baiyinbulage, and Diyanmiao ophiolites from west to east

(Li et al., 2015), which are enclosed in

Carboniferous–Permian flysch (Wang and Liu, 1986; Liang,

1991). The EHOB extends from Erenhot, close to the

China–Mongolia border, in the southwest to Hegenshan in

the northeast. The EHOB is separated from the NOB to the

south by the Solonker suture zone (Figure 1B). The NOB

comprises the Xilin Gol and Baolidao Arc complexes (Xiao

et al., 2003). The Xilin Gol complex, which is thought to

represent Precambrian basement (e.g., Ge et al., 2011; Sun

et al., 2013), consists mainly of biotite and muscovite schists,

quartz–feldspar gneisses, and plagioclase amphibolites (Xiao

et al., 2003; Chen et al., 2009). This complex is

unconformably overlain by a cover of late Carboniferous
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and Permian marine strata (Li et al., 2018). The Baolidao Arc

complex, which extends from Bayanbaolidao to Xilinhot, is

composed of cumulate gabbros, gabbro diorites, quartz

diorites, tonalites, and granites, and represents a magmatic

arc formed by northward seafloor subduction (Xiao et al.,

2003, 2009; Jian et al., 2008).

3 Field and petrographic features

The Diyanmiao ophiolite is located in West Ujimqin,

eastern Inner Mongolia (Figure 1B), and is divided into the

Naolaiketu ophiolite to the south and the Baiyinbulage

ophiolite to the north (Li et al., 2018; 2020a). The

FIGURE 1
(A) Schematic tectonic division of north China-Mongolia segment (modified from Jahn, 2004). (B) Sketch geological map of the late Paleozoic
crust of southeastern Inner Mongolia (modified from Xiao et al., 2003). (C) Simplified geological map of the Diyanmiao area (modified after Li et al.,
2020a).
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Naolaiketu ophiolite is exposed in the Naolaiketu–Diyanmiao

area as an ENE–WSW-trending belt with a width of ~3 km

and length of ~28 km. In the ophiolite belt, well-developed

ductile deformation is shown by the development of folds,

ENE–WSW-trending stretching lineations, and mylonitic

microstructures, as well as domains with strongly

developed rhombic-meshed structure and weakly deformed

domains. The lithological units comprise serpentinized

FIGURE 2
Simplified geological map of the Naolaiketu ophiolite in Diyanmiao (modified after Li et al., 2020a).

FIGURE 3
Macrofeatures and photomicrographs of the gabbro in Diyanmiao ophiolite. (A)-outcrop of gabbro; (B)-hand specimen of gabbro; (C,D)-
photomicrographs of gabbro; Pl, plagioclase; Px, pyroxene; Chl, chlorite; Urt, uralite.
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harzburgite, layered gabbro, fine-grained isotropic gabbro,

spilite, basalt, and quartz keratophyres, from bottom to top,

and are overlain by chert. Of these, spillite and fine-grained

isotropic gabbro are the most widely exposed. At the site of

fault contact of the ophiolite and early Permian strata

(Shoushangou and Dashizhai formations), well-developed

brittle deformation structures are observed, including

cleavages and cataclasite bands. Compressed and

fragmented belts of ophiolite range in width from several

meters to hundreds of meters.

For this study, samples of fine-grained isotropic gabbro

(Figure 2) were obtained for geochemical and

geochronological analyses (Figures 3A, B). The gabbro mainly

consists of fine-grained, tabular plagioclase (40–45 vol%) and

granular pyroxene (35–40 vol%), with minor magnetite and

ilmenite (~5 vol%). The rock shows hypidiomorphic and

granular textures under the microscope (Figures 3C, D). The

rocks have been strongly altered, including replacement of

plagioclase by zoisite and pyroxene by uralite.

4 Analytical techniques

4.1 In situ zircon U–Pb dating

One sample of gabbro (TW0166) was selected for in situ

zircon U–Pb dating. Zircon grains were separated by crushing,

sieving, and standard heavy-liquid techniques, followed by

hand-picking under a binocular microscope at the Laboratory

of Regional Geology and Mineral Resources Research Institute

of Hebei Province, Langfang, China. The separated zircons

were mounted in epoxy resin discs and polished to expose the

grain interiors for analyses. Transmitted- and reflected-light

photomicrographs, as well as cathodoluminescence (CL)

images, were obtained to reveal zircon internal structure.

CL images were acquired using a scanning electron

microscope (JSM6510) equipped with a GATAN CL

instrument at Beijing Gaonianlinghang Geo Analysis,

Beijing, China.

Zircon U–Pb dating was performed using laser-

ablation–multi-collector–inductively coupled plasma–mass

spectrometry (LA–MC–ICP–MS) at the Tianjin Institute of

Geology and Mineral Resources, China. The instrumental

conditions and analytical processes were similar to those

described by Liu et al. (2008). Operating conditions included

a laser spot diameter of 32 μm and a laser frequency of 7 Hz.

Contents of U and Pb were calibrated by using the standard

zircon TEMORA (417 Ma), while zircon GJ-1 (597 Ma) was used

as the external standard. The Excel-based software

ICPMSDataCal program (Liu et al., 2008) was used to

calculate U and Th contents and U–Pb dating results,

including calibrations, and the ISOPLOT 4.15 program

(Ludwig, 2003) was used to plot results.

4.2 Whole-rock major and trace element
analyses

We selected eight representative samples of the gabbro for

bulk-rock major- and trace-element analyses at the Tianjin

Geological Survey Center of China Geological Survey, China.

Major elements were analyzed using X-ray fluorescence (XRF)

spectrometry (Rigaku 3270E) with high-dispersion Echelle

optics. Analyses of Chinese national standard rock samples

GSR-1, GSR-2, and GSR-3 revealed that the analytical

precision is generally better than ±2% for most major elements.

Bulk-rock trace-element analyses were performed using

ICP–MS at the Tianjin Geological Survey Center of China

Geological Survey following the analytical procedure of Liu

et al. (2008). The analytical precision for most trace elements

is better than 5%, as monitored by analyses of Chinese national

standard samples GSR-1 and GSR-3. The analytical precision was

better than ±5% for trace elements.

4.3 Sr and Nd isotopes

Sr and Nd isotope ratios were measured for 12 samples using

a Thermo-Finnigan VG Sector 54 thermal ionization mass

spectrometer at the Tianjin Geological Survey Center of China

Geological Survey following the analytical procedures described

by Miao et al. (2008). Ratios of 87Rb/86Sr and 147Sm/144Nd were

calculated using the Rb, Sr, Sm, and Nd contents determined by

ICP–MS. The mass fractionation corrections for isotopic ratios

were measured using a value of 0.1194 for 86Sr/88Sr and 0.7219 for
146Nd/144Nd. The USGS rock standard BCR-2 was used to

evaluate the separation and purification process of Rb, Sr, Sm,

and Nd, yielding 87Sr/86Sr = 0.704963 ± 0.000003 and 143Nd/
144Nd = 0.512354 ± 0.000004.

5 Analytical results

5.1 Zircon U–Pb geochronology

Zircon CL images from the fine-grained isotropic gabbro

sample TW0166 are shown in Figure 4, and zircon U–Pb isotope

data are given in Table 1. Most of the zircons are clear, euhedral,

and short or granular prismatic crystals with lengths of

50–100 μm and aspect ratios of 1:1 to 2:1. The grains show

well-developed straight and wide oscillatory zoning in CL images,

consistent with mafic volcanic or gabbroic rocks (Song et al.,

2015).

Fifteen spots were analyzed on 15 zircon grains from sample

TW0166. Contents of Th and U and Th/U ratios of the zircons

are 14–354 ppm, 40–399 ppm, and 0.73–4.67, respectively. All

ages show concordance on a206Pb/238U–207Pb/235U concordia

diagram (Figure 4). The analytical result yield a weighted
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mean 206Pb/238U age of 294.4 ± 2.2 Ma (MSWD = 1.6, 2σ), which
is interpreted as the crystallization age of the gabbro.

5.2 Major and trace element compositions

The Diyanmiao gabbro samples have SiO2 =

46.94–50.51 wt% (mean = 48.62 wt%) and MgO =

7.56–10.02 wt% (mean = 8.88 wt%), with Mg# values of

65.0–75.6 (mean = 70.3). The samples are characterized by

high contents of Al2O3 (14.26–17.53 wt%) and CaO

(9.92–14.61 wt%), but low contents of Fe2O3
T (as FeO +

Fe2O3, 5.53–8.31 wt%), TiO2 (0.26–0.54 wt%), MnO

(0.12–0.17 wt%), and P2O5 (0.01–0.04 wt%). The gabbro

samples also have low contents of total rare Earth elements

(REEs) (∑REEs) (10.76–20.68 ppm, mean = 15.98 ppm) and

low ratios of light REEs to heavy REEs (LREE/HREE)

(0.97–1.31), (La/Yb)N (0.47–0.89), (Gd/Yb)N (0.91–1.07),

(La/Sm)N (0.56–0.99), and (Sm/Nd)N (1.12–1.28). But

positive Eu anomalies (Eu/Eu* = 1.12–1.53), similar to the

characteristics of N-MORB, including flat REE patterns

(Table 2; Figure 5A). In a primitive-mantle-normalized

spider diagram (Figure 5B), the gabbros show positive Rb,

K, and Sr anomalies and negative Th, Ta, Zr, and Nb

anomalies. Depletion in Nb relative to La and Th indicates

the involvement of continental crust or arc materials during

magmatic evolution (e.g., Santosh et al., 2017).

5.3 Sr and Nd isotopic compositions

The Diyanmiao gabbros show high εNd (t = 294.4 Ma)

values (+8.0 to +9.8). The εNd (t) values are similar to FABs of

the Diyanmiao ophiolite (Table 3; Figure 6). In contrast, the

gabbros have lower 87Sr/86Sr values (0.702934–0.703131)

compared with the FABs (0.70466–0.70517) (Figure 6;

Table 3), which might be due to alteration, given the high

mobility Figure 7 of Rb and Sr.

6 Discussion

6.1 Geochronology of the gabbro in
Diyanmiao ophiolite

Previous zircon U–Pb analyses of gabbro from the

Diyanmiao ophiolite have yielded ages of 346 ± 2, 357 ± 4,

and 340 ± 14 Ma (Song et al., 2015; Li et al., 2018), and

Diyanmiao FAB has LA-ICP-MS zircon U-Pb age of 335.6 ±

2.6 Ma (Li et al., 2020a). Previous studies have reported SHRIMP

U–Pb ages of 354 ± 7 Ma and 333 ± 4 Ma for microgabbro and

plagiogranite from the Hegenshan ophiolite, respectively (Jian

et al., 2012), 354 ± 5 Ma and 353 ± 4 Ma for gabbro and 345 ±

6 Ma for plagiogranite from the Eastern Erenhot ophiolite

(Zhang et al., 2015), and 343 ± 7 Ma for plagiogranite from

the Jiaoqier ophiolite (Miao et al., 2007).

FIGURE 4
(A) Representative cathodoluminescence (CL) images of zircons from gabbro sample TW0166 (B) Zircon U-Pb concordia diagrams and
weighed mean age for the gabbro sample TW0166.
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TABLE 1 LA-MC-ICP-MS zircon U-Pb isotopic analysis of the gabbro in Diyanmiao ophiolite.

Spots no. Element
(ppm)

Th/U Isotopic ratios Apparent age (Ma)

Th U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ

TW0166 Gabbro

01 354 340 1.04 0.0475 0.0005 0.3425 0.0093 0.0523 0.0014 299 3 299 8 299 61

02 98 122 0.80 0.0471 0.0005 0.3439 0.0210 0.0530 0.0032 296 3 300 18 328 139

03 131 102 1.28 0.0461 0.0005 0.3434 0.0258 0.0540 0.0041 291 3 300 22 372 171

04 16 74 0.22 0.0475 0.0005 0.3465 0.0442 0.0529 0.0069 299 3 302 38 323 294

05 65 138 0.47 0.0476 0.0005 0.3435 0.0190 0.0523 0.0029 300 3 300 17 298 125

06 83 159 0.52 0.0468 0.0005 0.3455 0.0201 0.0535 0.0031 295 3 301 18 351 129

07 308 135 2.28 0.0459 0.0005 0.3500 0.0285 0.0553 0.0045 289 3 305 25 426 183

08 156 399 0.39 0.0463 0.0005 0.3461 0.0077 0.0542 0.0012 292 3 302 7 379 49

09 22 78 0.28 0.0465 0.0006 0.3411 0.0391 0.0532 0.0062 293 3 298 34 337 262

10 50 125 0.40 0.0476 0.0005 0.3435 0.0220 0.0523 0.0033 300 3 300 19 300 145

11 36 87 0.41 0.0466 0.0005 0.3400 0.0279 0.0529 0.0044 294 3 297 24 324 188

12 14 178 0.08 0.0469 0.0005 0.3385 0.0174 0.0523 0.0027 296 3 296 15 299 116

13 215 239 0.90 0.0455 0.0005 0.3479 0.0314 0.0554 0.0049 287 3 303 27 429 198

14 281 335 0.84 0.0462 0.0005 0.3490 0.0125 0.0548 0.0019 291 3 304 11 403 80

15 21 40 0.52 0.0473 0.0007 0.3407 0.0629 0.0522 0.0097 298 4 298 55 295 422
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TABLE 2 Major (wt%), trace element (×l0−6) analyzing results of the gabbro in Diyanmiao ophiolite and N-MORB.

Rock type Gabbro N-MORB

Sample NO. XT0160 XT0162 XT0163 XT0164 XT0166 XT0167 XT0168 XT0169

SiO2 47.75 48.38 49.10 50.51 46.94 48.92 50.07 47.32 49.30

Al2O3 16.68 16.56 16.94 17.53 16.88 15.26 14.26 15.11 17.04

Fe2O3
T 8.74 8.00 8.04 7.27 5.86 6.99 6.67 7.23 6.82

CaO 12.11 11.03 10.14 9.92 15.70 13.47 14.50 14.61 11.70

MgO 8.24 8.04 8.23 7.56 9.19 10.02 9.92 9.86 7.19

K2O 0.75 0.26 0.25 0.27 0.04 0.05 0.04 0.09 0.16

Na2O 2.19 4.52 3.78 3.65 2.39 1.84 1.84 2.59 2.73

TiO2 0.54 0.48 0.51 0.51 0.26 0.44 0.35 0.47 1.49

P2O5 0.04 0.03 0.03 0.03 0.02 0.02 0.01 0.03 0.16

MnO 0.15 0.13 0.14 0.12 0.12 0.16 0.17 0.17 0.17

LOI 2.75 2.44 2.78 2.57 2.58 2.57 2.12 2.49

Na2O/K2O 2.92 17.38 15.12 13.52 58.29 40.00 48.42 30.47 17.06

Mg# 65.00 66.48 66.84 67.2 75.56 73.84 74.53 72.88 65.27

Rb 10 8 8 8 5 5 5 5 0.56

Cr 352 296 348 318 581 769 646 612

Co 37 32.1 36.3 33 32.1 38.2 35.8 31.3

Ni 115 125 148 136 107 96.7 103 99.9

Sc 34.8 28 36 28.1 37 68 43.6 41.4

V 193 138 157 143 154 238 214 208

Zr 20.1 15.6 14.8 15.4 4.23 11.8 7.48 13.7 74

Hf 0.75 0.6 0.58 0.6 0.21 0.54 0.3 0.55 2.05

Rock type Gabbro N-MORB

Sample NO. XT0160 XT0162 XT0163 XT0164 XT0166 XT0167 XT0168 XT0169

Ta 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.13

Sr 122 138 143 152 141 117 112 127 90

Ba 45.1 68.2 74.3 94.9 41.8 58.4 43.6 43.7 6.3

Nb 1.06 0.82 0.79 0.96 0.84 1.06 1.02 0.86 2.33

Cs 0.78 0.7 0.77 0.78 0.45 0.54 0.42 0.72 0.01

Ga 15.2 13.1 14.4 14 10.9 14.2 10.2 12.4

Pb 3.07 3.07 2.9 2.77 5.54 3.29 3.17 3.31 0.3

Th 0.05 0.04 0.04 0.03 0.03 0.10 0.14 0.06 0.12

U 0.05 0.04 0.05 0.04 0.05 0.03 0.03 0.04 0.05

Y 14.3 10.6 11.1 10.6 7.62 13.1 10.3 10.9 28

La 1.47 1.32 1.35 1.27 0.96 1.08 1.57 1.30 2.50

Ce 3.18 2.55 2.62 2.41 1.52 2.23 1.63 2.47 7.50

(Continued on following page)
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The EHOB is considered to be a giant ophiolitic complex that

developed during the Carboniferous (Wang and Liu, 1986; Tang,

1990; Song et al., 2015). Li et al. (2018) suggested that the

Erenhot–Hegenshan paleo-ocean underwent intra-oceanic

subduction, resulting in the formation of incipient arc crust

during the early Carboniferous. The structural location

TABLE 2 (Continued) Major (wt%), trace element (×l0−6) analyzing results of the gabbro in Diyanmiao ophiolite and N-MORB.

Rock type Gabbro N-MORB

Sample NO. XT0160 XT0162 XT0163 XT0164 XT0166 XT0167 XT0168 XT0169

Pr 0.67 0.55 0.57 0.52 0.33 0.48 0.5 0.47 1.32

Nd 3.80 3.07 3.15 2.91 1.82 2.89 2.58 2.73 7.30

Sm 1.46 1.15 1.15 1.07 0.73 1.21 0.99 1.07 2.63

Eu 0.75 0.54 0.6 0.57 0.43 0.56 0.49 0.49 1.02

Gd 2.05 1.54 1.7 1.6 1.01 1.89 1.44 1.54 3.68

Tb 0.38 0.3 0.31 0.3 0.2 0.36 0.29 0.3 0.67

Dy 2.53 1.96 2.08 1.93 1.39 2.42 1.98 2.03 4.55

Ho 0.56 0.42 0.46 0.43 0.31 0.53 0.42 0.44 1.01

Er 1.62 1.2 1.31 1.18 0.90 1.50 1.20 1.27 2.97

Tm 0.25 0.18 0.20 0.18 0.14 0.22 0.18 0.19 0.46

Yb 1.69 1.22 1.30 1.20 0.89 1.52 1.18 1.23 3.05

Lu 0.27 0.18 0.20 0.18 0.13 0.24 0.18 0.19 0.46

∑REE 20.68 16.18 17 15.75 10.76 17.13 14.63 15.72 39.11

LREE 11.33 9.18 9.44 8.75 5.79 8.45 7.76 8.53 22.27

HREE 9.35 7.00 7.56 7.00 4.97 8.68 6.87 7.19 16.84

LREE/HREE 1.21 1.31 1.25 1.25 1.16 0.97 1.13 1.19 1.32

(La/Yb)N 0.59 0.73 0.70 0.71 0.73 0.48 0.90 0.71 0.59

δEu 1.33 1.24 1.31 1.33 1.53 1.13 1.25 1.17 1.00

FIGURE 5
(A) Chondrite-normalized REE (Boynton, 1984)and (B) trace element patterns (Sun and McDonough, 1989) for the gabbro and fore-arc basalt
(FAB) in the Diyanmiao ophiolite. Data of Diyanmiao FAB is after (Li et al., 2020a). N-MORB values are after Sun and McDonough, 1989.
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between the early Permian Shoushangou and Dashizhai

formations indicates that the tectonic emplacement of the

Diyanmiao ophiolite occurred after the early Permian.

The new LA–MC–ICP–MS zircon U–Pb age of 294.4 ±

2.2 Ma obtained from the Diyanmiao gabbro in this study

gives an early Permian age for the Diyanmiao ophiolite. The

age distribution of magmatic rocks of the Diyanmiao ophiolitic

mélange indicates that the mélange includes rocks corresponding

to at least two magmatic events, which provides important

evidence regarding the timing of closure of the PAO.

6.2 Petrogenesis of the gabbro in
Diyanmiao ophiolite

The studied gabbro samples show high LOI values

(2.12–2.78 wt%), indicating variable alteration (Li et al., 2018),

and some of the major elements (e.g., Si, Ca, K, and Ba) and trace

elements (Cs and Rb) may have been mobilized to variable

extents during post-magmatic hydrothermal alteration or

metamorphism (Gillis and Banerjee, 2000). In contrast, some

transition elements (e.g., Cr, Ti, Ni, and V), Th, high-field-

strength elements (HFSEs), and REEs (Pearce, 1983) are

considered to be relatively immobile during hydrothermal

seafloor alteration and low-grade metamorphism (Pearce,

2008). Consequently, the following discussion of petrogenesis

is based mainly on the transition elements, HFSEs, and REEs.

Although there are differences in the major element contents

between the Diyanmiao gabbros and FABs, the compositional

signatures of REEs, HFSEs, and large-ion lithophile elements

(LILEs) are similar (Figure 5; Li et al., 2020a), suggesting a similar

origin. The major-element compositions of the gabbros are

similar to those of N-MORB, while the gabbros show a

depleted REE pattern, indicating that their source more

depleted than N-MORB source region. In comparison with

N-MORB, the gabbros have variable enrichment in Rb, Ba,

and K, and depletion in Nb, Ta, Zr, and Ti (Figure 5B),

consistent with the characteristics of island-arc tholeiite in a

subduction zone, suggesting the involvement of subduction

fluids.

In a Th–Hf–Ta diagram, five gabbro samples plot in the

N-MORB field, and two plots on or near the boundary

between N-MORB and tholeiitic basalt (Figure 7A). In an Nb/

Yb vs Th/Yb discrimination diagram, three gabbro samples plot

within the weak subduction field, and four plots in the N-MORB

field (Figure 7B). These results reveal a subduction-related

signature for the gabbros. The gabbros also display a depletion

trend relative to the estimated bulk mantle composition, as well as

a Th enrichment trend in the volcanic arc field (Figure 7A), which

is consistent with rock genetic models for the initial stages of the

evolution of ensimatic marginal basins (Pearce et al., 1984). The

Nb/La values of gabbro is 0.58–0.98 (mean=0.73), which is higher

than the mean value of continental crust (Nb/La mean=0.7), but

the crystallization differentiation does not lead to a decrease in Nb/

La (Zhao et al., 1997). Therefore, the original magma of the

Diyanmiao gabbro likely evolved by fluid metasomatism in an

island-arc setting during oceanic subduction, rather than by

crystallization and differentiation processes.

TABLE 3 Sr–Nd isotopic compositions of the gabbro in Diyanmiao ophiolite.

Sample Age 87Rb/86Sr 87Sr/86Sr 2δ* (87Sr/86Sr)i 147Sm/144Nd 143Nd/144Nd 2δ εNd (t)

Gabbro

XT0166 294 0.1026 0.703131 0.000007 0.7028 0.2425 0.513092 0.000001 8.0

XT0167 293 0.1236 0.703052 0.000009 0.7027 0.2532 0.513206 0.000001 9.8

XT0168 295 0.1291 0.702934 0.000007 0.7025 0.2320 0.513128 0.000001 9.1

XT0169 295 0.1139 0.702975 0.000008 0.7026 0.2370 0.513174 0.000001 9.8

87Note: (1) (87Sr/86Sr)i =Sr/86Sr−87Rb/86Sr × (eλT−1), where λRb =1.42 × 10−11year−1. (2) εNd (t) = {[143Nd/144Nd−147Sm/144Nd × (eλT−1)]/[143Nd/144Nd]CHUR(0)−(147Sm/144Nd)CHUR(0) ×

(eλT−1)−1} × 10,000, where λSm=6.54 × 10−12year−1; (143Nd/144Nd)CHUR(0)=0.512638; (147Sm/144Nd)CHUR(0) = 0.1967.

FIGURE 6
Isotopic plot of whole-rock εNd (t) vs. (87Sr/86Sr)i for the
gabbro in the Diyanmiao ophiolite; Data sources: Miao et al. (2008)
for the field of Hegenshan ophiolite; Li et al. (2020a) for
Diyanmiao FAB.
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6.3 Tectonic implications of the gabbro:
Constraints of intra-oceanic subduction in
the southern Paleo-Asian ocean

The tectonic evolution of the CAOB is not yet fully resolved.

This orogenic belt is thought to have formed by continuous

accretion via multistage trench retreat or the simultaneous

operation of multiple subduction zones (e.g., Xiao et al., 2009;

Kröner et al., 2017). However, other studies have argued that the

belt was formed by a series of orogenic processes involving

collision, prolonged post-collisional stratification, and

extension, with the PAO closing during the late

Carboniferous–early Permian (e.g., Jahn et al., 2009; Han

et al., 2011).

Uncertainty remains concerning the tectonic evolution of the

EHOB, including the formation of the Hegenshan ophiolite,

despite the efforts of many studies (e.g., Tang and Yan, 1993;

Robinson et al., 1999; Xiao et al., 2003, 2009; Jian et al., 2008,

2010; Miao et al., 2008; Zhang et al., 2011; Eizenhöfer et al., 2014,

2015; Song et al., 2015). Some studies have proposed that the

Hegenshan ophiolite formed in a mid-ocean-ridge environment

(e.g., Nozaka and Liu, 2002; Song et al., 2015). Other studies have

considered that the Hegenshan ophiolite formed in an SSZ

environment, such as a back-arc tectonic environment (Miao

et al., 2008;Wang et al., 2008; Eizenhöfer et al., 2014, 2015; Zhang

et al., 2015) or an island arc–marginal basin system (Robinson

et al., 1999).

The zircon U–Pb age of 294.4 ± 2.2 Ma obtained in this

study for the Diyanmiao gabbro coincides with the formation

age of late Carboniferous island-arc magmatic rocks in

central Inner Mongolia that are found together with early

Carboniferous Diyanmiao ophiolite (~340 Ma) (Li et al.,

2018), forearc basalt (335.6 Ma), and boninite (~328 Ma)

(Li et al., 2020a), and late Carboniferous adakite (315 Ma)

(Wang et al., 2021). These results support the interpretation

that the southern PAO had not closed by the early Permian

but was undergoing intra-oceanic subduction. In other

words, the late Carboniferous and early Permian ages

record the initial stages of subduction of the Diyanmiao

intra-oceanic arc within the southern PAO, with

subsequent subduction of oceanic crust. On the basis of

our field observations, geochemical data for the

Diyanmiao ophiolite, and a comparison with the

Izu–Bonin–Mariana initial subduction system (Ishizuka

et al., 2014), we infer a model of subduction initiation in

the Diyanmiao intra-oceanic arc during the early

Carboniferous to early Permian. The initiation of early

Carboniferous intra-oceanic subduction in the

southeastern PAO began along a transform fault or fault

zone (Li et al., 2020b) (Figure 8A). After the initial sinking of

the slab, asthenospheric upwelling and decompression

melting (Reagan et al., 2017) led to forearc spreading and

the formation of the Diyanmiao FABs (335.6 Ma; Figure 8B;

Li et al., 2020a; 2020b). As the subduction initiation process

continued, leading to further decompression melting,

boninites (328 Ma) were generated at this stage

(Figure 8C). The newly discovered gabbro (294 Ma) may

represent the magma event of the subducted plate at a greater

depth (Figure 8D). The above information revealed that the

initial subduction of intra-oceanic may have occurred in the

eastern part of the Paleo-Asian Ocean from the early

Carboniferous to the early Permian.

FIGURE 7
(A) Th-Hf-Ta diagram and (B) Th/Yb-Nb/Yb diagram for the gabbro and FAB in the Diyanmiao ophiolite. Data for FAB from Li et al., 2020a.
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The timing of the transformation of the PAO tectonic

domain to the Paleo-Pacific tectonic domain has become an

important Research Topic. Most studies have argued that the

PAO tectonic system ended during the late Permian or Middle

Triassic and continued locally through to the early Late Triassic

(Xiao et al., 2003; Li, 2006; Wilde, 2015; Guo et al., 2016). Mao

et al. (2020) proposed that late Permian to late Triassic igneous

rocks on both sides of the Mongol–Okhotsk suture belt record an

FIGURE 8
Evolution of the Early Carboniferous Diyanmiao intra-oceanic forearc system in the central Inner Mongolia, N China, as a typical example of
subduction initiation of the southeastern PAO, based on the subduction infancy model (Whattam and Stern, 2011; Reagan et al., 2017). (A) Oceanic
crust boundary preceding subduction initiation. (B) Early Carboniferous subduction initiation, leading to forearc spreading and formation of FABs. (C)
As the subduction initiation process continued, boninites and transitional lavas were formed. (D) As the subduction process continued, the
gabbro were formed. DMM is depleted MORB mantle.
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active-continental-margin environment associated with

bidirectional subduction of Mongol–Okhotsk oceanic

lithosphere. Liang et al. (2021) argued that subduction of the

Paleo-Pacific Plate began in the early Permian. Continued

subduction triggered back-arc basin spreading during the early

Permian–late Triassic (280–232 Ma). Closure of the basin

resulted in the emplacement of accretionary materials in the

Yuejinshan area during the late Triassic–early Jurassic

(232–180 Ma), which also corresponds to the time of

formation of high-pressure metamorphic belts on the

southern margin of the Khanka Massif (230–220 Ma) and

western margin of the Jiamusi Massif (210–180 Ma) (Zhou

et al., 2014; Sun et al., 2015; Guo, 2016; Bi et al., 2017).

7 Conclusion

The geochemical characteristics of the Diyanmiao gabbro

are similar to those of the Diyanmiao FABs. The gabbro is

characterized by depletion in Nb, Ta, and Ti, similar to

N-MORB, suggesting that the gabbro formed in a

subduction setting in the Paleo-Asian Ocean.

LA–MC–ICP–MS U–Pb dating of zircon grains from the

Diyanmiao gabbro yielded an age of 294.4 ± 2.2 Ma,

indicating that the gabbro from the Diyanmiao ophiolite

formed during the early Permian. The initial subduction of

intra-oceanic may have occurred in the eastern part of the

Paleo-Asian Ocean from the early Carboniferous to the early

Permian. Karimov et al., 2020, Shcherbakov et al., 2020, Xiao

and Santosh, 2014.
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