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Seismic exploration of deep oil/gas reservoirs involves wave propagation in

high-pressure media. Acoustoelasticity with the third-order elastic constants

can account for nonlinear strain responses due to stresses of finite magnitude.

Since current seismic exploration depends primarily on P waves, further

development in prospecting technology to handle deep reflection data will

benefit from the ability to decouple the elastic waves from high-pressure deep

formations. We decouple the first-order velocity-stress acoustoelasticity

equations for wave propagation under isotropic (confining) and anisotropic

(uniaxial and pure shear) prestress conditions. A rotated staggered-grid finite-

difference (RSG-FD) method is used to solve the decoupled acoustoelasticity

equations with an unsplit convolutional perfectly matched layer (CPML)

absorbing boundary. Numerical examples demonstrate the significant impact

of prestressed conditions on seismic responses in both phase and amplitude.

The stress-induced seismic anisotropy with orthotropic characteristics is

strongly related to the orientation of prestresses. We compare the coupled

and the decoupled wavefields to validate the proposed decoupling method.

Investigation of the influence of prestresses on the acoustoelastic decoupling

illustrates that the isotropic prestress does not affect the decoupling, but the

anisotropic prestresses significantly affect the decoupling accuracy.
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Introduction

Deep oil/gas exploration has become a rapidly growing area of research, which

challenges seismic techniques by deep high-pressure reservoirs for wave propagation.

Longitudinal (P) and shear (S) waves can be received separately in seismic exploration

(Pugin and Yilmaz, 2019), but with the mainstream technology depending primarily on

P waves. The incident longitudinal wave will not only generate transmitted and reflected

P waves but also cause transmitted and reflected shear waves. The coupling of

longitudinal and transverse waves makes the whole wavefield complex (Chang et al.,
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1986). The decoupling of P and S waves is important for

subsequent seismic imaging (Yan and Sava, 2008).

Deep high-pressure formations are mainly due to

overburden pressures and tectonic stresses. The drilling

fluid (or drilling mud) also causes a hydrostatic prestress

near a borehole (Sinha and Kostek, 1996). Wave

propagation in high-pressure formations can be described

by the acoustoelasticity theory (Pao et al., 1984) that is an

extension of the classical elasticity theory by relating elastic

moduli to prestresses (or residual stresses) in solids. The

theory has been used to account for stress-induced velocity

variations in rocks (e.g., Johnson et al., 1989; Meegan et al.,

1993), therefore providing the potential to understand the

acoustic response to in-situ stresses (Sinha and Kostek, 1996;

Huang et al., 2001; Zharnikov et al., 2022; Zuo et al., 2022).

The plane-wave analysis of wave propagation in a prestressed

homogeneous medium (Pao et al., 1984) demonstrates that the

wave velocity varies linearly with stress but the wavefront is

still isotropic under the confining condition, whereas the

uniaxial and pure-shear prestress conditions lead to seismic

anisotropies in velocity and wavefront. In this study, we aim to

develop an acoustoelastic decoupling method of P and S waves

for wave propagation in prestressed media. We also need

reliable numerical simulations to validate the decoupling

accuracy by comparing the coupled and decoupled

acoustoelastic waves under different prestress conditions.

Great progress has been made in the field of elastic wave

decoupling. Aki et al. (2002) separate longitudinal and

transverse waves in an isotropic medium by Helmholtz

decomposition that is adopted by most scholars (e.g.,

Dellinger and Etgen, 1990; Sun et al., 2001; Sun et al.,

2004). The method assumes that the wavefield is composed

of the gradients of both irrotational and divergence-free fields.

The former denotes the longitudinal potential function

obtained by applying a divergence operator to the

wavefield, whereas the latter expresses the transverse

potential function obtained by applying a curl operator to

the wavefield. Alkhalifah (1998, 2003) proposes a decoupled

acoustic wave equation by setting the vertical S-wave velocity

to zero in the dispersion relationship for vertical transversely

isotropic (VTI) and orthorhombic anisotropic media. The

same dispersion relation can be applied to different

variants of systems of coupled second-order acoustic VTI

wave equations (e.g., Zhou et al., 2006; Du et al., 2008;

Fowler et al., 2010) for the convenience of numerical

implementation. Despite being accurate kinematically, the

amplitude behavior of these equations differs in

inhomogeneous media. Duveneck et al. (2008) present a

different approach by setting the shear wave velocity to

zero for obtaining acoustic VTI wave equations, wherein no

other approximations except the acoustic VTI approximation

itself are involved.

To validate the proposed decoupling method for wave

propagation in prestressed media, we need numerical

simulations using various methods, such as finite-difference

(FD), finite-element, and pseudo-spectral methods (Igel et al.,

1995; Carcione, 1999). FD numerical simulations of elastic wave

propagation have been extensively studied over the past

decades. A comprehensive review and mathematical details

are discussed by Carcione (2007). The standard staggered-

grid (SSG) FD operators (Virieux, 1986) may cause

instability problems in prestressed media, whereas the

rotated staggered-grid (RSG) FD (Saenger et al., 2000;

Saenger and Shapiro, 2002) can improve numerical stabilities

because no averaging of elastic moduli is required in an

elementary cell. The presented numerical scheme is based on

the RSG-FD and is implemented by an eighth-order (for the

space derivatives) and second-order (for the time derivatives)

operators.

In this study, we formulate the decoupled acoustoelastic

equations of the first-order velocity-stress form under

different prestress conditions based on the acoustic

approximation (Duveneck et al., 2008). Unlike the use of the

VTI constitutive equations, the stress-induced isotropic and

anisotropic wavefields are treated separately based on the

acoustoelastic constitutive relation. The RSG-FD method is

employed to solve both the coupled and decoupled

acoustoelastic equations with the CPML absorbing boundary

(Komatitsch and Martin, 2007; Martin and Komatitsch, 2009).

Three typical states of prestress (confining uniaxial, and pure-

shear) are investigated with the corresponding simplified

stiffness matrices to simulate the coupled and decoupled

wavefields.

Methodology

Acoustoelasticity equation

With the 3rd-order (or high-order) elastic constants, the

theory of acoustoelasticity for solids is developed by considering

three configurations: the stress-free natural state, prestress-

induced static deformation, and wave-induced dynamic

deformation. The detailed formulation (Pao et al., 1984) is

briefly described in Supplementary Appendix SA, and the

equation of motion Supplementary Equation SA1 can be

written as the first-order velocity-stress equation

{ ρvi,t � τij,j,
τ ij,t � Aijklvk,l,

(1)

where v and τ are particle velocities and stress, respectively; and

Aijkl represent the effective acoustoelastic constants, t denotes

time. The resulting acoustoelastic stiffness matrices (see

Supplementary Equation SA11) can be rewritten as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A11 � (λ + 2μ)(1 + 3e11 − e33) + (2C + 6B + 2A)e11 + (2C + 2B)e33,
A13 � λ(1 + e11 + e33) + (2C + 2B)(e11 + e33),
A33 � (λ + 2μ)(1 − e11 + 3e33) + (2C + 6B + 2A)e33 + (2C + 2B)e11,

A51 � 2(B + A

2
)e13 + 2(λ + 2μ)e13,

A53 � 2(B + A

2
)e13 + 2(λ + 2μ)e13,

A55 � μ(1 + e11 + e33) + (B + A

2
)(e11 + e33),

(2)
where A, B, C are third-order elastic constants (3oeCs) (Green,

1973), and represent the three additional coefficients introduced

by the acoustoelastic strain energy function (Winkler and Liu,

1996). For convenience, we set the y-direction of the model to

infinity, so that the three-dimensional case is simplified to a 2D

plane strain problem. With Eq. 2 and the Cartesian tensor

notation with the x- and z-coordinates, we rewrite Eq. 1 as a

system of first-order partial differential equations which is

amenable for finite-difference simulations,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρvx,t � τxx,x + τxz,z,
ρvz,t � τxz,x + τzz,z,
τxx,t � A11vx,x + A13vz,z + A15(vx,z + vz,x),
τzz,t � A13vx,x + A33vz,z + A35(vx,z + vz,x),
τxz,t � A15vx,x + A35vz,z + A55(vx,z + vz,x).

(3)

The nonlinear effect of predeformation is introduced by the

second-order effective acoustoelastic constants Aij. Eq. 3 reduces

to the elastic wave equation when no static stress is applied.

Decoupled acoustoelasticity equations
under confining stress

For this case, the stress field is isotropic under the confining

stress P, with the same stress and strain in all the directions. The

principal strain components can be expressed as

⎧⎪⎨⎪⎩ e11 � e33 � − P

3K
,

e13 � 0.
(4)

Substituting Eq. 4 into Eq. 2 leads to a stiffness matrix under

confining stress,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A11 � λ + 2μ + (2λ + 4μ + 8C + 8B + 2A)(−P/3K),
A33 � λ + 2μ + (2λ + 4μ + 8C + 8B + 2A)(−P/3K),
A55 � μ + (2μ + 2B + A)(−P/3K),
A13 � λ + (2λ + 8C + 4B)(−P/3K),
A51 � 0,
A53 � 0.

(5)

It is not difficult to find that A11 � A33 � A13 + 2A55. By

substituting Eq. 5 into Eq. 3, and applying some transformations,

we obtain

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρvx,t � τxx,x + τxz,z,
ρvz,t � τxz,x + τzz,z,
τxx,t � A11(vx,x + vz,z) − 2A55vz,z,
τzz,t � A11(vx,x + vz,z) − 2A55vx,x,
τxz,t � A55(vx,z + vz,x).

(6)

In order to construct the decoupling equations, the new

mixed wavefield variables U � {vx, vz}, the pure P-wavefield

variables UP � {vPx, vPz} and the pure S-wavefield variables US �
{vSx, vSz} are introduced into Eq. 6. These velocities are

interrelated according to the separation equations,

{ vx � vPx + vSx,
vz � vPz + vSz.

(7)

The velocities vpa and vsacan be expressed as (Pao et al., 1984)

vpa �
�����
A33/ρ√

. (8)

vsa �
�����
A55/ρ√

. (9)

We set vsa � 0 in Eq. 6, that is, A55 � 0, then the decoupled

P-wave equations in the first-order velocity-stress form are

obtained,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρvPx,t � τPxx,x,
ρvPz,t � τPzz,z,
τPxx,t � A11(vPx,x + vPz,z),
τPzz,t � A11(vPx,x + vPz,z).

(10)

Similarly, we set vpa � 0 in Eq. 6, that is, A11 � A33 � 0, then

the decoupled S-wave equations of the first-order velocity-stress

form are obtained,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρvSx,t � τSxx,x + τSxz,z,
ρvSz,t � τSxz,x + τSzz,z,
τSxx,t � −2A55vSz,z,
τSzz,t � −2A55vSx,x,
τSxz,t � A55(vSx,z + vSz,x).

(11)

where, vPi(i � x, z) and vSi(i � x, z) are the velocity components

of P- and S-wavefield respectively; τPij(i, j � x, z),
τSij(i, j � x, z) are the stress components associated with the

P- and S-wavefields, respectively; vi(i � x, z) are the velocity

components of the mixed wavefield. Eqs 10,11 can be reduced to

the classical elastic wave equation when no prestress is applied.

Thus, in a homogeneous and isotropic medium, the

acoustoelastic wavefield (or vector elastic wavefield) can be

decomposed into two parts, a pure longitudinal wave, and a

pure transverse wave. The pure P-wave and pure S-wave can be

extracted by separately taking the divergence and rotation of the

wavefield. The P-wavefield is an irrotational field, that is

∇× UP � 0; the S-wavefield is a divergence-free field, that is,

∇ · US � 0. In the following, we analyze the divergence of the

S-wave in Eq. 11 and the rotation of the P-wave in Eq. 10. For the

S-wave case, in Eq. 11, we find
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z2(∇ · US)
zt2

� z2

zt2
(zvSx
zx

+ zvSz
zz

) � z2

ztzx

zvSx
zt

+ z2

ztzz

zvSz
zz

� z2

ztzx
(zτSxx

zx
+ zτSxz

zz
) + z2

ztzz
(zτSxz

zx
+ zτSzz

zz
)

� 2A55( − z3vz
zzzx2

+ z3vx
zxzz2

+ z3vz
zzzx2

− z3vx
zxzz2

) � 0. (12)

It can be seen from this that the second-order partial

derivative of ∇ · US with respect to time is zero, that is, the

first-order partial derivative of ∇ · US with respect to time is a

constant, so ∇ · US is either a constant or a linear function of

time. From the wave motion characteristics, one infers that

∇ · US can only be a constant with respect to time. At the same

time, it is known from the zero initial condition of solving the

wave equation that ∇ · US should be equal to zero, so the

S-wavefield US in Eq. 11 is a divergence-free field. In the same

way, it can be shown that z2(∇× UP)/zt2 � 0, that is, the

longitudinal wavefield UP is an irrotational field. Therefore,

theoretically, we can get the acoustoelastic wave mixed

wavefield U � {vx, vz}, P-wavefield UP � {vPx, vPz} and

S-wavefield US � {vSx, vSz}, and U � UP + Us, that is, to

achieve acoustoelastic wave field separation in confining

stress condition.

Decoupled acoustoelastic equations
under the uniaxial stress and the pure
shear stress

For the uniaxial case, the stress field is anisotropic under the

uniaxial stress P. The principal strain components can be

expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e11 � P(λ + μ)
μ(3λ + 2μ),

e33 � − Pλ

2μ(3λ + 2μ),
e13 � 0.

(13)

The corresponding stiffness matrix becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A11 � λ + 2μ + (3λ + 6μ + 2C + 6B + 2A)e11 + (2C + 2B − λ − 2μ)e33,
A33 � λ + 2μ + (3λ + 6μ + 2C + 6B + 2A)e33 + (2C + 2B − λ − 2μ)e11,
A55 � μ + (μ + B + A

2
)e11 + (A

2
+ B + μ)e33,

A13 � λ + (λ + 2C + 2B)e11 + (2C + 2B + λ)e33,
A51 � 0,

A53 � 0,

(14)

The principal strain components for the pure shear prestress

become

⎧⎪⎪⎨⎪⎪⎩
e11 � −e33 � P

λ + 2μ
,

e13 � 0,

(15)

yielding the following stiffness matrix,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A11 � λ + 2μ + (4λ + 8μ + 4B + 2A)e11,
A33 � λ + 2μ − (4λ + 8μ + 4B + 2A)e33,
A55 � μ,
A13 � λ,
A53 � 0,
A51 � 0.

(16)

Based on the Voigt notation (Supplementary Equation SA8),

the matrix form of the acoustoelasticity constitutive equations in

2D can be explicitly written as (Thomson, 1986),

⎡⎢⎢⎢⎢⎢⎣ σ11σ33
σ13

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣ A11

A31

A51

A13

A33

A53

A15

A35

A55

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣ ε11ε33
ε13

⎤⎥⎥⎥⎥⎥⎦ (17)

Because A51 � A53 � 0, Eq. 17 simplifies to

⎡⎢⎢⎢⎢⎢⎣ σ11σ33
σ13

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣ A11

A31

0

A13

A33

0

0
0
A55

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣ ε11ε33
ε13

⎤⎥⎥⎥⎥⎥⎦ (18)

Following the notation for seismic anisotropy introduced by

Thomson (1986), we introduce two stress-induced anisotropy

parameters εa and δa in the two-dimensional case

εa � (A11 − A33)/2A33
, (19)

δa � ((A13 + A55)2 − (A33 − A55)2)/2A33(A33 − A55) (20)

Thomsen’s (1986) anisotropy parameter reflects the intrinsic

anisotropy of the formation, but parameters introduced here

reflect the type and magnitude of the prestress on the formation,

which is determined by the overburden formation pressure or

regional tectonic stress. Anisotropic prestress causes the

“closure” of micro-cracks in some direction, so that a

preferred orientation is induced which makes it anisotropic

(Sinha and Kostek, 1996).

Next, we apply the acoustic approximation, i.e., setting

vsa � 0, in the elastic tensor. Consequences of this

approximation are discussed in Alkhalifah (1998, 2000) and in

Grechka et al. (2004). Applying the acoustic approximation

considerably simplifies the elastic tensor for 2D media.

Straightforward substitution of the relations (Eqs. 8,9 into Eq.

16, after setting vsa � 0, yields

⎡⎢⎢⎢⎢⎢⎣ σ11σ33
σ13

⎤⎥⎥⎥⎥⎥⎦ � ρv2pa
⎡⎢⎢⎢⎢⎢⎢⎣ 1 + 2εa������

1 + 2δa
√

0

������
1 + 2δa

√
1
0

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣ ε11ε33
ε13

⎤⎥⎥⎥⎥⎥⎦ (21)

Based on Eq. 21, we obtain the decoupled P-wave equations

under the anisotropic (uniaxial and pure shear) stress field,
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρvPx,t � τPxx,x,
ρvPz,t � τPzz,z,
τPxx,t � ρv2pa((1 + 2εa)vPx,x +

������
1 + 2δa

√
vPz,z),

τPzz,t � ρv2pa( ������
1 + 2δa

√
vPx,x + vPz,z).

(22)

where vpa, εa and δa are all related to anisotropic prestresses, Eq.

22 can also be reduced to the classical elastic wave equation when

no prestress is applied.

Matrix equations and time-discretization
under isotropic (confining) stress field

Adding an external force term on the right-hand side that

acts as a source term, we obtain the discrete form of the first-

order velocity-stress acoustoelastic equations under isotropy

(confining) stress field,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρvx,t � τxx,x + τxz,z − fx,
ρvz,t � τxz,x + τzz,z − fz,
τxx,t � A11(vx,x + vz,z) − 2A55vz,z + fxx,t,
τzz,t � A11(vx,x + vz,z) − 2A55vx,x + fzz,t,
τxz,t � A55(vx,z + vz,x) + fxz,t.

(23)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρvPx,t � τPxx,x − fx,
ρvPz,t � τPzz,z − fz,
τPxx,t � A11(vPx,x + vPz,z) + fxx,t,
τPzz,t � A11(vPx,x + vPz,z) + fzz,t,

(24)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρvSx,t � τSxx,x + τSxz,z − fx,
ρvSz,t � τSxz,x + τSzz,z − fz,
τSxx,t � −2A55vSz,z + fxx,t,
τSzz,t � −2A55vSx,x + fzz,t,
τSxz,t � A55(vSx,z + vSz,x) + fxz,t.

(25)

where Eqs 23–25 respectively represent the coupled

acoustoelasticity equations, the decoupled pure P-wave

acoustoelasticity equations and the pure S-wave

acoustoelasticity equations, fi denote the components of the

external body forces, and fij are the external stress forces

(Carcione et al., 2019). The set of equations can be combined

into a matrix equation as

_v + si � Miv, (26)

FIGURE 1
Theoretical (exact) velocities values of P-wave and S-wave as
a function of confining stress.

FIGURE 2
Coupled wavefield snapshots of the x-component of the particle velocity at t = 0.1 ms for various confining stresses. ((A): 0 MPa; (B): 50 MPa;
(C): 100 MPa)
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where the matrix M1v of Eq. 23 is given by

M1v �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

A11zx

(A11 − 2A55)zx
A55zz

0

0

(A11 − 2A55)zz
A33zz

A55zx

zx/ρ
0

0

0

0

0

zz/ρ
0

0

0

zz/ρ
zx/ρ
0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vx

vz

τxx

τzz

τxz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(27)

and the source vector s1 is (Carcione et al., 2019)

s1 � [ fx/ρ fz /ρ fxx,t fzz,t fxz,t ]T (28)

The matrix M2v corresponding to Eq. 24 is given by

M2v �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

A11zx
A11zx

0
0

A11zz
A11zz

zx/ρ
0
0
0

0
zz/ρ
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
vPx
vPz
τPxx
τPzz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (29)

and the source vector s2 is

s2 � [ fx/ρ fz /ρ fxx,t fzz,t ]T. (30)

FIGURE 3
Decoupled P-wave field snapshots of the x-component of the particle velocity at t = 0.1 ms for various confining stresses. ((A): 0 MPa; (B): 50
MPa; (C): 100 MPa).

FIGURE 4
Decoupled S-wave field snapshots of the x-component of the particle velocity at t = 0.1 ms for various confining stresses. ((A): 0 MPa; (B): 50
MPa; (C): 100 MPa).
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FIGURE 5
Coupled wave field and decoupled P- and S-wave field records of the x-component of the particle velocity for various confining stresses ((A): 0
MPa; (B): 50 MPa; (C): 100 MPa).
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The matrix M3v corresponding to Eq. 25 is given by

M3v �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−2A55zx
A55zz

0
0

−2A55zz
0

A55zx

zx/ρ
0
0
0
0

0
zz/ρ
0
0
0

zz/ρ
zx/ρ
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
vSx
vSz
τSxx
τSzz
τSxz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(31)

and the source vector is

s3 � [ fx/ρ fz /ρ fxx,t fzz,t fxz,t ]T. (32)

For the second-order accuracy in time, we have the time

difference formulations of the coupled acoustoelastic

equations Eq. 33, the decoupled pure P-wave acoustoelastic

equations Eq. 34 and the pure S-wave acoustoelastic equations

Eq. 35

FIGURE 6
Records of x = 250 mm in snapshots above for various confining stresses ((A): 0 MPa; (B): 50MPa; (C): 100MPa). (The black dotted lines indicate
records of coupled wavefield; the blue solid lines denote records of pure P-wave field; the red solid lines represent records of pure S-wave field).
Decoupled acoustoelastic simulation under uniaxial prestress.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt+
Δt
2

x (x+ Δx

2
,z+ Δz

2
) � vt−

Δt
2

x (x+ Δx

2
,z+ Δz

2
)+dt(τxx,x(x,z) + τxz,z(x,z))/ρ,

vt+
Δt
2

z (x+ Δx

2
,z+ Δz

2
) � vt−

Δt
2

z (x+ Δx

2
,z+ Δz

2
)+dt(τxz,x(x,z) + τzz,z(x,z))/ρ,

τt+Δtxx (x,z) � τtxx(x,z) +dt(A11(vx,x(x+ Δx

2
,z+ Δz

2
)+ vz,z(x+ Δx

2
,z+ Δz

2
))

−2A55vz,z(x+ Δx

2
, z+ Δz

2
))/ρ,

τt+Δtzz (x,z) � τtzz(x,z) +dt(A11(vx,x(x+ Δx

2
,z+ Δz

2
)+ vz,z(x+ Δx

2
,z+ Δz

2
))

−2A55vx,x(x+ Δx

2
, z+ Δz

2
))/ρ,

τt+Δtxz (x,z) � τtxz(x,z) +dtA55(vx,z(x+ Δx

2
,z+ Δz

2
)+ vz,x(x+ Δx

2
,z+ Δz

2
))/ρ.

(33)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v
t+Δt

2
Px (x + Δx

2
, z + Δz

2
) � v

t−Δt
2

Px (x + Δx

2
, z + Δz

2
) + dtτPxx,x(x, z)/ρ,

v
t+Δt

2
Pz (x + Δx

2
, z + Δz

2
) � v

t−Δt
2

Pz (x + Δx

2
, z + Δz

2
) + dtτPzz,z(x, z)/ρ,

τt+ΔtPxx (x, z) � τtPxx(x, z) + dtA11(vPx,x(x + Δx

2
, z + Δz

2
) + vPz,z(x + Δx

2
, z + Δz

2
))/ρ,

τt+ΔtPzz (x, z) � τtPzz(x, z) + dtA11(vPx,x(x + Δx

2
, z + Δz

2
) + vPz,z(x + Δx

2
, z + Δz

2
))/ρ,

(34)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v
t+Δt

2
Px (x + Δx

2
, z + Δz

2
) � v

t−Δt
2

Px (x + Δx
2
, z + Δz

2
) + dtτPxx,x(x, z)/ρ,

v
t+Δt

2
Pz (x + Δx

2
, z + Δz

2
) � v

t−Δt
2

Pz (x + Δx
2
, z + Δz

2
) + dtτPzz,z(x, z)/ρ,

τt+ΔtPxx (x, z) � τtPxx(x, z) + dtρv2pa((1 + 2ε)vPx,x(x + Δx
2
, z + Δz

2
) + �����

1 + 2δ
√

vPz,z(x + Δx
2
, z + Δz

2
))

τt+ΔtPzz (x, z) � τtPzz(x, z) + dtρv2pa( ���������
1 + 2δvPx,x

√ ( + Δx
2
, z + Δz

2
) + vPz,z(x + Δx

2
, z + Δz

2
)).

(35)

Matrix equations and time-discretization
under the anisotropic (uniaxial and pure
shear) stress field

The first-order velocity-stress P-wave equations under

the anisotropic (uniaxial and pure-shear) stress field are as

follows,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρvPx,t � τPxx,x − fx,
ρvPz,t � τPzz,z − fz,
τPxx,t � ρv2pa((1 + 2ε)vPx,x +

�����
1 + 2δ

√
vPz,z) + fxx,t,

τPzz,t � ρv2pa( �����
1 + 2δ

√
vPx,x + vPz,z) + fzz,t,

(36)

FIGURE 7
Coupled wavefield snapshots of the x-component of the particle velocity at t = 0.1 ms for various uniaxial stresses ((A): 25 MPa; (B): 50MPa; (C):
75 MPa; (D): 100 MPa).
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The matrix Mv is given by

Mv �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

ρv2pa(1 + 2ε)zx
ρv2pa

�����
1 + 2δ

√
zx

0

0

ρv2pa
�����
1 + 2δ

√
zz

ρv2pazz

zx/ρ
0

0

0

0

zz/ρ
0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
vPx

vPz

τPxx

τPzz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(37)

and the source vector is

s � [ fx/ρ fz /ρ fxx,t fzz,t ]T. (38)

For the second-order accuracy in time, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v
t+Δt

2
Px (x + Δx

2
, z + Δz

2
) � v

t−Δt
2

Px (x + Δx
2
, z + Δz

2
) + dtτPxx,x(x, z)/ρ,

v
t+Δt

2
Pz (x + Δx

2
, z + Δz

2
) � v

t−Δt
2

Pz (x + Δx
2
, z + Δz

2
) + dtτPzz,z(x, z)/ρ,

τt+ΔtPxx (x, z) � τtPxx(x, z) + dtρv2pa((1 + 2ε)vPx,x(x + Δx
2
, z + Δz

2
) + �����

1 + 2δ
√

vPz,z(x + Δx
2
, z + Δz

2
))

τt+ΔtPzz (x, z) � τtPzz(x, z) + dtρv2pa( �����
1 + 2δ

√
vPx,x(x + Δx

2
, z + Δz

2
) + vPz,z(x + Δx

2
, z + Δz

2
)).

(39)

Numerical examples

In this section, we calculate coupled and decoupled wavefield

snapshots under various prestressed conditions. The RSG-FD

numerical method (Saenger et al., 2000; Saenger and Shapiro,

2002) with the CPML absorbing boundary (Komatitsch and

Martin, 2007; Martin and Komatitsch, 2009) is applied to the

coupled and decoupled acoustoelastic equations for wavefield

snapshots. The implementation of RSG-FD is detailed in

Supplementary Appendix SB. The general form Eq. 1 for the

acoustoelastic stiffness tensor Apq can be simplified for these

specific loading modes. The RSG-FD scheme has eighth-order

accuracy in space and second-order accuracy in time.

At present, the measurement of the third-order elastic constants

is only achieved via ultrasonic laboratory experiments (Winkler and

Liu, 1996; Huang et al., 2001). That is why we choose to replicate

ultrasonic experiments in our numerical simulation. The first

numerical example is shown for an isotropic and homogeneous

rock sample (807×807)mmwith the bulk (K), shear (μ) moduli, and

FIGURE 8
Decoupled P-wave field snapshots of the x-component of the particle velocity at t = 0.1 ms for various uniaxial stresses ((A): 25 MPa; (B): 50
MPa; (C): 75 MPa; (D): 100 MPa).
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FIGURE 9
Records of x = 350 mm in snapshots above for various uniaxial stresses ((A): 25 MPa; (B): 50 MPa; (C): 75 MPa; (D): 100 MPa). (The black solid
lines indicate records of decoupled wavefield; the blue solid lines denote records of coupled wavefield).

FIGURE 10
Part of Figure 9 ((A): 25 MPa; (B): 50 MPa; (C): 75 MPa; (D): 100 MPa). (Red line represents the absolute value of the difference between the two
wavefields; r represents the correlation between the two curves). Decoupled acoustoelastic simulation under the pure shear prestress.
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density (ρ) set to 5, 10 GPa, and 2,140 kg/m3, respectively, with the

third-order elastic constants (A, B, C) = (−1,000, −500, −500) GPa.

We set the grid size to 10–3 m and use a time step of 10–7 s to satisfy

the stability condition for RSG-FD. For the source loading, we follow

the method by Carcione et al. (2019) to apply a vertical force fzz

located at the center of the model domain with the time history,

s(t) � (t − t0)e−[πf0(t−t0)]2 , (40)

with the central frequency f0 = 1 MHz, and t0 is a delay time.

Decoupled acoustoelastic simulation
under confining prestress

For this case, the stress field is isotropic under the confining

stress P, with the same stress and strain in all directions. Figure 1

shows the velocity versus prestress curve under confining stress.

Wavefield snapshots are calculated with increasing confining

stresses, as shown in Figures 2–4 for the x-component of the

particle velocity at t = 0.1 ms. Different confining pressures

correspond to different subsurface depths, for example,

100 MPa corresponds to a depth of about 10 km under

confining stress conditions, which is in line with our

exploration goals for deep and ultra-deep formations.

We see that the stress-induced velocity variations are

isotropic (circular wavefront), with the amplitude along the

wavefront changes in accordance with the characteristics of a

vertical force source. Figure 5 shows the single shot records of

three wavefields under increasing confining stresses. From the

simulation results shown in Figures 2–5, we observe that this

scheme can completely separate the pure P-wave and the pure

S-wave from the mixed wavefield, thus realizing the decoupling

of acoustoelastic wavefield. The simulation results also show that

the CPML boundary conditions completely eliminate boundary

reflections once the waves hit the border of the model domain,

and we only spend 20 grid points to realize this boundary

condition. We have to mention that there is a point in the

center of the decoupled pure P- and S-wavefield snapshots,

because close to the source the elastodynamic wavefield has

FIGURE 11
Coupled wavefield snapshots of the x-component of the particle velocity at t = 0.1 ms for various pure shear stresses ((A): 25 MPa; (B): 50 MPa;
(C): 75 MPa; (D): 100 MPa).
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nearfield terms for which the Helmholtz decomposition does not

work (Aki et al., 2002).

In order to verify the correctness of our decoupling, we take a

trace (x = 250 mm) from the wavefield snapshot to compare the

travel time, amplitude, and phase of the decoupled wavefield and

the coupled wavefield. The result is shown in Figure 6. It is not

difficult to observe that under different confining pressures, the

traveltime, phase and amplitude of the decoupled pure P- and

S-wavefield and the coupled wavefield perfectly coincide with

each other.

Decoupled acoustoelastic simulation
under uniaxial prestress

Figures 7, 8 show the wavefield snapshots with increasing

uniaxial stresses for the x-component of the particle velocity at

t = 0.1 ms. The magnitude of uniaxial prestress can resemble

different formation pressures. Figure 7 is the coupled wavefield

snapshot, and Figure 8 is a snapshot of the qP-wavefield after

decoupling. In Figure 7, with increasing uniaxial stresses, the P-

and S-waves are gradually coupled together, with the wavefronts

of qP- and qS-waves becoming more elliptical due to the

anisotropy of velocities. In Figure 8, we see the decoupled qP-

waves, which are roughly the same shape as the qP-waves before

decoupling under small stress. However, in the case of high

prestress, the two shapes differ from each other. This difference

comes from the difference between stress-induced anisotropy

and intrinsic anisotropy (Prioul et al., 2004). We also observe

shear wave artifacts in the decoupled P-wavefield, but in the

context of imaging, these do not seem to cause problems

(Duveneck et al., 2008).

In order to detect the effect of decoupling, we take a trace

(x = 350 mm) from the wavefield snapshot to compare the

travel time, amplitude, and phase of the decoupled wavefield

and the coupled wavefield. The result is shown in Figures 9,10.

FIGURE 12
Decoupled P-wave field snapshots of the x-component of the particle velocity at t = 0.1 ms for various pure shear stresses ((A): 25 MPa; (B): 50
MPa; (C): 75 MPa; (D): 100 MPa).
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FIGURE 13
Records of x = 320 mm in snapshots above for various pure shear stresses ((A): 25 MPa; (B): 50 MPa; (C): 75 MPa; (D): 100 MPa). (The black solid
lines indicate records of decoupled wavefield; the blue solid lines denote records of coupled wavefield).

FIGURE 14
Part of Figure 13 ((A): 25 MPa; (B): 50 MPa; (C): 75 MPa; (D): 100MPa). (Red line represents the absolute value of the difference between the two
wavefields; r represents the correlation between the two curves.). Decoupled acoustoelastic simulation for a three-layer model.
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is a selected part of Figure 9, the red line represents the absolute

value of the difference between the two wavefields, and r

represents the correlation coefficient between the two

wavefields. Obviously, as the uniaxial prestress increases,

although the travel times of the qP-waves in the two

wavefields fit very well, the amplitude values gradually

deviate, that is, the decoupling quality gradually deteriorates.

The acoustic approximation is no longer accurate due to the

increasingly stronger anisotropic velocity field resulting from

the increasing stress-induced anisotropy. But the correlation

coefficient of the two curves remains at above 90%, which

reflects that this decoupling method is very reliable, even

under high anisotropic prestressed conditions.

Decoupled acoustoelastic simulation
under pure shear prestress

Figures 11, 12 show the coupled and decoupled qP wavefield

snapshots with increasing uniaxial stresses for the x-component

of the particle velocity at t = 0.1 ms. The magnitude of pure

shear pressure corresponds to different geological tension and

compression effects. In Figure 11, similar to the case of uniaxial

stresses, the wavefronts become more and more elliptical with

increasing pure shear stresses. In Figure 12, we also see that as

the pressure increases, the diamond-shaped area gradually

increases and the decoupling quality gradually deteriorates,

similar to the uniaxial case. In order to detect the effect of

decoupling, we also take a trace (x = 320 mm) from the

wavefield snapshot to compare the travel time, amplitude,

and phase of the decoupled wavefield and the coupled

wavefield. The result is shown in Figures 13,14 is a selected

part of Figure 13.

Decoupled acoustoelastic simulation for a
three-layer model

The three-layer model, separated by a plane interface, is

presented to investigate the reflection/transmission at the

interface under the three different cases of loading prestress. This

model serves as a test for the applicability of the proposed wavefield

separation technique in a heterogeneous medium. Figure 15 is the

schematic diagram of the three-layer model (900 * 900) mm, the

FIGURE 15
Schematic diagram of the three-layer model.

FIGURE 16
Coupled wavefield snapshots of the x-component at t = 0.1 ms for a three-layer model under various confining stresses ((A): 0 MPa; (B): 50
MPa; (C): 100 MPa). The location of the source is marked by a star in the figure. The consecutive wavefronts include P-wave (P), S-wave (S), P-wave
transmission (PP), S-wave transmission (SS), S-wave converted by P-wave (PS), and P-wave converted by S-wave (SP).
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FIGURE 18
Coupled wavefield snapshots of the x-component at t = 0.1 ms for a three-layer model under various uniaxial stresses ((A): 0 MPa; (B): 50 MPa;
(C): 100 MPa).

FIGURE 17
Decoupled P-wave field snapshots of the x-component at t=0.1 ms for a three-layermodel under various confining stresses ((A): 0MPa; (B): 50
MPa; (C): 100 MPa). The location of the source is marked by a star in the figure. The consecutive wavefronts include P-wave (P), and P-wave
reflection (PP).

FIGURE 19
Decoupled P-wavefield snapshots of the x-component at t = 0.1 ms for a three-layer model under various uniaxial stresses ((A): 0 MPa; (B): 50
MPa; (C): 100 MPa).
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source is at the center of the model. The upper-medium has the

same properties as used in the previous simulations. The middle

layer has K = 7.5 GPa, μ = 15 GPa, the third-order elastic constants

(A, B, C) = (−1,250, −750, −750) GPa, and ρ=2000 kg/m3. The

bottom layer has K = 10 GPa, μ = 20 GPa, the third-order elastic

constants (A, B, C) = (−1,500, −1,000, −1,000) GPa, and ρ=2000 kg/

m3. Consider an interface between two elastic media indicated by the

+ and − superscripts. The boundary condition at the interface

requires the continuity of tractions and displacements. These

conditions are written as

{ τ+ijnj � τ−ijnj,
u+
i � u−

i ,
(41)

where ni represents the unit normal to the interface.

Einstein’s summation convention for repeating indices is

assumed.

Figures 16–21 show the x-component of the particle

velocity snapshots at t = 0.1 ms under three different

prestress conditions: confining stress, uniaxial stress, and

pure shear stress. All the wave types of reflection/

transmission shown in the figure can be observed from

these snapshots. This illustrates that the stress-induced

velocity anisotropy is strongly related to the orientation of

prestresses. The coupled wavefield contains rich information

such as direct P waves, PP reflected waves, PS converted

waves, and transmitted waves; The P-wavefield separated

from the coupled wavefield contains direct P-waves and PP

reflections and other longitudinal wave components. Due to

the relatively weak amplitude, it is not easy to distinguish

various wave phenomena in the mixed wavefield. Through

the decoupling of the acoustoelastic wavefield, the

transmission and reflection of the P- wave on the interface

are made clearer, so we obtain a more concise wave field. This

will not only help us understand wave propagation in

complex media but also get clearer seismic records in

different pre-stressed formations. Other wavefield

FIGURE 20
Coupled wavefield snapshots of the x-component at t = 0.1 ms for a three-layer model under various pure shear stresses ((A): 0 MPa; (B): 50
MPa; (C): 100 MPa).

FIGURE 21
Decoupled P-wavefield snapshots of the x-component at t = 0.1 ms for a three-layer model under various pure shear stresses ((A): 0 MPa; (B):
50 MPa; (C): 100 MPa).
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FIGURE 22
Records of x = 300 mm in snapshots above for various confining stresses ((A): 0 MPa; (B): 50 MPa; (C): 100 MPa). (The black solid lines indicate
records of decoupled wavefield; the blue solid lines denote records of coupled wavefield).

FIGURE 23
Records of x = 300 mm in snapshots above for various uniaxial stresses ((A): 0 MPa; (B): 50 MPa; (C): 100 MPa). (Blue dotted line is a record of
coupled wave field; Black line is a record of decoupled P-wave field).
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characteristics are the same as those in the one-layer case, and

will not be repeated here.

Figures 22–24 show the records of x = 300 mm in snapshots

for various stresses. Similarly, under confining stress conditions,

pressure does not affect the decoupling effect, and the PP waves

of the two wavefields match perfectly. However, under uniaxial

and pure shear stress fields, prestress will affect the quality of

decoupling and will be discussed later.

Discussion

The decoupling scheme under anisotropic prestresses is

formulated by applying the acoustic approximation (Duveneck

et al., 2008) to acoustoelasticity equations. From the comparison

of coupled and decoupled wavefields in traveltime and amplitude,

the scheme is reliable even under the strong anisotropic prestress.

There exists a diamond-shaped area in the center of the modeling

domain where the source is located. As discussed, e.g., by Grechka

et al. (2004), this is a well-known problem of source-generated shear

waves which are regarded as artifacts for P-wave modeling. These

qS-wave artifacts are usually suppressed, for example, by placing the

source in the isotropic part of the model (Duveneck et al., 2008).

Alternatively, we can partly eliminate artifacts in numerical

simulations by assuming no prestress around the source to make

the near-source region isotropic.

Stress-induced anisotropy depends largely on anisotropic

prestress loading (Sinha and Kostek, 1996). As indicated by

Alkhalifah (2000), the kinematic error of decoupling becomes

larger as the anisotropy increases, implying that the decoupling

becomes worse. This is why anisotropic prestresses affect the

accuracy of decoupling approximations. However, for the

acoustoelasticity decoupling, this error appears mainly in

amplitude based on the numerical simulations presented in

this study. Intrinsic anisotropies in rocks generally result from

the alignment of grains and microstructures making up the rock

matrix. Particularly, prestress causes the “closure” of

microcracks (Sayers, 2002), inducing preferred orientation

that makes rocks anisotropic. Knowledge of stress-induced

anisotropy can predict the distribution of wave velocities in

formations as accurately as possible. Therefore, the

introduction of stress-dependent anisotropy into wave

equations can give an efficient modeling strategy. It has

important implications for seismic AVO and geomechanical

applications.

Conclusion

The theory of acoustoelasticity results from the third-order

elasticity with a cubic term of the strain energy function. It

describes wave propagation in prestressed media by relating wave

FIGURE 24
Records of x = 300 mm in snapshots above for various pure shear stresses ((A): 0 MPa; (B): 50MPa; (C): 100MPa). (Blue dotted line is a record of
coupled wave field; Black line is a record of decoupled P-wave field.
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velocities to prestresses. We formulate the first-order velocity-stress

decoupled acoustoelasticity equations that are solved by the RSG-FD

numerical method with the CPML absorbing boundary. Numerical

simulations are conducted for a homogeneous medim and a triple-

layer model, respectively, under three typical states of confining,

uniaxial, and pure-shear prestress conditions. We investigate the

effect of prestress conditions on the decoupling accuracy.

Numerical examples show that the proposed decoupling scheme

yields a good kinematic P-wave approximation to the

acoustoelasticity equations, implying its potential applications in

seismic imaging and inversion under prestress conditions. Under the

confining pressure, the acoustoelasticity equations can be decopled

into pure P- and S-wave equations through the Helmholtz

decomposition, resulting in a complete separation of longitudinal

and transverse wavefields in both amplitude and traveltime. Under

the anisotropic prestress conditions (uniaxial and pure-shear), the

decoupled and coupled wavefields match well in amplitude and

traveltime at low pressures. However, when the pressure is too high,

we see certain deviations in amplitude and phase, but the decoupling

accuracy is still reliable because of the high correlation coefficient of

these two wavefields. We also observe shear wave artifacts in the

decoupled P wavefield. For a three-layer model under the same

prestress conditions, the decoupled P wavefield includes direct,

reflected, and transmitted P waves only, where various converted

S waves are removed.
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