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The evaporation duct is a special atmospheric stratification that can affect the

propagation path of electromagnetic waves at sea, thus it is crucial for the ability

of the radio communication systems. The traditional theoretical models of the

evaporation duct often have limited accuracy. The actual observational data

from voyages and stations are insufficient, and the existing data-driven

evaporation duct height prediction models can only predict a particular

point or route but cannot reproduce the regional distribution of the

evaporation duct. To address these issues, we propose NWPP-EDH model in

this work. The fitting ability of the NWPP-EDH model was tested. Its accuracy

was compared with that of the Babin–Young–Carton model,

Musson–Gauthier–Bruth model, and the classical Naval Postgraduate School

model; compared to these models, the root mean square error (RMSE) of

NWPP-EDH model was reduced by 71.8%, 87%, and 60.9%, respectively. Thus,

we find that themodel shows a better performance than the existing theoretical

models.
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1 Introduction

The atmospheric duct is a stratification in the atmospheric boundary layer. Ducts

exert considerable influence on the propagation of electromagnetic waves. This is because

the refractive index decreases sharply with height in the atmospheric boundary layer.

Therefore, the electromagnetic wave will bend down abnormally during propagation,

resulting in a smaller curvature radius of the electromagnetic wave compared that of the

Earth (Kang et al., 2014). Under appropriate frequency and incidence angle conditions,

radio waves will be repeatedly refracted within the atmospheric duct; the duct acts as a

conductor and facilitates the propagation of the electromagnetic wave beyond the horizon

with low energy attenuation. This limits the electromagnetic wave transmission to only

the atmospheric stratification range of the duct. Efficient use of atmospheric ducts can not

only improve radio communications between ships at sea but also shield the

communication equipment in the air from radio interference. Types of atmospheric
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ducts are evaporation ducts, surface ducts and suspended ducts.

The evaporation duct is a special type of surface ducts created by

a sharp humidity reduction with increasing altitude. They form

frequently in marine environments, with an average occurrence

probability higher than 60% in the global sea area. In the

northern part of South China Sea (SCS), the occurrence

probability of evaporation duct height (EDH) is between

18.18% and 81.82%, in the southern part of SCS the

occurrence probability of EDH is between 68.75 and 100%

(Ding and Guan, 2012). Generally, evaporation ducts appear

lower than 40 m above the sea surface, and hence, they

remarkably affect radio communication efficiency.

The EDH directly reflects the lamination height of the

evaporation duct and plays an important role in determining

the strength of the duct (Liu and Blanc, 1984). EDH is most

commonly obtained using theoretical models, and the values of

EDH are calculated based on the known meteorological factors,

such as wind speed, air temperature, air pressure, relative

humidity and sea surface temperature. In 1971, the Jeske

model (Paulus, 1985) was proposed, and this model was

improved by Paulus in 1985 by using more accurate data to

build the Paulus–Jeske (P-J) model (Jeske, 1971). In the 1980s,

Gavrilov and coworkers proposed the RSHMU EDH prediction

model (Xie and Tian, 2015100), which was mainly used in the

former Soviet Union Republics. In 1992, Musson, Gauthier, and

Bruth jointly proposed the MGB (Luc et al., 1992) model based

on Monin–Obukhov (M-O) similarity theory. In 1997, the

Babin–Young–Carton (BYC) model (Steven et al., 1997),

which employs the advanced COARE air–sea flux algorithm

(Fairall et al., 2003), was put forward. In 2000, Frederickson and

coworkers at the Naval Postgraduate School (NPS) proposed the

NPS model (Frederickson et al., 2000). In 2001, Liu et al. put

forward the pseudo-refractive index model (Liu and Huang,

2001) by adding the concept of a pseudo-refractive index to

the P-J model. In 2002, Dai Fushan et al. replaced the M-O

similarity theory with the local similarity theory based on the

BYC model and developed the local model (Dai and Li, 2002). In

2015, Ding et al. put forward the universal evaporation duct

model (Ding et al., 2015). Although theoretical models provide a

convenient prediction method for EDH, they have low accuracy

and generalizability.

Zhu et al. tried to combine the traditional evaporation duct

theoretical model with machine learning and optimized the P-J

model by adopting the support vector regression (SVR) method

(Zhu et al., 2018). Compared with the P-J model, the obtained

SVR_PJ model provides higher accuracy. By using the data

collected in the South China Sea, Zhu et al. built the SCS-

MLP (Zhu and Zhu, 2018), a multilayer perceptron (MLP)

(Allan, 1999) model for predicting the evaporation duct

height in the South China Sea. They then showed that their

approach significantly improved the P-J model. Zhao et al. also

applied back propagation neural network to predict EDH and

achieved good results (Zhao and Li, 2020). They further proposed

a pure data-driven gradient boosting decision tree (GBDT) EDH

prediction model, namely, PDD_GBR, which greatly improved

both the accuracy and regional generalization ability of their

original model (Zhao et al., 2019). Extreme gradient boosting

(XGBoost) is an improved version of the GBDT algorithm (Chen

and Tong, 2016); it was adopted by Zhao in 2020 to build the

XGBoost EDH prediction model (Zhao et al., 2020). XGBoost is

highly efficient in estimating the EDH. The experimental results

also showed that its accuracy was remarkably higher than that of

the traditional P-J theoretical model. Furthermore, compared

with the SCS-MLP and PDD_GBR models, XGBoost EDH

prediction model had much higher accuracy and

generalization ability.

Compared with the traditional models, the aforementioned

machine-learning-based models have higher accuracy and

generalization ability for predicting the EDH. However, they

require meteorological and hydrological observational data

measured on a certain route or at a station. The models are

trained with these data, and hence, they cannot reflect the EDH

distribution in a particular sea area because of the lack of spatial

correlation. Actual observational data from equipment at points

and routes at sea are scarce, and hence, the problems of

insufficient samples and insufficient model training arise.

The actual observational data from voyages and stations are

insufficient, and the existing data-driven evaporation duct

height prediction models can only predict a particular point

or route but cannot reproduce the regional distribution of the

evaporation duct. To address these issues, in this study, we used

the Yin–He global spectral model (YHGSM) weather prediction

products data set for some areas of the SCS. A numerical

weather prediction products (NWPP) EDH regional

prediction model based on a deep-learning convolutional

neural network (CNN) was constructed. It is the first data-

driven evaporation duct height regional prediction model. This

model was compared with the traditional BYC (Steven et al.,

1997), MGB (Luc et al., 1992), and NPS (Frederickson et al.,

2000) models. The experimental results showed that our

NWPP-EDH model has a remarkably higher accuracy than

the traditional models.

2 Brief introduction of the theoretical
evaporation duct height model

2.1 Paulus-Jeske model

Paulus-Jeske Model (P-J Model) is the most widely used

theoretical evaporation duct height model. In 1985, Paulus

improved the Jeske Model (Paulus, 1985) with better data and

proposed the Paulus-Jeske Model (Jeske, 1971). P-J model is a

classic and effective evaporation duct model. It was applied to the

Integrated Refractive Effects Prediction System (IREPS) for

evaluating electromagnetic wave propagation and then applied
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to Advanced Refractive Effects Prediction Systems (AREPS)

which was the upgraded version of IREPS. The input

parameters of the model are sea surface temperature, air

temperature, relative humidity, and wind speed. The

atmospheric pressure is assumed to be 1000 hPa.

P-J model used the potential refractive index NP to replace

the atmospheric refractive index N, the potential water vapor

pressure to replace the water vapor pressure. Assuming that

the potential refractive index is equal to the refractive index,

the calculation formula of the potential refractive index is as

follows:

Np � 77.6
θ

(P + 4810ep
T

) (1)

where the potential water vapor ep is:

ep � e1+
1000
p (2)

The critical gradient is defined as in terms of the refractive

index gradient, and differentiated from Eq. 1

zNp

zz
� zN

zz
− zN
zP

×
zP
zz

(3)

Using the standard temperature of 15°C, atmospheric

pressure of 1000 hPa, and gravitational acceleration g=9.8 m/

s2, z means height, the critical refractive index gradient is

zNp

zz
� −0.125 (4)

It is assumed that the index of refraction is a similar variable,

and the following conditions are satisfied.

zNp

zz
� SNpφ

ρku*(z + z0) (5)

Where is the vertical flux of the potential refractive index, z is the

measurement height above 6 m, z0 is the dynamic roughness, φ is

the universal function, k is the Kalman constant value of 0.4, u* is

the friction speed.

The universal function φ is a function of z/L and represents

the near surface atmospheric stability,

φ � 1 + α1
z
L

(6)

Eq. 6 is the universal function under stable atmospheric

conditions, L represents the Monin-Obukhov similarity length

and α1 is a constant value of 5.2. The universal function under

unstable conditions is expressed as follows:

φ4 − 4α2
z
L
φ3 � 1 (7)

where the α2 is constant value of 4.5.

Paulus summed up the empirical relationship (Paulus, 1985)

from a large number of experiments, and the predicted value of

the evaporation duct height can be obtained by processing Eq. 9

in combination with these empirical relationships. More details

about the P-J model can be found in (Jeske, 1971).

2.2 Babin Young Carton model

The widely used P-J model does not account for similar

theoretical extensions at low wind speeds and ignores corrections

for seawater salinity. The above two points lead to biased prediction

accuracy in some cases. By introducing the TOGA COARE air-sea

flux algorithm (Steven et al., 1997), Babin proposed the Babin Young

CartonModel (BYCmodel). The BYCmodel uses the Bulk equation

(Fairall et al., 2003) for more accurate water vapor partial pressure

calculations, a correction for salinity, and an extension to the M-O

similarity theory for low wind speeds. In theory, it is a more

advanced traditional evaporation duct height prediction model

than the P-J model. The atmospheric refractive index gradient

expression in the BYC model can be written as

zN
zz

� A + B
zθ

zz
+ C

zq
zz

(8)

Where the A, B and C, are the middle term of the formula, more

details can be found in (Steven et al., 1997). The Monin-

Obukhov similarity theory (Grachev and Fairall, 1997) is used

to calculate the zθ/zz and zq/zz,

zθ

zz
� θ*φh

κz
(9)

zq
zz

� q*φq

κz
(10)

When the refractive index gradient zN/zz =−0.157, the

height of the evaporation duct can be determined based on

the above formula, and the evaporation duct height under

stable or neutral atmospheric conditions is

zEDH � −(Bθ* + Cq*)
κ(A + 0.157) + 5

L (Bθ* + Cq*) (11)

Under unstable atmospheric conditions is

zEDH � −(Bθ* + Cq*)φh

κ(A + 0.157) (12)

The θ*, q* , φh and φq are the parameters from the COARE

air-sea flux algorithm, more details can be found in (Fairall et al.,

2003).

Based on the COARE air-sea flux algorithm, the BYC model

can describe physical phenomena more closely and is a deeper

extension of the Monin-Obukhov similarity theory. From the

calculation process of the BYC model we can find that the BYC

model has higher complexity and more physical constraints.

More empirical parameters are involved in the calculation

process, which is prone to large deviations in the inapplicable

air-sea environment.
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2.3 Musson Gauthier Bruth model

Based on the Monin-Obukhov similarity theory, Musson-

Gennon, Gauthier and Bruth proposed the Musson Gauthier

Bruth model (MGBmodel) in 1992 (Luc et al., 1992), which takes

the air temperature, air pressure, relative humidity, wind speed

and sea surface temperature measured at a certain height near the

sea as input parameters. The MGB model uses a parametric

approach for calculating near-surface fluxes to calculate the

characteristic paramenters of potential temperature and

humidity, and establishes atmospheric stability through the

empirical relationship between Richardson number and

similarity length. This model has two calculation processes:

iterative method and analytical method. This paper only

briefly introduces the MGB model that adopts the iterative

calculation process. The algorithm of the iterative MGB model

is similar to the BYC model, both based on the iterative loop of

the atmospheric refractive index gradient Eq. 3. Evaporation duct

height determined by the iterative algorithm is expressed as

follows:

zEDH � S0
1 − 6.4(S0/L) (LP0) (13)

zEDH � S0
1 − 9(hc/L) (L< 0) (14)

Where S0 is expressed as follows:

S0 � Bθ* + Cq*
κ(−0.157 − A) (15)

The MGB model proposed by the French has been widely

used in the seas near Europe, and also has applications in the seas

near Asia (Cook, 2016).

2.4 Naval Postgraduate School model

Frederickson of the U.S. Naval Graduate School proposed

Naval Postgraduate School model (NPS model) in 2000. The

difference from the above theoretical model is that the NPS

model calculates the profile of the atmospheric modified

refractive index through the profiles of temperature,

humidity and air pressure. Then determines the

evaporation duct height at the position of the minimum

value of the modified refractive index. In the NPS model,

the vertical profile of temperature T and specific humidity q

in the near-surface layer is expressed as

T(z) � T0 + θ*
κ
[ln ( z

z0t
) − ψh(zL)] − Γdz

q(z) � q0 +
q*
κ
[ln ( z

z0t
) − ψh(zL)]

(16)

where T(z) and q(z) are the air temperature and specific humidity

at height z. T0 and q0 are the sea surface temperature and specific

humidity. θ* and q* are the characteristic scales of potential

temperature θ and the specific humidity q, κ is the Kalman

constant, z0t is the temperature roughness height, ψh is the

temperature universal function, Γd is the dry adiabatic lapse

rate, and L is the similarity length.

The NPS model adopts the advanced COARE3.0 air-sea flux

algorithm (Fairall et al., 2003) and the stability correction

function under stable atmospheric conditions (Grachev and

Fairall, 1997). The temperature stability correction function is

expressed as follows

ψh � −bh
2
ln (1 + chξ + ξ2)( − ah

Bh
+ bhch
2Bh

) × (ln 2ξ + chBh

2ξ + ch + Bh

− ln
ch − Bh

ch + Bh
)

(17)
where ξ = z/L, ah =bh =5, ch =3, Bh =


5

√
.

The NPS model obtains the pressure profile by integrating

the hydrostatic equations and the ideal gas law simultaneously, as

shown in the following equation

p(z2) � p(z1) exp ⎛⎝g(z1 − z2)
RTv

⎞⎠ (18)

where p(z1), p(z2) are the air pressure measured at the heights

z1 and z2, R is the dry air gas constant, g is the gravitational

acceleration, Tv is the average value of the virtual potential

temperature at the heights z1 and z2.

The water vapor pressure profile is expressed as follows:

e � qp
ε + (1 − ε)q (19)

where the ε is the constant value of 0.622.

The atmospheric refractive index profile can be calculated

from the temperature, pressure, and water vapor pressure

profile obtained by the above formula, so as to further

determine the evaporation duct height. The NPS model

combines advanced air-sea flux algorithms, it is an

advanced theoretical model of evaporation duct height,

which has good prediction performance in many sea areas

(Yang et al., 2016).

3 Evaporation duct regional
prediction model bases on
convolutional neural network

The convolutional neural network is a type of neural

network that is specially used to process data with similar

grid structures. Because the convolution operation is used
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instead of some common matrix multiplications, a

convolutional neural network has a good performance in

information extraction form grid data. Convolutional

neural networks can reduce the data dimensions while

retaining the original information in the data and can

transform high-dimensional, large-scale data into low-

dimensional, small-scale data to improve data-processing

efficiency (Long and Shelhamer, 2015). In this study, the

NWPP data were used, and the data type was a two-

dimensional (2D) grid, more details about the data please

read Section 3.1. Hence, a convolutional neural network was

selected to construct the regional prediction model of EDH.

Combined with the specific practical application

requirements, the U-net was used as the reference network

to construct the regional prediction model based on the

convolutional network.

3.1 Data set

The data set of this experiment was derived from the

YHGSM. NWPP data from a region of the SCS from

16 November 2020 to 20 November 2020.

The YHGSM (Yang et al., 2015; Yin et al., 2018; Peng et al.,

2020; Yin et al., 2021) is a numerical weather forecast model

developed by the National University of Defense and

Technology. Its products data have a relatively stable system

error, and the data are provided in a data set for machine learning

research in meteorology.

The data are a constant longitude-and-latitude grid data with

wind speed, air temperature, atmospheric pressure, relative

humidity, and SST at a height of 10 m. Figure 1 shows the

location of the test area.

On the premise that the above meteorological elements of

each point are known, the label value of EDH is calculated

following the method given in reference (Patterson and

Hattan, 1994). Due to the space limitations, please find

more details in the reference. The calculation steps are as

follows:

•Step 1: Judge whether the wind speed is less than 0.005144 m/

s. If yes, EDH is recorded as 0, if not, continue.

•Step 2: Calculate the bulk Richardson number.

•Step 3: Calculate the M-O length using the bulk Richardson

number and empirical formula.

•Step 4: According to the air–sea stability conditions,

calculate the EDH by selecting the suitable calculation

formula.

Due to the space limitations, please refer to the reference

(Jeske, 1971) and reference (Patterson and Hattan, 1994) to get

more details.

The EDH calculated by the aforementioned method is used

as the label value, and it is related to the corresponding

meteorological elements such as temperature, air pressure,

relative humidity, wind speed, and SST.

Our data set has a 40 × 48 grid, where each grid point

had 72-h forecast data for 5 days. For each day, forecasts

were made twice, at 00:00 and at 12:00. Therefore, our

5-day data set has 2 × 5 × 40 × 48 × 73 = 1401600 data

samples.

3.2 U-net

The U-net is a network based on a fully connected

convolutional neural network (Ronneberger and Fischer,

2015). It was initially designed for medical image

segmentation. The U-net has an inbuilt ingenious data

enhancement scheme that is realized by dividing a single

large image into subgraphs, thereby directly solving the

problem of insufficient training sample size. The

construction model based on the U-net can solve the

problem of a minor data grid. The U-net structure also has

an optimized training process. It also adopts a new feature

fusion method based on splicing to ensure that the features

transmitted in the U-shaped network structure do not suffer

any loss of the edge features and that the learning of in-depth

and shallow features are considered. These features enable the

U-net to learn the sample data features comprehensively and

efficiently. The NWPP grid data used in this study needs a

deep-learning network to cover the data characteristics. Based

on the U-net network structure, a deep-learning model can be

constructed.

FIGURE 1
Structure of the numerical weather prediction products
(NWPP) model.
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3.3 The construction of evaporation duct
regional model based on convolutional
neural network

3.3.1 The basic structure of the neural network
The traditional theoretical model of EDH describes the

nonlinear relationship between the input vector and the EDH.

The mathematical relationship is shown as follows

EDH � f (SST,Ta,RH,U ,P) (20)

It is a function of the input meteorological and hydrological

elements. The input elements are the sea surface temperature

(SST), air temperature (Ta), relative humidity (RH), wind speed

(U), and pressure (P). EDH is the function value.

The traditional theoretical models are semiempirical physical

models based on the M-O similarity theory. The traditional

models describe the complex physical relationship between the

fundamental meteorological factors and EDH.

The practical problem to be solved in this study is to realize

the regional distribution prediction function of EDH in a specific

sea area. Hence, we decided to construct the convolutional neural

network deep-learning model combined with the two-

dimensional grid NWPP data type. The U-net structure is a

neural network structure suitable for the two-dimensional grid

NWPP data type. Therefore, the U-net structure will be used as

the basic framework of the model, and the regional prediction

model of EDH based on a convolutional neural network is

constructed through modification and adjustment.

We used the U-net structure as the basic framework because

our data were 40 × 48 two-dimensional grid data, and we chose

two-level data sampling to achieve good training results. The

basic framework of our model is a seven-layer neural network

structure with three modules, for the encoding, decoding, and

bridge functions. Table 1 lists the parameters of the NWPP-EDH

model.

The input data matrix was transformed into feature coding

in the coding module. The decoding module was used to

recover the feature coding into the regression problem of each

element in the matrix. The bridge module was used to connect

the coding and decoding function modules. Each convolution

module contained a batch normalization layer to alleviate

overfitting. The rectified linear activation (ReLU) function

was selected as the activation layer. The specific structure of

the model is shown in Figure 2.

3.3.2 Loss function
After obtaining the two-dimensional numerical prediction

grid data of a particular area and determining the structure of the

neural network, we aimed to adjust the network parameters to

enable the network to obtain more accurate EDH prediction

results. To obtain accurate prediction results, the difference

between the predicted value of the model output and the

TABLE 1 Numerical weather prediction products (NWPP) model parameters.

Unit level Conv layer Filter Stride Output size

Input 40*48*5

Encoding Level 1 Conv 1 2*2 2 40*48*64

Conv 2 2*2 2 40*48*64

Level 2 Conv 3 2*2 2 20*24*128

Conv 4 2*2 2 20*24*128

Level 3 Conv 5 2*2 2 10*12*256

Conv 6 2*2 2 10*12*256

Bridge Level 4 Conv 7 2*2 2 5*6*512

Conv 8 2*2 2 5*6*512

Decoding Level 5 Conv 9 2*2 2 10*12*256

Conv 10 2*2 2 10*12*256

Level 6 Conv 11 2*2 2 20*24*128

Conv 12 2*2 2 20*24*128

Level 7 Conv 13 2*2 2 40*48*64

Conv 14 2*2 2 40*48*64

Output Conv 15 2*2 2 40*48*1
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actual value should be minimized. We used the mean square

error as the loss function.

The loss function of the model is calculated as follows:

MSE � 1
n
∑n
i�1
(y pred − y real)2 (21)

In the above formula, y is obtained from the output value,

and the label value of the y_pred is the output value of the model,

and y_real is the true value of EDH.

4 Experiments and the results analysis

To evaluate the performance of the NWPP-EDH model, we

used the BYC, MGB, and NPS models as the benchmark models

for comparative experiments. We used 80% of the total data as

the training set and the remaining 20% of the data as the test set

to evaluate the NWPP-EDH model.

Figure 3 shows the regional distribution prediction of the

EDH in the selected test area by NWPP-EDH model. The axis

scales of the figure represent the longitude and latitude. The EDH

distribution in this area was mainly in the range of 10–20 m.

Under the influence of special natural conditions, the EDH was

zero in some areas; in other words, there was no evaporation duct

in these areas.

Square of Correlation Coefficient (SCC) was used as an

index to evaluate the goodness of fit of the prediction results

and true values. It is a value in the (0,1) interval, and closer the

value is to 1, the better is the goodness of fit. The higher the

degree of interpretation of independent variables to

dependent variables, the stronger is the ability of the model

to fit the changing trend of the real values. The SCC is

calculated as follows

SCC �
(n∑n

i�1f (xi)yi −∑n
i�1f (xi)yi∑n

i�1yi)2

(n∑n
i�1f (xi)2 − (∑n

i�1f (xi))2)(n∑n
i�1yi2 − (∑n

i�1yi)2)
(22)

To improve the generalization ability of the training model,

the model scrambled the data in the training and prediction

processes. Hence, the effect of the fitting curve will not be the

same every time. To verify the fitting ability of the model more

reasonably, we conducted three experiments and took the

average SCC value, as shown in Table 2.

The average SCC value of the NWPP-EDH model was

0.903 in three experiments. This value proves that the NWPP-

FIGURE 2
Test area location in the South China Sea (SCS).

FIGURE 3
Evaporation duct height (EDH) distribution prediction of the
NWPP-EDH model.
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EDH model has an excellent ability to fit the actual values. Thus,

the model is proved to be reasonable.

The root means square error (RMSE) was used to evaluate

the accuracy of the model. The RMSE reflects the accuracy of the

model in predicting the height of the evaporation duct. The lower

the RMSE value, the better is the prediction accuracy. The RMSE

is calculated as follows.

RMSE �

1
n
∑n
i�1
(f (xi) − yi)2√

(23)

As mentioned earlier, 80% of the data set was used as the

training set, and the remaining 20%was used as the test set. Based

on the prediction results of the NWPP, BYC, MGB, and NPS

models on each grid point and the label value of the

corresponding grid point, the RMSE values of the four models

were calculated based on the test set (see Table 3).

The RMSE of the NWPP-EDH model is much smaller than

that of the BYC, MGB, and NPS models. The RMSE of the

NWPP-EDH model is less than that of the RMSE of the NWPP

model is 71.8%, 87%, and 60.9% lower than that of the BYC,

MGB, and NPS models, respectively.

In particular, theMGBmodel has a substantial error in the target

sea area, while the NPS and BYC models have relatively normal

prediction effects. This is becauseMGB is widely used in Europe, and

the empirical parameters of the model mainly come from the actual

observations in the European sea area. Compared with the BYC and

NPS models that are combined with the advanced COARE air–sea

FIGURE 4
Error distributions of the four models: (A) the NWPP-EDH model, (B) is the MGB model, (C) the BYC model, and (D) the NPS model.

TABLE 2 SCC of the NWPP-EDH model.

Number SCC Average value

1 0.892 0.903

2 0.910

3 0.907

TABLE 3 RMSE indices of the NWPP-EDH, Babin-young-carton (BYC),
naval postgraduate school (NPS), and musson gauthier Bruth
(MGB) model.

Model RMSE

NWPP-EDH 1.632

BYC 5.790

NPS 4.172

MGB 12.271
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algorithm, the MGB model has much poorer generalization ability

and ability to describe actual physical phenomena.

Figure 4 shows the error distributions of the NWPP,MGB, BYC,

and NPS models, showing the error distribution of each model in a

40 × 48 data grid. The specific calculation method is to average the

absolute value of the difference between the predicted and actual

values of each element in each 40 × 48matrix in the test set. The error

distribution map reflects the accuracy of the model prediction value.

In Figure 4, the deeper the blue, the less is the error of the model.

Almost all of the picture for the NWPP-EDH model is dark blue,

indicating that the NWPP-EDH model has a small prediction error.

The model with the second-best performance is the NPS model, for

whichmost of themap is in bluewith a little green.However, theNPS

model has significant errors at some grid points, and the effect of this

model is not stable. The effect of the BYCmodel is relatively uniform,

and a considerable portion with green in the error distribution

diagram indicates that the model has specific errors. The MGB

model has remarkable errors in the sea area, and there are large areas

covered in yellow and green in the error distribution map, indicating

the poor regional prediction effect of this model.

5 Conclusion

The traditional evaporation duct theoretical models have limited

accuracy, the actual observation data of voyages and stations are not

enough and the existing data-driven evaporation duct height

prediction models cannot prediction regional distribution of the

evaporation duct. To address these issues, in this paper, we propose

the NWPP-EDH model. Compared with the traditional models of

BYC, MGB, and NPS, the NWPP-EDHmodel has 71.8%, 87%, and

60.9% decline rates, respectively, in RMSE, which shows that the

NWPP-EDH model has outstanding performance in the regional

prediction of evaporation duct height. More grid data will be used to

propose a more universal and more extensive evaporation duct

height regional prediction model in future research (Steven and

Dockery, 2002).
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