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Surface wave is an energy-rich component of the seismic wavefield and has

been widely employed in understanding underground structures due to its

dispersive nature. One key work in improving the accuracy of dispersion curve

measurement is selecting proper cycles and valid frequency ranges. Although

manual selection could provide high-quality results, it is hardly possible to

handle the explosive growth of seismic data. Conventional automatic

approaches with the ability to handle massive datasets by their statistical

features require prior assumptions and choices of parameters. However,

these operations could not keep away from biases in empirical parameters

and thus could not assure high-quality outputs, which might deteriorate the

resolution of seismic inversion. Tomake good use of thewaveform information,

we develop a deep-learning-based neural network called ‘Surf-Net’. It extracts

and selects the surface-wave dispersion curves directly from the waveform

cross-correlations (CC) and distance information rather than from frequency-

time transformed images or pre-extracted dispersion curves. Taking the

velocity measurement task as an arrival time picking problem, Surf-Net is

designed to output multiple-channel probability distributions in the time

domain for target frequencies, which peak at the arrival times of valid

frequencies and remain close to zero elsewhere. We train and test Surf-Net

using observational data manually obtained from seismograms recorded by a

regional network in Northeast China and synthetic data based on a global

seismic velocity model. By comparing Surf-Net with the conventional method

in both dispersion curves and inversion results, we show Surf-Net’s remarkable

performance, robustness and potential for providing high-quality dispersion

curves from massive datasets, especially in low frequencies.
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Introduction

The dispersion curves of seismic surface waves can be utilized

to invert for the velocity structure from fewmeters to hundreds of

kilometers in depth (e.g., Zielhuis and Nolet, 1994; Trampert and

Woodhouse, 1996; Xia et al., 1999; Shapiro and Ritzwoller, 2002).

To avoid the difficulty in determining initial phases, there are

generally two primary strategies for the extraction of dispersion

curves based on either two-station approaches (e.g., Sato, 1955;

Knopoff, 1972; Kovach, 1978) or multichannel ones (e.g., Park

et al., 1999, 2007; Xia et al., 1999; Li and Chen, 2020). Unlike the

multichannel strategies, the two-station-based methods do not

need dense station distributions and are thus widely used

in situations with large inter-station distances. However, this

kind of methods often has difficulty in phase cycle selection and

is more easily affected by noise and needs manual (e.g., Meier

et al., 2004; Tian et al., 2017) or automatic selections (e.g., Yao

et al., 2006; Bensen et al., 2007) from pre-extracted dispersion

curves for improving accuracy.

The manual selection methods provide high-quality

dispersion curves but are more costly, making it difficult to

handle the massively increasing amount of seismic data. The

conventional automatic techniques often rely on criteria such as

the velocity range, dispersion curve’s smoothness, and wavefront

smoothness (e.g., Yao et al., 2006; Bensen et al., 2007; Lin et al.,

2009), which are dependent upon assumptions including the

quality of the reference model, velocity-structure smoothness,

and weak horizontal inhomogeneity. Besides, the parameters

must be carefully determined with few objective standards,

while the selection quality is not always guaranteed. As the

accuracy of dispersion curves directly influences the quality of

the velocity inversion, developing methods to handle the

dispersion curve selection both precisely and efficiently is crucial.

The recent development of deep learning theories and

methods provides efficient ways of learning complex features

from labeled samples. There are many attempts to apply them to

seismic data processing, many of which achieve promising results

(e.g., Jia and Ma, 2017; Zhao et al., 2019; Zhou et al., 2019; Zhu

and Beroza, 2019; Liu et al., 2020). At the same time, past efforts

have accumulated numerous manually-selected dispersion

curves which can be used as the needed labeled data. The

well-developed deep-learning methods and massive amounts

of accumulated data make it possible to develop effective

high-dimensional criteria for extracting higher-quality

dispersion curves.

The applications of deep-learning methods in surface-wave

dispersion curve extraction mostly pick from images obtained by

frequency-time analysis procedures (Zhang et al., 2020; Dai et al.,

2021; Dong et al., 2021; Yang et al., 2022). As both the time-

frequency analysis and dispersion curve pre-extraction are not

always robust, we would like to use the original waveforms

instead, hoping that the deep-learning methods can learn a

robust way to extract dispersion curves. We thus develop a

deep-learning-based method called “Surf-Net” to extract and

select dispersion curves directly from waveform cross-

correlations (CCs) and distance information. Taking the

extraction problem as a multiple arrival-time-picking task,

Surf-Net is trained to output the multiple-channel probability

distributions along the time axis, which peak at the arrival times

for valid frequencies and remain zeros elsewhere.

We focus on the Rayleigh-wave phase-velocity dispersion

curves for clarity and simplicity, while its frame can be used for

other problems like Love surface-wave and group-velocity

dispersion curves. We train and test Surf-Net via high-quality

manually-selected Rayleigh-wave phase-velocity dispersion

curves from earthquakes recorded by stations in Northeast

China and synthetic data based on a global velocity model. To

illustrate Surf-Net’s performance and robustness, we compare it

with manual and conventional automatic methods, and apply its

extraction results to tomography inversions.

Data

A sufficient number of high-quality dispersion curves are

necessary for training deep-learning models. Our dataset consists

of observational data with manually-selected dispersion curves

and synthetic data. Dispersion curves from a single earthquake

and those averaged over a group of curves are respectively

referred to as “single” and “average” dispersion curves. The

extraction of velocity on a dispersion curve at a specific

frequency is referred to as a “pick”.

Using the two-station method (Meier et al., 2004) based on

the multiple-filter technique (MFT: Dziewonski and Hales, 1972)

and manual selection, Tian et al. (2017) obtained 1,088 inter-

station high quality path-averaged dispersion curves of

fundamental Rayleigh-wave from 68,642 dispersion curves

using 1,463 earthquakes recorded by 49 stations in Northeast

China (Figure 1). We use these waveforms and their extracted

dispersion curves as the labelled observational data. Considering

their specific distribution of inter-station distances and

frequencies, we focus on station pairs with inter-station

distances D ∈ [120 km, 1800 km] and picks with frequencies

f ∈ [1/120 Hz, 1/10 Hz] to make sure the focused data space is

covered with enough samples. We set 50 target frequencies

decreasing exponentially from 1/10 Hz to 1/120 Hz. For

selected curves, the angles between two great circles, one

connecting the two stations in a station pair and the other

connecting the nearest station and the event, must be smaller

than 10°. At the same time, their corresponding signal-to-noise

ratios of earthquake waveforms must be larger than 3.

We re-check these dispersion curves using themselves as

reference velocities and discard picks with differences larger than

5%. The single curves with more than 15% discarded picks and

average picks with standard deviations larger than 1.5% are also

removed. Considering heavily noise-affected picks would
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introduce biases into the average results, we remove picks with

differences from the average value larger than 2%. The station

pairs with average curves covering fewer than 30% target

frequencies are removed too.

The original earthquake waveforms are bandpass filtered

between 1/140 Hz and 1/8 Hz by a zero-phase filter. Two half-

Gaussian functions taper the waveforms near the two ends of the

time window [Δ/vmax, Δ/vmin] to retain primary surface waves

with velocities in the range [vmin, vmax], where Δ is the epicentral

distance. vmin and vmax are set to 1.5 km/s and 6 km/s,

respectively. The cross-correlation waveforms are calculated

from the processed waveforms recorded by different stations

and then filtered by a zero-phase bandpass filter between 1/

140 Hz and 1/8 Hz.

To divide the station pairs into training, validation and test

sets, we use stratified sampling based on inter-station distances.

The training, validation, and test sets have 510, 64 and 64 unique

station pairs with 19,499, 2438, and 2181 single dispersion

curves, respectively (Figures 2A–F). To expand datasets with

narrow distributions (Figures 2A–F), we propose two ways to

generate new data from the original ones by shifting the

waveforms and changing the input inter-station distance D

(Supplementary Information S1). The expanded observational

datasets are distributed in broader ranges (Figures 2G–I).

To further expand the coverage of the datasets, we generate

synthetic cross-correlation waveforms based on

64,800 dispersion curves. These dispersion curves correspond

to 1D velocity models sampled from a seismic velocity model (Lei

et al., 2020) with a 1° × 1° interval. Using stratified sampling based

on sampling locations, we divide the dispersion curves into the

training, validation, and test sets with amounts of 51840,

6480 and 6480, respectively. Their frequency vs. velocity

distributions are shown in Figures 2J–L. For a specific

dispersion curve, the synthetic waveform cross-correlations are

calculated by stacking a series of harmonic waveforms with

different frequencies fj:

c t, D( ) � ∑
j

Aje
i kjD−ωjt( ), (1)

where, ωj (= 2πfj) indicates the jth harmonic waveform’s angular

frequency, kj (= ωj/v (fj)) represents the wavenumber, and Aj is

the amplitude. v (fj) is the phase velocity at frequency fj. D is

randomly set in the [120km, 1800 km] range. The final synthetic

CC is added with noise by

cn t, D( ) � R · c t + dt,D( ) + n t( ) + c t, D( ), (2)

where, the shifted signal R · c (t + dt, D) is used to simulate

interference from other wave packets and random signal n(t) is

used as the random noise. dt is a random time shift whose

absolute value is larger than 1.5 times the maximum valid period.

R is a random amplitude ratio of the shifted signal to the original

signal, whose absolute values are smaller 15%. For n(t), its energy

at each frequency is smaller than 10% of the original signal, and

the phases are set randomly.

On the one hand, the short travel times for station pairs with

small inter-station distances lead to non-negligible measurement

error at long periods (Yao et al., 2006). On the other hand, for

pairs with large inter-station distances and therefore large travel

times, the corresponding velocity difference between two

adjacent short-period cycles is too small to be selected

properly. For a station pair with a certain inter-station

distance, we limit pick’s period to the range of [ 1
15, 1] D

v(f) to
avoid the above two situations, where v(f) is the phase velocity at

corresponding frequency f. As the most labeled observational

data are of good quality, resulting in a lack of bad-waveform

labels, Surf-Net trained on this dataset would not know how to

distinguish heavily noise-affected waveforms that need not be

extracted.We thus added 596, 56 and 62 samples of bad quality to

FIGURE 1
(A) A global map showing the distributions of earthquakes (black dots) and stations (blue triangles) used in Tian et al. (2017). (B) A regional map of
Northeast China with triangles showing the stations’ distribution, and the red ones are the stations taken as examples below.
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FIGURE 2
(A) Frequency vs. distance distribution of single dispersion curves from the training set plotted in grayscale. The green lines indicate the
minimum andmaximum distances for different frequencies. (B) and (C) Same as (A) but for the validation and test sets, respectively. (D) Frequency vs.
velocity distribution of single dispersion curves from the training set plotted in grayscale. The average of all single dispersion curves is shown as by the
solid red line with ±1.5% variation indicated by the red dash lines. (E) and (F) Same as (D) but for the validation and test sets, respectively. (G–I)
Same as (D–F) but for the expanded datasets. (J–L) Same as (D–F) but for the synthetic data.
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the training, validation and test sets, respectively. Here, we first

select samples with significant measurement differences from the

corresponding average dispersion curves and then manually

choose samples of bad quality from them.

As shown in Figures 2A–C by green lines, the coverage of the

inter-station distances can be described by Dmax(f) and Dmin(f),

which respectively mean the maximum and minimum inter-

station distances for a specific frequency f. To avoid decreases in

accuracy, we would remove predicted picks with inter-station

distances outside the range of [Dmin(f), Dmax(f)].

The training, validation and test sets finally consist of both

synthetic and observational data. We use the training set to train

the neural network until the neural network’s performance

deteriorates on the validation set and then evaluate the neural

network’s final performance via the test set.

Methods

Taking the extracting-and-selecting problem for surface-

wave dispersion curves as a multiple-arrival-time

determination task, we construct both inputs and target

outputs in the time domain and build a deep-learning

network to find the mapping relationship between them. We

now introduce the construction of inputs and target outputs, the

structure of the neural network, and necessary outlier removal.

Input and target output construction

The input contains the CC and distance channel,

corresponding to the waveform cross-correlations and

distance information. According to our datasets’ range of

inter-station distances and the corresponding travel times, the

two channels are designed to start from -384 s and last for 1536 s

with a 2 Hz sampling rate, containing 3,072 sampling points. The

CC channel consists of the cross-correlation waveform and is

normalized by the maximum absolute values.

In the distance channel, the inter-station distances are

converted into the time domain by a boxcar function:

d t( ) � 1, if D/v1 ≤ t≤D/v0;
0, else,

{ (3)

where the two reference velocities v0 and v1 are 1.5 km/s and

5 km/s, respectively. The values are one if the times t ∈ [D/v0, D/

v1] and zero otherwise. The two reference velocities are

determined according to the primary velocity range of

Rayleigh waves at the target frequencies.

The output is a 50-channel time series corresponding to the

50 target frequencies, representing the probability distributions

of surface-wave arrivals, which peak at the arrival times of valid

frequencies and remain close to zero elsewhere. At a specific

frequency f, the shape of the probability distribution is a Gaussian

function with a standard deviation σ(f) varying with the SD

(standard deviation) of arrival time measurement errors. The

measurement errors of labeled data were evaluated with the final

average dispersion curves as the ground truth. As shown in

Figure 3A, the SD distribution along the frequency can be

approximately fitted by a logarithmic function as

SD f( ) ≈ − 0.5 log f( ) − 0.4, (4)

and we set σ(f) equal to this function.

Figure 4 shows six examples of inputs with their target

outputs from the test set, which include four observational,

one synthetic and one noise examples with different inter-

station distances.

Neural network design

Surf-Net is an end-to-end neural network modified from the

U-net (Ronneberger et al., 2015), which outputs a 50-channel

time series with the same length as the input (Figure 5). It has one

large-kernel convolution unit, six down-sampling units, six up-

sampling units, six skipping connections, and one output unit.

To reduce the number of parameters while keeping almost

equal fitting ability, we use the depthwise separable convolution

instead of the traditional convolution (Chollet, 2017). It

decomposes the traditional convolution operation into two

steps, the first convoluting along the time dimension of each

feature channel and the next projecting the obtained features of

each sampling point into new features, which reduces the

parameter size by a factor of the channel number.

As the input and output sizes of each sample in our training

are respectively large, we can only set a small batch size. So using

the original batch normalization layer would result in heavy

mini-batch dependency (Ioffe, 2017). Instead of directly using

the mean and variance of the current mini-batch, the momentum

batch normalization layer (Yong et al., 2020) evaluates the mean

and variance with the current and historical mini-batches

together and can thus provide better performance with a

small batch size. So, we use the momentum batch

normalization layer in our network.

The large-kernel convolution unit (Figure 5B) is used to

extract features of long periods, which is crucial for processing

surface waveforms with long periods. In this unit, the

convolution layer with a large kernel applied to the CC

channel is designed to obtain a large effective receptive field

(Ding et al., 2022). Its kernel size is 960, corresponding to a time

window of 480 s, which is four times the maximum focused

period. As the major deep learning framework has not fully

optimized the time-domain large-kernel convolution operations,

we perform the large-kernel convolution in the frequency

domain to reduce the time cost. The needed fast Fourier
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transform operation and its back-propagation have already been

natively supported by mainstream deep learning frameworks.

This layer would expand the one CC channel into 50 feature

channels. The surface wave’s energy at different frequencies

varies significantly, causing some difficulty in extraction. To

avoid this, we add the channel normalization layer to

normalize each channel independently by its maximum value,

similar to the instance normalization (Ulyanov et al., 2016). The

50 normalized feature channels are then concatenated with the

distance channel by the concatenation layer.

The down-sampling units (Figure 5C) are used to extract

features and shorten the data length for higher-level feature

extraction. In each down-sampling unit, the convolution layer

is followed by a momentum batch normalization layer, an

activation layer of the rectified linear unit (ReLU) (Glorot

et al., 2011) and a max-pooling layer. The max-pooling layer

would maintain the maximum value of several adjacent sampling

points to shorten the data length.

The up-sampling units (Figure 5D) are used to recover data

length and locate target objects according to the local

information and higher-level features. In each up-sampling

unit, the up-sampling layer is followed by a momentum batch

normalization layer, an activation layer of ReLU, and a

concatenation layer. The up-sampling layer would linearly

interpolate the input data flow to recover its data length. The

concatenation layers are used to stitch together two data flows.

As down- and up-sampling units of the same stage are

skipping-connected, Surf-Net can make predictions using both

local information and high-level features. With this advantage,

Surf-Net can select cycles correctly and estimate the signal quality

according to the high-level features while determining the arrival

time accurately according to local information.

The output unit (Figure 5E) is used to generate the final

output. As surface waveforms of close frequencies arrive at

similar times, the sum of different channels’ probabilities is

sometimes larger than 1, where the softmax function (Bridle,

1990) to exponentially normalize the total probabilities to

one at each time point may not suit. Thus, we do not use the

softmax function as the activation function of the last layer in

the output unit to normalize different channels’ probabilities,

but adopt the sigmoid function (Little, 1974; Cheng and

Titterington, 1994; Gibbs and MacKay, 2000) to map each

channel’s original output value yi(t) into a probability qi(t) ∈
(0, 1):

qi t( ) � eyj tj( )
1 + eyi tj( ), (5)

where i is the channel index, and j is the time sampling point

index. The probabilities for the opposite situations are expressed

as 1 − qi (tj).

We use a weighted cross entropy between the target and

predicted probability distributions as the loss function. First,

since manual selection and quality control are not without

problems, some discarded picks are not invalid. If forced to

remain zero at those picks, Surf-Net would abandon some

valid curves and thus become too conservative. To avoid this,

we reduce the weights of channels with dropped picks. As the

observational data quality varies with frequency, the drop

rate, determined as the ratio of the count of valid picks to the

count of all possible picks, also varies with the frequency

(Figure 3B). If the dropped picks share the same weight at all

frequencies, the frequency with a high drop rate is more likely

to output too few picks, otherwise too many. We thus set

higher weights for frequencies with lower drop rates and

lower weights for frequencies with higher drop rates

(Figure 3B). The weight varies with the frequency f would

then be referred as wd(f).

Second, as mentioned in Neural network design, picks for a

specific frequency fiwith the arrival time out of the time range [1/

fi, 15/fi] are removed due to the frequency range control. As the

model does not need to learn about these, we set the weights of

FIGURE 3
(A) The standard deviation (red dots) of single-pick errors at target frequencies and the logarithmic function for approximation (blue line). (B)
The rate of dropped picks of the observational data at target frequencies (black line) and the corresponding weights for corresponding dropped
channels (red line).
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these cases to zero. So the weight wi,j for the jth time point tj at ith

frequency fi is defined as

wi,j �
1, for picked channels or noise samples;
wd fi( ), for tj ∈ 1/fi, 15/fi[ ] in dropped channels;
0, otherwise.

⎧⎪⎨⎪⎩
(6)

The final loss function is set as

H p, q( ) � −meani,jwi,j pi tj( )log qi tj( )[ ]{
+ 1 − pi tj( )[ ]log 1 − qi tj( )[ ]}. (7)

With this loss function, we then train Surf-Net model to fit

the training set using the Adam parameter optimizer (Kingma

and Ba, 2017) until the performance deteriorates on the

validation set. On our workstation (CPU: AMD 2990WX;

GPU: NVIDIA GTX 1080Ti; RAM: 96 GB), it costs about

182 s for each epoch and 8,623 s for full training. Figure 6

shows Surf-Net’s prediction on the same six examples as in

Figure 4, and the probability distributions match the manual

picks well.

Outlier removal

We average all the single dispersion curves from the

same station pair to obtain the final average dispersion

FIGURE 4
Six examples of inputs with their target outputs from the test set, four observational data (A–D), one synthetic data (E) and one of noise (F). The
top panel in each example shows the inputs, where the red and black lines represent the CC and distance channels, respectively, and the bottom
panel in each example represents the target outputs. To emphasize the primary information, we adjusted the range of shown time windows
according to the corresponding inter-station distances.
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curves. Due to noise and cycle skipping, some picks have

errors and must be removed. Thus, we discard picks with

differences from the median value larger than 2.5 times the

quartile deviation (QD) for a specific station pair. When the

value of 2.5 times QD is smaller than 1% of the median, the

threshold is set to 1% of the median. We do this elimination

twice to discard most of the outliers. The corresponding

average curve is considered valid if more than four picks

remain with a standard deviation smaller than 3%. Figure 7

shows four examples of this process for the same station

pairs as in Figure 4. Although a few bad picks remain, they

can be eliminated via the outlier removal process mentioned

before.

Results and discussions

Metrics and test setting

To measure the performance of Surf-Net quantitatively, we

set the metrics similar to those of PhaseNet (Zhu and Beroza,

2019): the precision P, recall R, F1 score are determined as

Precision: P � Tp

Tp + Fp
,

Recall : R � Tp

Tp + Fn
,

F1 score : F1 � 2
1
P
+ 1
R

,

(8)

FIGURE 5
The structure of Surf-Net (A) and the large-kernel convolution (B), down-sampling (C), up-sampling (D) and output (E) units. The red arrows
present the data flow, and the blue ones are skipping connections. In (A), the (n, m) combination next to a specific unit shows the data flow shape,
where n and m are the numbers of sampling points and channels, respectively. In (B), the input data flow is first divided into the CC and distance
channels. The convolution and channel normalization layers are then sequentially applied to the CC channel. The two divided flows are finally
concatenated together. The C. N. and M. B. N. are short for the channel normalization layer and momentum batch normalization layer, respectively.
All the convolution layers are depthwise separable.
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where outputs with maximum values higher than 0.5 and velocity

differences smaller than the threshold are counted as True

Positive (Tp); outputs with maximum values higher than

0.5 and velocity differences larger than the threshold are

counted as False Positive (Fp); the other outputs are counted

as False Negative (Fn). The picks with differences smaller than

3 times the threshold are used for calculating the mean(μ) and

standard deviation(σ). We set different thresholds for different

datasets due to their label quality. For the synthetic data, the

threshold is 1% as the labels are strictly right. For single picks of

observational data, the threshold is 1.5% as they can be affected

by noise and measurement error. For average picks of the

observational data, the threshold is 1%, as the extraction error

can be reduced by averaging. Surf-Net is trained and tested three

times to obtain the standard deviations.

We first test Surf-Net on the synthetic data to show its

extraction accuracy for various dispersion curves compared to

the MFT. Next, we test Surf-Net on the observational data to show

its practicability in applications, especially the ability to remove

invalid picks. Considering that themanual removal of invalid picks

is not always correct, we do not measure how correctly the method

handles the invalid picks by using the discarded picks. Instead, we

use the performance for the average dispersion curves to examine

whether Surf-Net can eliminate the invalid picks or not. If the

model can handle the invalid picks correctly, the predicted average

dispersion curves should be close to the manual ones. Otherwise,

there should be noticeable differences. To make the test more

reliable, we also applied our method to unlabeled observational

samples from the same station pairs to get the final average

dispersion curves. Including the original labeled samples, the

numbers of used CC samples for station pairs in the training,

validation, and test sets are 47,116, 5887 and 5544, respectively.

Part of the unlabeled samples has noticeable noise, which

realistically tests our method.

To measure how the distance information and large-kernel

convolution layer affect the performance, we test two newmodels

called ‘Surf-Net_noDis’ and ‘Surf-Net_small’. One has the same

structure as Surf-Net but is trained with the input distance

channel set to zero. For the other model, the large-kernel

convolution layer is replaced with a small-kernel convolution

layer with a kernel size of 8. To keep the parameter amounts of

Surf-Net and Surf-Net_small approximately equal, we expand

Surf-Net_small’s channel numbers of every level to 80, 75, 70, 60,

50, 40 and 40.

To illustrate the effect of different training sets, we train and

test the model using observational and synthetic data,

respectively. The above two models are respectively called

‘Surf-Net_obs’ and ‘Surf-Net_syn’.

As a reference for tests, we also carry out a conventional

automatic selection method based on the signal-to-noise ratios

FIGURE 6
Predictions by Surf-Net for the six examples shown in Figure 4. It is in the same presentation way as Figure 4 but with shaded black regions
centered around the labeled arrival times with a half-width of 5 times the σ.
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and the differences in velocity and its gradient (dv
df) from the

reference model (see Supplementary Information S2).

To further show Surf-Net’s potential in practical

applications, we compare the tomography results derived from

the predicted and manually-obtained dispersion curves. We also

applied our method in Southeast China and compared its

tomography results with previously published models (Shen

et al., 2016; Han et al., 2021).

Performance for the synthetic data

The performances of Surf-Net, Surf-Net_noDis, Surf-Net_small,

Surf-Net_obs, Surf-Net_syn, and MFT for single picks of synthetic

data in the test set are listed in Table 1 and their error distributions

and performance at different frequencies are shown in Figure 8. The

general result in Table 1 shows that for synthetic data with added

noise, Surf-Net and Surf-Net_syn performbetter than othermethods.

FIGURE 7
Comparisons between the predicted dispersion curves by Surf-Net and manual results for four station pairs. In each subfigure (A–D), the left
one shows the predicted single (black lines) and average (solid red lines) dispersion curves with 2 times the standard deviations (dashed red lines), and
the right one shows the predicted (red line) and manual (solid blue line) average dispersion curves with a 1% perturbation (dashed blue lines).

TABLE 1 Performance for single picks in the synthetic test set. The threshold is set to 1%.

Method R P F1 Mean (%) Std (%)

Surf-Net 0.977 ± 0.003 0.990 ± 0.002 0.983 ± 0.003 -0.01 ± 0.01 0.23 ± 0.01

Surf-Net_noDis 0.967 ± 0.006 0.985 ± 0.002 0.976 ± 0.004 0.00 ± 0.00 0.25 ± 0.01

Surf-Net_small 0.954 ± 0.005 0.977 ± 0.002 0.965 ± 0.003 0.01 ± 0.01 0.31 ± 0.01

Surf-Net_obs 0.641 ± 0.015 0.914 ± 0.004 0.754 ± 0.010 0.03 ± 0.03 0.47 ± 0.01

Surf-Net_syn 0.995 ± 0.000 0.998 ± 0.000 0.996 ± 0.000 0.00 ± 0.00 0.16 ± 0.00

MFT 0.955 0.955 0.955 0.01 0.32
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FIGURE 8
(A–C) and (G–I) Error distributions and (D–F) and (J–L) performances of Surf-Net (A, D), Surf-Net_noDis (B, E), Surf-Net_small (C, F), Surf-
Net_obs (G, J), surf-Net_syn (H, K) andMFT (I, L) at different frequencies for the single picks in the synthetic test set. In (A–C, G–I), the shades of grey
show the number of picks with close measurement errors for the same frequency. In (D–F, J–L), the histograms represent the values of Tp, Tp + Fp
and Tp for different frequencies corresponding to the left vertical axes. The lines of three colors respectively represent the recall, precision and
F1 corresponding to the right vertical axes. The black dashed line shows the rate of 90%.
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As Figure 8D shows, the precision of Surf-Net keeps high at

all frequencies. However, affected by the high drop rate of the

observational data at high frequencies (Figure 3B), Surf-Net is

more likely to drop picks at high frequencies and the recall

decreases, although the weights of dropped channels have already

been adjusted according to the drop rates.

Compared with the Surf-Net, Surf-Net_noDis (Table 1;

Figure 8E) has a slightly worse performance at low

frequencies. Surf-Net_small also performs worse than

Surf-Net, and its picking errors spread wider (Table 1;

Figures 8C, F). These two tests show the advantage of

involving distance information and using the large-kernel

convolution layer.

Although the recall of Surf-Net_obs on the synthetic data

falls obviously, its precision keeps above 90% (Table 1). The

performance drop is mainly due to the difference between the

observational and synthetic data. However, the precision higher

than 90% still shows our method’s generalization ability in some

way. The performance distribution along the frequency (Figure

8J) shows that Surf-Net_obs performs better in the middle

frequency range than in others, as there are more labelled

data in the middle frequency range (Figure 2). Surf-Net_syn

FIGURE 9
Three examples of synthetic data and extractions from them. In each example (A1-3–C1-3), the first trace in the top plot (A1–C1) is an original
synthetic cross-correlation waveform corresponding to a chosen dispersion curve shown by black lines in the mid (A2–C2) and bottom plots
(A3–C3) while the second trace marked in the top plot (A1–C1) is generated by adding noise before or after the primary wavelet to the original
waveform. The picking results from the MFT and Surf-Net on the original and noised waveforms are shown in the mid (A2–C2) and bottom
(A3–C3) plots, respectively.
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has the best performance for the single picks in the synthetic test

set. Trained by the synthetic and observational data, Surf-Net

achieves a slightly worse performance than Surf-Net_syn

(Table 1). As the synthetic data are strictly right while some

observational data are of obvious error, this slight performance

degradation for synthetic data after adding observational data is

normal.

Compared with the MFT (Figures 8I,L), Surf-Net has a

significant advantage at low frequencies. To illustrate these

performance differences, we give three synthetic examples in

Figure 9. Surf-Net and the MFT are applied on cross-correlation

waveforms with and without noise. While both Surf-Net and

MFT work well on the original CCs, the MFT gives dispersion

curves of larger errors at the low frequencies for the noised CCs

than Surf-Net. For waves at low frequencies, MFT often uses long

time windows which easily involve more noise and thus result in

measurement errors. It shows that Surf-Net has learned how to

extract dispersion curves in a robust way to reduce noise effects.

Performance for observational data

On our workstation, Surf-Net process all the observational

cross-correlation waveforms using about 238 s while the

conventional method costs about 4,115 s. The performances of

Surf-Net, Surf-Net_noDis, Surf-Net_small, Surf-Net_obs, Surf-

Net_syn and the conventional method for single and average

picks in the observational test set are summarized in Tables 2, 3,

respectively. The corresponding error distributions and

performance at different frequencies are shown in Figures 10,

11. Picks of several station pairs by the above methods are shown

in Figure 7, S2,S3,S4, S5 and S6,respectively.

For Surf-Net, the precision of single picks is high, while the

recall is a little lower, showing that most single dispersion curves

are picked accurately, and part of the labeled picks are discarded.

The errors at different frequencies are distributed around zero

(Figure 10A). Due to the high drop rates (Figure 3B) and small

sample numbers, the recalls at the lowest and highest frequencies

are relatively low.

Like the examples in Figure 7, there are few bad picks in those

extracted by Surf-Net. Metrics on the average picks (Table 3)

show that Surf-Net can provide similar results to the manual

ones. The errors at different frequencies are also distributed

around zero (Figure 11A). Although part of the labeled single

picks is discarded, other samples can cover the frequency range,

making the recall drop around low and high frequencies smaller.

As shown in Figures 11D, L, Surf-Net performs better than the

conventional method at low frequencies, which is consistent with

the synthetic test and thus can help get a better resolution for

velocity structures at large depths.

For Surf-Net_noDis, its performance for both single and

average picks is lower than Surf-Net (Table 2,3), showing it is

necessary to input the distance information. As examples in

Supplementary Figure S2 show, Surf-Net_noDis has more

possibility to give bad picks with apparent errors. However, it

can provide the right picks in most cases, and the final average

TABLE 2 Performance for single picks in the observational test set. The threshold is set to 1.5%.

Method R P F1 Mean (%) Std (%)

Surf-Net 0.970 ± 0.003 0.994 ± 0.001 0.982 ± 0.002 0.00 ± 0.00 0.23 ± 0.01

Surf-Net_noDis 0.961 ± 0.003 0.994 ± 0.001 0.977 ± 0.001 0.00 ± 0.01 0.23 ± 0.01

Surf-Net_small 0.946 ± 0.008 0.988 ± 0.002 0.967 ± 0.005 0.00 ± 0.00 0.31 ± 0.01

Surf-Net_obs 0.964 ± 0.001 0.991 ± 0.001 0.977 ± 0.001 -0.01 ± 0.00 0.25 ± 0.01

Surf-Net_syn 0.890 ± 0.002 0.954 ± 0.006 0.921 ± 0.004 -0.03 ± 0.01 0.44 ± 0.00

Conventional 0.996 0.998 0.997 0.00 0.03

TABLE 3 Performance of average picks in the observational test set. The threshold is set to 1%.

Method R P F1 Mean (%) Std (%)

Surf-Net 0.976 ± 0.001 0.976 ± 0.001 0.976 ± 0.001 -0.03 ± 0.01 0.30 ± 0.00

Surf-Net_noDis 0.970 ± 0.000 0.972 ± 0.001 0.971 ± 0.001 -0.03 ± 0.01 0.32 ± 0.00

Surf-Net_small 0.976 ± 0.001 0.977 ± 0.000 0.977 ± 0.000 -0.03 ± 0.00 0.31 ± 0.00

Surf-Net_obs 0.975 ± 0.002 0.976 ± 0.001 0.975 ± 0.002 -0.04 ± 0.01 0.31 ± 0.00

Surf-Net_syn 0.897 ± 0.010 0.947 ± 0.004 0.921 ± 0.006 -0.05 ± 0.02 0.40 ± 0.02

Conventional 0.944 0.958 0.951 -0.03 0.34
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FIGURE 10
(A–C) and (G–I) Error distributions and (D–F) and (J–L) performances of Surf-Net (A,D), Surf-Net_noDis (B,E), Surf-Net_small (C,F), Surf-
Net_obs (G,J), surf-Net_syn (H,K) and the conventional method (I and L) at different frequencies for the single picks in the observational test set.

Frontiers in Earth Science frontiersin.org14

Jiang et al. 10.3389/feart.2022.1030326

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1030326


FIGURE 11
(A–C) and (G–I) Error distributions and (D–F) and (J–L) performances of Surf-Net (A, D), Surf-Net_noDis (B,E), Surf-Net_small (C,F), Surf-
Net_obs (G,J), surf-Net_syn (H,K) and the conventional method (I,L) at different frequencies for the average picks in the observational test set.
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FIGURE 12
Azimuthally anisotropic S-wave velocities for Northeast China obtained from Rayleigh-wave tomography using dispersion curves derived by
Surf-Net (left column) and manual (middle column) methods. The right column shows the difference between the two models. Shown here are
horizontal slices of themodels at depths of 10 km (A–C), 25 km (D–F), 40 km (G–I), 80 km (J–L), 100 km (M–O), and 160 km (P–R). In each subplot,
the color represents the relative perturbation of the isotropic S-wave velocity from an average value given at the top, and the short line
segments show anisotropy, with length and direction indicating strength and symmetry axes, respectively. The vertical red line in the top left corner
of the map shows an anisotropy amplitude of 3%. The light grey lines show the faults.
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results were not heavily affected when the outlier removal was

applied. It is worth noting that the performance of Surf-

Net_noDis is almost good enough, which perhaps means the

model can estimate the distance by the input CC or determine the

actual arrival time according to the wave packet. However,

factors like noise may affect this estimation or determination

and thus generate bad picks.

Surf-Net_small’s performance drop for single picks is more

obvious than Surface-Net_noDis (Table 2; Figure 10). It

demonstrates the improvements by using the large-kernel

convolution layer. However, as Surf-Net_small takes the

distance information into account, it provides fewer false

detections than Surface-Net_noDis (Supplementary Figure S2,

3) and shows a better performance for the average picks

(Table 3).

Compared with Surface-Net_obs, Surf-Net has a better

performance for single picks (Table 2), showing that the

synthetic data containing dispersion curves from various

underground seismic velocity structures helps Surf-Net to

have a better performance for the observational data. Surface-

Net_syn’s performance for single observational picks is better

than Surface-Net_obs’s performance for single synthetic picks

(Table 1,2), which also indicates the synthetic dataset contains

various samples than the observational dataset. However, as the

observational waveform’s features are not exactly the same as

synthetic ones, Surf-Net_syn provides a lot of false picks

(Supplementary Figure S5), showing that the observational

data are still needed.

As both the conventional and manual methods are selected

from the same single dispersion curves pre-extracted by the MFT

method, it is natural that the conventional method’s results have

a good consistency with the labeled single picks and remain most

of the labeled picks (Table 2). However, as shown in

Supplementary Figure S6, it remains a lot of bad picks and

thus has a worse performance for the average picks than Surf-

Net, especially for picks at low frequencies (Table 3; Figure 11L).

Comparison of the tomography results

Finally, we examine the performance of Surf-Net in

providing surface-wave dispersion curves for seismic

tomography. Using the direct inversion method proposed by

Liu et al. (2019), we invert for the S-velocity structure with

azimuthal anisotropy using the surface wave dispersion curves

beneath Northeast China obtained separately by Surf-Net and

manual approach. We only use the dispersion curves from the

labelled station pairs to make the ray path coverage consistent in

the two inversions. The resulting models and their difference are

shown in Figure 12, while the checkerboard test and other

inversion details are given in Supplementary Information S4.

The two tomography models are almost similar, with the

mean absolute difference no larger than 0.544% in the

10–160 km depth range. They have similar velocity

patterns: at the depths of 10 km and 25 km, there is an

apparent low-velocity anomaly in the middle of the region;

at a greater depth of 40 km, we can see that the velocities in

the eastern part are higher than in the western part, indicating

that the eastern part has a thinner crust; at the depths of

80 km, 100 km, and 160 km, there are apparent low-velocity

anomalies in the north and southeast. Moreover, in most

cases, the direction and amplitude patterns of the azimuthal

anisotropy are similar, with slight differences. However, there

are still some minor differences, and most of them are located

in the low-resolution part according to the checkerboard test

(Supplementary Information S4). This test demonstrates that

Surf-Net can provide dispersion curves with reliable structure

information.

We show the tomography results from dispersion curves

respectively extracted by Surf-Net_obs and Surf-Net_syn in

Supplementary Figures S9, 10. The tomography results of

Surf-Net_obs are similar to those of Surface-Net. Tomography

results of Surf-Net_syn have a slightly larger difference from the

manual ones compared to Surf-Net and Surf-Net_obs.

Considering Surface-Net_syn’s training uses none of the

observational data, its results are good enough.

The tomography results of Surf-Net in Southeast China

are similar to two previously published models

(Supplementary Figure S12). The velocity model in the

shallow depth is consistent with the surface structure. The

tomography results also show the difference between the

eastern and western areas and the correlation between the

deep and shallow structures. Considering the three models

are not from the same data and inversion methods, the

differences among them are acceptable. As the geological

environments of Southeast and Northeast China are different,

this application demonstrates Surf-Net’s good generalization

ability and potential to be used in other areas.

Conclusion

Taking the velocity measurement task as an arrival time

picking problem and making good use of the waveform

information, we have developed Surf-Net, a deep-learning-

based neural network. It is designed to extract and select

dispersion curves directly from the waveform cross-

correlations and distance information. Trained by the

synthetic data and manually selected observational data, the

network can extract the dispersion curves accurately and

remove bad picks successfully.

According to the test on the synthetic data, Surf-Net has

learned a robust way to extract dispersion curves with higher

accuracy than the MFT method, especially for low frequencies.

Evaluated with observational data for both single and average

dispersion curves, Surf-Net shows the ability to provide reliable
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single picks with a limited number of bad picks and average

dispersion curves with higher accuracy than the conventional

method. The performance advantage at low frequencies is

significant too.

The comparison among different types of Surf-Nets shows

the improvements from the distance information and large-

kernel convolution layer. The performance differences among

Surf-Nets trained with different datasets show that the synthetic

data is useful in training a better model.

The comparison between the tomography results

demonstrates that Surf-Net can provide dispersion curves with

reliable underground structure information. The application in

Southeast China shows Surf-Net’s potential to be used in other

areas. Furthermore, also provides a general framework for other

surface-wave analyses, such as the extraction of Love-wave

dispersion curves and measurement of dispersion curves of

overtones.
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