
Machine learning opportunities
to conduct high-fidelity
earthquake simulations in
multi-scale heterogeneous
geology

Fanny Lehmann1,2*, Filippo Gatti2, Michaël Bertin1 and
Didier Clouteau2

1CEA/DAM/DIF, Arpajon, France, 2Laboratoire de Mécanique Paris-Saclay, Université Paris-Saclay,
CentraleSupélec, ENS Paris-Saclay, CNRS, Gif sur Yvette, France

The 2019 Le Teil earthquake is an illustrative example of amoderate (MW 4.9) yet

damaging event, occurring at shallow depth (≈1 km) in a region with little to no

geophysical data available. Therefore, using a high-fidelity wave propagation

code, we performed numerical simulations of the Le Teil earthquake in a highly

uncertain framework, investigating several seismic sources and geological set-

ups. With respect to the former aspect, a point-source model and an extended

kinematic fault model were compared. The latter aspect was investigated by

comparing a 1D-layered to a 3D geological model. Those models were

enhanced with random fluctuations, in order to obtain three alternative

non-stationary random geological fields. The synthetic waveforms obtained

from regional geophysical models were globally coherent with the recorded

ones. The extended fault source model seemed more realistic than the point-

source model. In addition, some geological random fields improved the

synthetics’ agreement with the recordings. However, the three random field

samplings led to a high variability in induced ground motion responses. Given

the computational burden of high-fidelity simulations, we used two

dimensionality reduction methods, namely the Principal Component Analysis

(PCA) and a deep neural network (3D UNet), to investigate this variability. The

methods were applied to a database of 40,000 3D geological random fields.

Both the PCA and the 3D UNet condensed the variability of the 3D geological

fields into a few components. These were sufficient to reconstruct the original

fields with great accuracy. More importantly, the seismic response arising from

the propagation throughout the reconstructed fields was in excellent

agreement with the response of the original geological fields in more than

75% of the dataset. By building a structured ensemble of complex geological

fields from their reduced representation, it may become possible to find a

relationship between the reduced representation and the generated ground

motion. Thus, our study proves the interest of dimensionality reduction to

perform uncertainty analyses in complex geological media.
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1 Introduction

The current availability of large computational resources

makes three-dimensional (3D) high-fidelity earthquake

simulations affordable for intensive computation across wide

regions. A large amount of scenarios can be investigated for a

specific site, with sufficient accuracy, e.g. up to 10 Hz, and at a

reasonable computational cost (Maufroy et al., 2016; Shen et al.,

2022; Touhami et al., 2022). However, numerical models must be

fed with accurate information on the parameters at stake to

obtain results as realistic as possible. The need for a detailed

geophysical (P- and S-wave velocities, density, anelastic

attenuation) and seismological (fault geometry, focal

mechanism, slip patch, rupture path) description of the region

under study has for long been acknowledged, but often not met

(Hollender et al., 2018). Such large parameter uncertainties

prevent the exploitation of the full potential of modern

computer software, capable of reproducing complex seismic

wave propagation with high accuracy when correctly

constrained.

The need for accurate parameters poses considerable

challenges, especially in regions with a low-to-moderate

seismicity such as southeastern France. The Rhône valley was

hit by a MW4.9 earthquake on 11 November 2019 known as the

Le Teil earthquake. While the seismic source can be constrained

by InSAR data (De Novellis et al., 2020; Vallage et al., 2021),

determining local geological models is more challenging. In this

region with a low instrumental seismicity (Larroque et al., 2021),

poor geological measurements are available at present. Although

geophysical campaigns were conducted after the earthquake, data

remain too sparse to design a geological model at the scale of

interest (Marconato et al., 2022). Therefore, the most specific

geological model is the 3D regional velocity model (P- and

S-waves) recently elaborated within the framework of the

SIGMA2 international project (Arroucau 2020). Thus, in the

absence of a validated local model, it is legitimate to explore the

abilities of regional-scale models in regional numerical

simulations.

However, due to its insufficient resolution, this 3D geological

model shows only gentle horizontal variations representing the

main geological patterns of the region (i.e. a 70 km × 100 km

domain across the Rhône Valley characterized by a crystalline

basement with higher velocities in the Massif Central in the

Northwest and sediments in the plain (Ritz et al., 2020)). The 3D

model especially lacks the description of the sedimentary basin

extending along the Rhône valley (Bravard and Gaydou 2015).

This prevents the possibility to constrain numerical simulations

in a broad-band spectrum (0–10 Hz at least). One possible

remedy consists in modelling the sedimentary basin from a

Digital Elevation Model. Then, velocity fields can be inferred

from 1D velocity profiles acquired by seismic inversion inside

and outside the basin, as done by Smerzini et al., 2022; Haber,

2021. This method has already been adopted in other low-to-

moderate seismicity regions such as the Grenoble region

(Chaljub 2006; Stupazzini et al., 2009).

Another modelling challenge is introduced by small-scale

heterogeneity, which plays a crucial role in seismic wave

propagation, especially at high-frequency (Vyas et al., 2018;

Scalise et al., 2021). Heterogeneity is rarely included in

numerical simulations due to the increased computational

demand. It can be represented by random fields that add

small scale fluctuations to the geophysical models (Gatti et al.,

2017; Svay et al., 2017). For uncertainty quantification purposes

though, a large number of simulations is necessary. Yet the cost of

high-fidelity simulations on large and complex domains -

increasing with spatial resolution - prevents computationally

demanding approaches such as Monte Carlo methods.

Conducting uncertainty analyses while maintaining

affordable computation costs therefore raises the question of

how to reduce the dimensionality of such refined geophysical

descriptions. To this end, autoencoders are among the most

popular deep learning methods to reduce the dimensionality of

inputs (Hinton and Salakhutdinov 2006). They can be viewed as

a nonlinear extension of the well known Principal Component

Analysis (PCA). Autoencoders have been largely used in various

fields to encode complex datasets into reduced order manifolds

(e.g., Ladjal et al., 2019; Kadeethum et al., 2022), but their

application on 3D data remains spurious (Gangopadhyay

et al., 2021; Tekawade et al., 2021; Yu et al., 2021). In

seismology, Cheng and Jiang 2020 used a Conditional

Variational Auto-Encoder to obtain a geophysical model of

the Earth crust in Tibet. The encoder mapped Rayleigh

surface waves into parameters representing the thickness, P-

and S-waves velocities, and density in several layers while the

decoder ensured that those parameters were meaningful for

reconstructing the original surface waves. Additionally, Zeng

et al., 2021 performed seismic waveform inversion using an

autoencoder structure augmented with inversion layers.

On the one hand, this study extends the classical physics-

based numerical validation of a past earthquake by adding

random fluctuations to the mean geological configuration

(Figure 1A). On the other hand, it attempts a dimensionality

reduction of the geological fields, towards the definition of

eigengeologies that mostly influence the propagated wave

motion (Figure 1B). Firstly, we compare two regional low-

resolution geological models to simulate the Le Teil
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FIGURE 1
Workflow of this study. (A) corresponds to Section 2 and Section 3 while (B) refers to the work done in Section 4 and Section 5.
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earthquake for a point-source and an extended fault source.

Secondly, random fluctuations are added to the best-fitting

geological model. This assesses the impact of different random

field samplings on the propagated ground motion at the surface.

Then, given the large variability of the simulated ground motion,

we propose a method to represent 3D complex geological media

with the smallest dimensionality possible. To this end, we

construct a learning database of 40,000 3D heterogeneous

geological models and we compare the performances of the

PCA and of the 3D autoencoder proposed by Çiçek et al.,

2016 (3D UNet) in reducing the dimensionality. With this

approach, we show that it is possible to encode the geological

database into a few number of meaningful features. Once

decoded, those features generate very good reconstructions of

the initial database that retain all the necessary information

without degrading the propagated seismic response.

In the following study, Section 2 describes the numerical

model used to simulate the Le Teil earthquake while results are

presented in Section 3. Then, Section 4 details the geological

database and the dimensionality reduction methods. Outputs of

these methods are analyzed in Section 5. The discussion in

Section 6 concludes the manuscript.

1) Numerical simulation of ground motion responses with

different configurations of the seismic source and the geological

model.

2) Dimensionality reduction of heterogeneous geological

fields and its impact on simulated ground motion.

2 Data and methods for the
simulation of seismic wave
propagation

2.1 The Le Teil earthquake case study

The Le Teil earthquake occurred on 11 November 2019 on

the La Rouvière fault, a fault which was not considered as

active despite being part of the larger Cevennes fault system

which was potentially active (Ritz et al., 2020). To date, the Le

Teil earthquake is the most damaging earthquake of the last

FIGURE 2
Map of the region affected by the 2019 Le Teil earthquake, in South-Eastern France. The computational domain considered in this paper is
indicated with the dotted box. Velocimeters and accelerometers are shown with black triangles (details in Supplementary Table S1).

Frontiers in Earth Science frontiersin.org04

Lehmann et al. 10.3389/feart.2022.1029160

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1029160


decades in Metropolitan France. Remarkably, this shallow

earthquake (1.3 km depth ±0.5 km) induced a surface

rupture. Figure 2 shows the map of the region of interest,

including the available recording stations and the trace of the

la Rouvière fault.

The Le Teil earthquake was recorded over 22 stations within

70 km from the fault (Supplementary Table S1). Some

velocimeters (e.g. PAUL and BOLL in Figure 2) saturated

while recording and they could not be considered for further

analyses. This study focuses on stations located out of the

sedimentary basin (OGDF, OGCB, CRU1) since its absence

from our models is likely to impact synthetic ground motions

inside the basin.

The hypocenter was obtained from the results of the

waveform inversion (44.5188° N, 4.6694° E, depth -1.3 km, see

Delouis et al., 2021). In this study, two types of seismic sources

were compared, with a target seismic moment M0 = 2.47 · 1016
N.m. Namely, a double-couple point source was assumed with

strike = 48°, dip = 45°, and rake = 88° (Delouis et al., 2021). Its

source time function is given by

t ↦ 1 − 1 + t

τ
( )e− t

τ , (1)

with τ � 100.5(MW−6.69) = 0.127 s (Dreger and Douglas, 2007;

Gatti, 2017). In addition, a kinematic fault model was

designed from the inversion of InSAR satellite observations

performed by Vallage et al., 2021 (see Figure 3). The fault

model was computed following the Ruiz’s Integral Kinematic

(RIK) numerical scheme (Ruiz et al., 2011) implemented by

Gallovič 2016. The fault was represented as a 7 km-long and

4 km-deep plane with a 60° dip and reaching the surface at its

highest point. It was further discretized in triangular patches. A

bidirectional rupture front starts from the nucleation point

located at the hypocenter. Each patch activates when it is

reached by the rupture front, under the constraint that its

final slip corresponds to the one obtained from the InSAR

inversion.

2.2 Geological model

In the absence of a local model, two geological models for

metropolitan France were adopted in this study and compared.

The first one was a 1D model used by the Geophysical and

Detection Laboratory (LDG) of the French Alternative Energies

and Atomic Energy Commission (CEA) to locate seismic events

(Table 1; Figure 4 and Duverger et al., 2021). It was obtained

using the Pg, Sg, Pn, and Sn phases of a series of 50+ well

identified earthquakes (Veinante-Delhaye and Santoire, 1980). It

presents a thin sedimentary subsurface layer with low velocity

(VS = 1730 m/s), overlying a 25 km thick crustal layer (VS =

3560 m/s). The average ratio between P- and S- wave velocities is

1.69. The bedrock is described by S-wave velocities of 4650 m/s.

Alternatively, Arroucau, 2020 proposed in the framework of

the SIGMA2 project a 3D velocity model for S- and P-waves in

metropolitan France. This model includes topography/

bathymetry and was built as an improved and homogeneized

version of partial previous models (mainly EPcrust, (Molinari

and Morelli 2011), combined with ambient noise and teleseismic

surface wave tomography models, a CSS-derived model, and a

local earthquake tomography study, see references in (Arroucau

2020)). This model has a 10 km × 10 km × 0.5 km resolution and

shows horizontal variability even at the regional scale of interest.

Figure 5A for example shows higher surface velocities in the

North-Western mountainous part of the region compared to the

plains in the South-East. The thickness of the Earth crust is

between 26 km and 31 km in the region of interest, consistently

with geophysical knowledge (Larroque et al., 2021). This model

also leads to a mean VP/VS ratio of 1.72 (between 1.68 and 1.8),

which is slightly lower than the 1.9 ratio recommended by

Delouis et al., 2021 to recover S-waveforms of the Le Teil

earthquake.

2.3 Geological random fields

Acknowledging that regional-scale models cannot be

expected to reproduce local specifics, small scale variability

was added to the models as random heterogeneities. For this

purpose, random fields were generated from a von Karman

correlation model (Chernov 1960) with a Hurst exponent of

0.1. The choice of the random fields’ parameters is rather tricky

yet of crucial importance (Colvez 2021). Following previous

studies (Khazaie et al., 2016; Scalise et al., 2021), we adopted

correlation lengths of 10 km in the horizontal direction and 1 km

in the vertical direction, associated with a 10% coefficient of

variation(see Figure 5B). This parametrization is coherent with

the results obtained for the Le Teil earthquake via a Monte-Carlo

approach of particles diffusion in a heterogeneous Earth crust

(Heller 2021).

The 3D random field computation is made highly

efficient by the use of the spectral representation

FIGURE 3
Final slip given by the kinematic fault model.
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(Shinozuka and Deodatis 1991; de Carvalho Paludo et al.,

2019). With this formulation, a centered Gaussian random

field u determined by its autocovariance function R can be

decomposed as a sum of independent identically distributed

random variables (ϕn)−N≤ n≤N, with uniform distribution over

[0, 2π]

u x( ) � ∑N
n�−N

��������
2R̂ nΔk( )

√
cos nΔk · x + ϕn( )

where R̂ is the Fourier transform of the autocovariance function

R and Δk the unit volume in R3. Random fields were thus

generated in a few seconds for the whole domain with a 2 km ×

2 km × 0.2 km resolution. They were later interpolated on the

Gauss-Lobato-Legendre (GLL) points as part of the computation

process.

2.4 Simulation framework

Numerical simulations were performed using SEM3D

(Touhami et al., 2022), a High-Performance Computing wave

propagation code based on the Spectral Element Method (SEM,

Faccioli et al., 1997; Komatitsch and Tromp 1999). SEM3D

shows excellent weak scalability properties between 0 and

10,000 MPI processes and it has been widely employed to

simulate past earthquakes and to assess the seismic response

of nuclear sites and urban areas (Gatti, 2018; Touhami et al.,

2021; Korres et al., 2022). Moreover, SEM3D employs the

Convolution-Perfectly-Matched Layers (C-PML) as absorbing

boundary conditions (Martin and Komatitsch 2006).

The 80 km × 92 km × 79 km computational domain was

discretized on a hexahedral mesh with 18.3 million elements.

With a minimum S-wave velocity of 2180 m/s and 5 GLL points

per element, this mesh allowed wave propagation up to 5 Hz.

Simulations were run on 2048 cores AMD Milan @2.45 GHz

(AVX2) operated by the Très Grand Centre de Calcul (TGCC,

France). Thanks to this computational power, simulations were

obtained in 61,440 h CPUs for 60 s of simulated signal.

3 Numerical results of the Le Teil
earthquake simulation

This section presents the simulation results of the Le Teil

earthquake obtained with regional geological models of

increasing complexity (Section 3.1) and several samplings of

random fields (Section 3.2).

3.1 Comparison with records

Numerical results were compared with seismograms records

in several stations to evaluate the parameters choices. Firstly, the

point-source was used in conjunction with the 1D geological

model. Figure 6 then shows that despite the simplicity of the

models, the level of agreement is surprisingly good. Indeed, the

frequency response spectra show a correct corner frequency

around 0.8 Hz, as well as similar slopes and amplitudes. In

addition, the wave arrival times are well reproduced by the

simulation, thereby proving that the mean velocity on the

source-to-site path is correctly modelled. The very first

TABLE 1 1D geological model used by the CEA-LDG to locate seismic events. Described in more details in (Duverger et al., 2021).

layer thickness (m) VP (m/s) VS (m/s) ρ (kg/m3) QP QS

1 900 3000 1730 2700 200 61

2 25,000 6030 3560 2700 300 128

3 15,000 8160 4650 3300 1000 500

FIGURE 4
VP (black) and VS (grey) velocity profiles for the 1D geological
model (continuous line), 3D geological model in station VIVF
(dashed line), and station SAUF (dotted line).
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oscillations are also coherent with the records, especially in

station OGDF (Supplementary Figure S1).

However, one can notice in Supplementary Figures S1A,B

that the numerical simulation produces late oscillations with

higher amplitudes than the recorded ones. They can be seen from

around 27 s in station OGDF and from 36 s in station OGCB.

These oscillations may come from the thin upper layer with a

high velocity contrast defined in the 1D geological model that

FIGURE 5
3D geological model for S-wave from (Arroucau 2020). (A)Original model; (B)Addition of randomheterogeneities (correlation lengths of 10 km
horizontally and 1 km vertically, coefficient of variation of 10%).

FIGURE 6
Frequency response spectra of the numerical simulation (in red) obtained with the 1D geological model and a point source. Comparison with
seismograms records (in black). Velocities are given in the East-West (E-W), North-South (N-S), and vertical (Z) directions for stations OGDF (A) and
OGCB (B).
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creates a wave guide. In fact, when the 3D geological model is

used instead of the 1D geological model, those late oscillations are

no more present, as can be seen in Supplementary Figures S2A,B.

Yet, the use of the 3D geological model leads to other issues.

Supplementary Figures S2A,B indeed show high velocity peaks at

the beginning of the signal. The peaks’s amplitude is higher than

the maximal velocities recorded during the earthquake. As an

example, the horizontal Peak Ground Velocity (PGV) was

5 times higher than records in station OGDF and 7 times

higher in station OGCB. The velocity peaks indicate that the

energy content of the signal is concentrated with the first wave

arrivals. This results from the smoothness of the 3D geological

model: the absence of inter-layer discontinuity prevents the

multiple wave refractions and reflections that tend to spread

the energy distribution over time.

To better represent the time duration of the signal, the point-

source was replaced by an extended fault model and used in

conjonction with the 3D model. Figure 7 shows a satisfactory

agreement between the recorded and synthetic frequency

response spectra. As expected, the successive nucleation of

points on the fault plane creates an energy distribution that

avoids the large peaks observed with the point source

(Supplementary Figure S3). The horizontal PGV was hence

reduced to 1.15 and 5 times the recorded one in stations

OGDF and OGCB respectively.

3.2 Influence of heterogeneities

Random fields were added to the 1D geological model to

create small scale heterogeneities. Random fields were

drawn independently in each of the three layers, thus

possibly creating sharp interfaces between layers. We

chose the point-source description over the kinematic

fault model to limit the interactions between the source

and the medium which may alter the results independently

from path effects.

Figure 8 shows that introducing heterogeneities reduces the

early peaks’ amplitude compared to the signals generated with

the homogeneous 1D geological model. Heterogeneities also limit

the duration and scale of the surface wave oscillations. This

behaviour is interpreted as a consequence of the diffraction

induced by heterogeneities that spread the energy content and

limit the wave guide effect. Therefore, the signal obtained with a

FIGURE 7
Frequency response spectra of the numerical simulation (in red) obtained with the 3D geological model and a kinematic fault model.
Comparison with seismograms records (in black). Velocities are given in the East-West (E-W), North-South (N-S), and vertical (Z) directions for
stations OGDF (A) and OGCB (B).
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heterogeneous medium seems more realistic than those

originating from the homogeneous model.

However, one cannot claim that one sampling of a random field

can represent the variability of all possible heterogeneities. To assess

the possible impacts of heterogeneities while maintaining reasonable

computational costs, two new random fieldswere drawn and added to

the 1D geological model. Supplementary Figures S4A,B show the

ground motion response in station OGDF with those random fields.

One can notice that those samplings tend to increase the amplitude of

the late oscillations compared to those obtained with the

homogeneous medium. Therefore, the influence of random fields

on the surfacewave oscillationswas not consistent between samplings.

Given the large variability in ground motion responses

arising from the three random fields samplings, it is crucial to

ensure that those responses remain physically plausible. This was

done by computing the mean horizontal pseudo Spectral

Acceleration (SA) in three stations for the 1D geological

model and the three heterogeneous models. Then, we

compared the synthetic SA with the one given by a regional

Ground Motion Prediction Equation (GMPE, Berge-Thierry

et al., 2003). Figure 9 shows that the synthetic SA were within

the confidence bounds of the GMPE, thereby ensuring our

heterogeneous models were realistic. More precisely, the first

and second random field samplings were close to the GMPE. The

third sampling led to SA slightly higher than the upper bound of

the GMPE for stations CRU1 and OGDF. However, it is

noteworthy that the record in station OGCB was also out of

the confidence interval. Therefore, we had no reason to reject the

third sampling based on the sole analysis of the SA.

Moreover, Figure 9 shows that both the homogeneous 1D

geology and the second sampling of the heterogeneous geology

were close to the records. Although comparing the SA did not

lead to a preference for one of these two models, we showed

above that the heterogeneous model was able to reduce the

surface wave oscillations.

As a partial conclusion, the three random fields showed a

high variability that may create synthetic seismograms closer to

the recorded ones, but as well, seismograms worse than those

obtained with the homogeneous geological model. Therefore, a

more systematic analysis of random heterogeneities involving

machine learning techniques is necessary to better apprehend the

relationship between heterogeneities and their impacts on

ground motion.

4 Machine learning framework for
dimensionality reduction

To analyze the wide range of ground motion variability

created by the addition of random fields on geological models,

it would be necessary study thousands of heterogeneous

geological models. However, the computational cost of high-

fidelity simulations makes this direct approach unaffordable. As a

workaround, we propose to reduce the dimensionality of

geological fields. For this purpose, we built a database of

40,000 heterogeneous S-wave velocity fields (described in

Section 4.1). Then, we applied the PCA (Section 4.2) and a

3D autoencoder (Section 4.3) to this database.

FIGURE 8
Numerical results in station OGDF obtained with a point
source and the 1D geological model enhanced with random fields
(blue). Comparison with the results of the homogeneous 1D
geological model (grey) and the records filtered at 5 Hz
(black).

FIGURE 9
Pseudo Spectral Acceleration (SA) at 1 s in 3 stations (CRU1,
OGDF, OGCB). Mean horizontal SA for records (pink cross), 1D
model (black dots), 1D model with random fields (colored dots),
and a GMPE (grey line) with the associated confidence
interval (Berge-Thierry et al., 2003).
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4.1 Database of heterogeneous geological
fields

Our database is composed of 3D heterogeneous geological

fields built as 32 × 32 × 32 matrices. They can be interpreted as

S-wave velocity fields on a domain of size of 9.6 km × 9.6 km ×

9.6 km (illustration in Figure 11). The velocity values were

chosen so as to ensure that geological fields were physically

meaningful. More precisely, all samples contain a 1.8 km-

thick bottom layer with constant velocity 4500 m/s. On top of

this constant layer, each gelogical field was built with

1–6 layers, the number of layers and the thickness of each

layer being chosen randomly. In each layer, the mean velocity

was chosen according to a uniform distribution U([1785 m/s;

3214 m/s]). In addition, a different random field was drawn in

each layer, except the bottom one. The random field’s

parameters were also randomly sampled. In all directions,

correlation lengths were randomly chosen among {1.5, 3, 4.5,

6} km, and the coefficient of variation followed a normal

distribution of mean 0.2 and standard deviation 0.1, N (0.2,

0.1) (if a non-positive coefficient of variation was chosen, it

was replaced by its absolute value). Finally, all velocities were

clipped to the interval 1071–4500 m/s to ensure realistic

values. It has to be noted that random fields generated this

way are not stationary since their mean and standard

deviation depend on the position along the z axis. The

parallel generation of 40,000 geological fields took 33 min

on 40 CPUs for a total size of 5.4 Gb. This dataset is publicly

available at https://doi.org/10.5281/zenodo.6983054. We

additionally built a similar dataset of 4000 geological fields

for test purposes.

In a second stage, the database was used to study the

relationship between heterogeneous geological fields and

ground motion response generated by the propagation of

seismic waves throughout the geological fields. For this

purpose, a seismic source was placed in the constant

bottom layer at coordinates (1.2 km, 1.2 km, − 8.4 km). It

was parametrized as a moment tensor with the same

moment, dip, rake, and slip as the Le Teil earthquake

(Delouis et al., 2021). The same source time function was

used with τ = 0.1. The velocity values described in the

previous paragraph ensured that the numerical

propagation of seismic waves was accurate up to a 5 Hz

frequency (with 7 GLL points per element, each element

being of size 300 m). Finally, synthetic ground motion was

recorded on a 32 × 32 regular grid of virtual sensors placed at

the surface.

4.2 Dimensionality reduction with PCA

To perform the PCA, 3D geological fields were considered as

1D vectors of size p = 32 × 32 × 32 = 32,768. The principal

component features were computed from the sample covariance

matrix S. By choosing a number of samples n = 40,000 larger than

the number of features p, S was guaranteed to be of rank p (or

slightly lower). Otherwise, the rank and therefore the number of

principal components would have been limited by the number of

samples in the database. To ease the principal components

computation on the large sample covariance matrix, an

incremental PCA algorithm was used (Ross et al., 2008).

Once the principal components were obtained, the PCA

performances were assessed on the test database. 3D

geological fields from the test database were decomposed and

then reconstructed using only the k first principal components (k

was of the order 500–3000). Seismic waves were then propagated

throughout 1) the test geological field and 2) its corresponding

reconstructed field. Errors between the two sets of surface ground

motion responses were quantified with Goodness Of Fit (GOF)

measures on the enveloppe and phase (Kristeková, Kristek, and

Moczo 2009).

4.3 3D autoencoder with a UNet
architecture

By considering geological fields as 1D vectors, the PCA

loses the spatial organisation of 3D geological fields. To obtain

the same reconstruction error, one may therefore expect a

greater dimensionality reduction with a 3D autoencoder than

a PCA. The autoencoder can be viewed as a nonlinear

extension of the PCA since it creates a reduced

representation of the input in what is called a latent space.

The encoder associates the 3D input with the latent

representation and the decoder reconstructs a 3D field from

the latent representation while trying to minimize the error

between the input and the reconstruction.

Our 3D autoencoder is built from the architecture of the

3D UNet developped by Wolny et al., 2020. We conducted an

exhaustive search of the main hyperparameters to adapt the

proposed architecture to our objectives. Our final encoder is

composed of 6 blocks that increase the number of channels of

the inputs from 1 to 256. As represented in Figure 10, each

block is composed of two convolutional layers. Blocks are

separated by max pooling layers to reduce the dimensionality

from 32 × 32 × 32 to 1 × 1 × 1. A batch size of 16 was found to

produce lower reconstruction errors than larger batches for

both training and validation datasets.

The database of 40,000 geological fields was split in 90%

of training and 10% of validation data. Inputs were centered

and normalized by 4 times the standard deviation, moving

values approximately into [ − 0.5, 0.5]. The training loss was

simply composed of the L1 reconstruction error. The Adam

optimizer was used with a learning rate of 2 · 10–4. Training
the network for 1000 epochs on 4 Nvidia Ampere A100 GPUs

took 9.5 h.
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FIGURE 10
3DUNet autoencoder with 6 blocks of double convolutions (4million parameters in total). Skip connections between the encoder and decoder
are done via concatenation.
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FIGURE 11
Each row represents one geological field from the test dataset of 4000 samples. (A) original field. (B) reconstruction with a PCA with
1024 principal components. (C) reconstruction with a 3D UNet autoencoder. RMSE = Root Mean Square Error.
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5 Dimensionality reduction of
complex geological fields

5.1 Assessing the reconstruction accuracy

When applying the PCA on 40,000 geological fields,

500 principal components explained 91.5% of the observed

variance. This increased to 94.4% and 97.9% with respectively

1000 and 3000 components (Supplementary Figure S5).

Figure 11 shows that test geological fields reconstructed with

1024 principal components are visually close to the input fields.

Indeed, the heterogeneities’ size and location correspond to the

inputs. However, it can be noted that geological fields

reconstructed with the PCA lack some sharpness in the spatial

variations and can appear blurrier than the input. This is

especially visible on samples with a high coefficient of

variation (e.g. last row of Figure 11). Quantitatively, the Root

Mean Square Error (RMSE) was low, with a median value of

90 m/s. This corresponds to 8.6% of the minimum velocity value.

Reconstructions obtained with the 3D UNet were also

satisfying since heterogeneities were well reproduced. The

median RMSE was 85 m/s, which was slightly lower than the

PCA error. Interestingly, Figure 12 shows that the PCA and

the 3D UNet led to very different error distributions despite

having a similar median error. While the PCA reconstruction

error ressembles a normal distribution, the 3D UNet

histogram has larger values close to 0. This means that the

3D UNet was able to create more reconstructions with a very

low error. As a counterpart, more geological fields also had a

poorer reconstruction than the PCA. Among the fields

showing a high reconstruction error with the 3D UNet,

many had a low coefficient of variation (an example is

visible on the first row of Figure 11). In those cases, the

large error derived from a biased reconstruction by the neural

network.

When investigating the reconstruction error pixel by pixel, it

appeared that on the one hand, the PCA led to a reconstruction

error that was well distributed around 0. Some pixels

overestimated the velocity while others underestimated it

(Supplementary Figure S6A). On the other hand, the 3D

UNet committed a global error on the mean velocity value

leading to pixels that were all under- or over-estimated

(Supplementary Figure S6B).

5.2 Influence of the dimension on ground
motion response

More importantly than the reconstruction error, we were

interested in the ground motion generated from reconstructed

geological fields, compared to the ones generated from the input

fields. Figure 13 shows GOF scores on a grid of virtual sensors at

the surface. Seismic waves were propagated through a geological

field with a rather large reconstruction error, around 135 m/s for

both the PCA and the 3D UNet. This geological field is shown on

the third row of Figure 11 and its pixel-wise reconstruction error

is depicted in Supplementary Figure S6. A RMSE smaller than

135 m/s was guaranteed for 75% (resp. 72%) of the geological

fields in the test database with the PCA reconstruction (resp. 3D

UNet).

Figure 13 shows that a vast majority of sensors exhibit

GOFs above 8, generally considered as an excellent agreement.

Therefore, despite a large reconstruction error on the

geological field, the surface ground motion was still very

close to the reference one. One can also notice that the

various types of errors described above for the PCA and

the 3D UNet had very different consequences on the

ground motion generated through the reconstructed

geological fields. For the PCA reconstruction, the enveloppe

GOFs were slightly worse than the phase GOFs. This is

exemplified in Figure 14A where the signal amplitude was

higher with the reconstructed field than the input one. This

can be explained by the lack of small-scale heterogeneities that

should have diffracted and reflected seismic waves. Signals

propagated through the reconstructed geological field were

therefore less attenuated than the reference ones. However,

the wave arrival times were very well reproduced since the

mean velocity was correctly reconstructed by the PCA.

On the contrary, ground motion responses of the geological

field reconstructed by the 3D UNet differ from the input mostly

in terms of phase. Since the 3D UNet underestimated (for this

specific sample) the mean velocity, the reconstructed signal was

delayed with respect to the reference one. However, amplitudes

FIGURE 12
Reconstruction error on 4000 test geological fields using a
PCA with 512 components (in grey) and 1024 components (in
brown), and the 3D UNet (in red). (A): histogram of the error. (B):
boxplot of the error, boxes extend from the 1st to the 3rd
quartile, line shows the median.
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were well reproduced thanks to the good reconstruction of small-

scale heterogeneities.

6 Discussion and conclusion

Considering the sparsity of available geological data, a 1D

layered geological model was not rich enough to accurately

simulate the Le Teil earthquake. Geological models can be

improved by the addition of random fields that however yield

a large ground motion variability. Quantitative analyses of the

variability induced by heterogeneous models would require

hundreds or thousands of simulations, that are

computationally intractable. PCA is a common

dimensionality reduction method that is well adapted to

extract features from 3D random fields. However, it needed

FIGURE 13
The GOFs were evaluated on the three velocity components generated by the wave propagation through a geological field reconstructed by
the PCA with 1024 components (A) and the 3D UNet (B). GOFmeasures for each sensor on a 32×32 grid at the surface (10: perfect agreement). Each
measure is given for the three velocity components: East-West (E), North-South (N), Vertical (Z) axes. EG: Enveloppe GOF, PG: Phase GOF. The black
triangles show the position of the sensor in Figure 14. The corresponding VS field is represented on the third row of Figure 11.

FIGURE 14
For the sensor depicted by the black triangles in Figure 13, velocity ground motion along the North-South component. Black: ground motion
obtained with the input VS field. Red: ground motion obtained with the VS field reconstructed by (A) PCA and (B) 3D UNet. GOFs are represented in
the frequency (FEG and FPG), time-frequency (TFEG and TFPG), and time (TEG and TPG) domain for the enveloppe (top) and phase (bottom).
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at least 1024 components in the current setting to retain good

reconstruction abilities. A greater reduction could be obtained

with a dedicated 3D auto-encoder architecture (3D UNet) that

gave promising results.

We showed that the main ground motion characteristics

of the Le Teil earthquake can be reproduced using regional

geological models. The frequency response spectra were in

satisfactory agreement with the recorded seismograms.

However, the 1D geological model, with its peculiar

subsurface layer, induced surface waves with high-

amplitude oscillations. These oscillations were significantly

reduced when adding random fields to the geological model,

therefore leading to more realistic signals.

With the 3D geological model, surface wave oscillations

disappeared. However, this model needed to be used in

conjunction with the kinematic fault model to ensure that

the signal energy was correctly spread over time. Otherwise,

the point source model led to peak ground velocities much

larger than the recorded ones. We also found some differences

between ground motion generated from a point source and

from an extended kinematic fault model. We interpret these

differences as plausibly coming from the low depth of the Le

Teil fault.

Although the addition of random fields on the 1D

geological model could reduce the unrealistic surface waves

oscillations, this effect was not necessarily consistent between

stations and between different random fields samplings.

Therefore, a larger diversity of random fields was necessary

to better understand the impacts of heterogeneities on ground

motion.

As a preliminary step to conduct numerical simulations on

hundreds of heterogeneous geological fields, we showed that

both the PCA and the 3D UNet were able to reduce the fields

dimensionality while preserving their main features. With

1024 principal components, the PCA already produced

geological fields with small reconstruction errors. It

appeared that the PCA smoothes small scale

heterogeneities, similarly to temporal signals losing their

high frequency content when being decomposed by PCA.

Although it did not have a major impact on the generated

ground motion, the only way to alleviate this issue would be to

increase the number of principal components. Since our aim is

to run simulations from reduced representations of 3D

random fields, this is not the path we would like to pursue.

In fact, the larger the dimension, the larger the number of

simulations to sample all possible heterogeneous fields, and

one cannot afford running tens of thousands of high-fidelity

simulations.

Different conclusions were drawn for the geological fields

reconstructed by the 3D UNet. The reconstruction error was

somewhat similar to the one obtained with the PCA, with

more fields having an even better reconstruction. Especially,

the 3D UNet was able to produce sharp outputs with small

scale heterogeneities being well preserved. This mainly arises

from the use of the L1 norm that favors large components

during the neural network training. Although the 3D UNet

produced biased reconstructions for geological fields with

low coefficients of variation, this can be easily corrected by

adding a regularization term to the neural network loss

function. The major advantage of the 3D UNet over the

PCA is its greater dimensionality reduction power. Although

we acknowledge the computation power required to train the

3D UNet, the current architecture produces latent variables

of size 256 which is significantly lower than the number of

PCA components.

From the reduced representation of geological fields, we

envision building a structured ensemble of heterogeneous

geological fields. We could therefore run a limited number

of high-fidelity simulations. Then thanks to the dimensionality

reduction, it would be possible to exhibit a relationship between

the geological field and the ground motion response.

Ultimately, it may even be possible to inverse this

relationship to infer real soil heterogeneities from the study

of recorded ground motion.
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SUPPLEMENTARY FIGURE S1
Results of the numerical simulation (in red) obtained with the 1D
geological model and a point source. Comparison with seismograms
records (in black) filtered at 5 Hz. Velocities are given in the East-West
(E-W), North-South (N-S), and vertical (Z) directions for stationsOGDF (A)
and OGCB (B).

SUPPLEMENTARY FIGURE S2
Results of the numerical simulation (in red) obtained with the 3D
geological model and a point source. Comparison with seismograms
records (in black) filtered at 5 Hz. Velocities are given in the East-West
(E-W), North-South (N-S), and vertical (Z) directions.

SUPPLEMENTARY FIGURE S3
Results of the numerical simulation (in red) obtained with the 3D
geological model and a kinematic fault model. Comparison with
seismograms records (in black) filtered at 5 Hz. Velocities are given in
the East-West (E-W), North-South (N-S), and vertical (Z) directions in
stations OGDF (A) and OGCB (B).

SUPPLEMENTARY FIGURE S4
Velocities obtained with two random fields added to the 1D geological
model in OGDF station. The third random field is shown in Figure 8.

SUPPLEMENTARY FIGURE S5
Ratio of explained variance (red dots) and reconstruction computed
as the L1 error (blue squares) and RMSE (cyan diamonds) as a
function of the number of principal components used for the
reconstruction.

SUPPLEMENTARY FIGURE S6
Pixel-wise RMSE for one geological field reconstructed with the PCA
with 1024 components (A) and the 3D UNet (B). Each image is a vertical
slice parallel to the (0xz) plane with the y position specified. This sample
corresponds to the third row of Figure 11.

SUPPLEMENTARY TABLE S1
Stations with available records ordered by decreasing latitude. PGA
(resp. PGV): maximum of the East-West and North-South
components for the Peak Ground Acceleration (resp. Velocity). VIVF
is a vertical sensor only. LDG = Geophysical and Detection Laboratory
of the French Alternative Energies and Atomic Energy Commission
(CEA). FR, OHP, 3C, RA are networks of RAP-R´esif (French
Permanent Accelerometric Network). SNCF = French National Railway
Company.
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