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Residual Bouguer gravity anomaly inversion can be used to imaging for local

density structures or to interpret near-surface anomalous mass distribution.

The reasonable prior information is the crucial recipe for obtaining a realistic

geological inversion result, especially for the ill-posed geophysical inversion

problem. The conventional strategies introduce the prior constraints or joint

multidisciplinary information in object function as regularization, and then use

some optimization algorithm to minimize the object function. This process is

called model-driven approach and is usually time-consuming. In recent years,

the rapid development of machine learning technology has provided new

solutions for solving geophysical inversion problems. Machine learning

methods can reduce the dependence on prior information in the inversion

process through setting special training datasets, and the time consumption of

an inversion process executed by the trainedmodel can be shortened by several

orders of magnitude, which is conducive to fast inversion for the same type of

application scenarios. In this study, we were inspired by the U-net model and

develops the GV-Net (Gravity voxels inversion network) model using the

convolutional neural network for the inversion of residual gravity anomalies.

We first discussed the effects of different loss functions on the convergence

speed of model training and prediction accuracy. Then, we analyzed the

robustness of our model by changing noise levels of the datasets. At last, we

employed this model in a real scenario. The results have demonstrated that the

GV-Net model has the ability to deal with specific inverse problems by

predefined training datasets.
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1 Introduction

Gravity method as one of multidisciplinary geophysics methods is sensitive to density

distribution, which can be used to imaging for the density structure of the shallow Earth

(Wang et al., 2014; Honglei et al., 2021). In general, different sort of gravity anomaly exist

their own special geophysical meaning (Johannes and Smilde, 2009). The Bouguer gravity

anomaly can be divided into regional and residual parts according to the characteristics of
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the field sources. The regional Bouguer gravity anomalies are

controlled by large-scale structural anomalies or deep density

anomalies, such as Moho depth (Fu et al., 2014) and basement

relief. The residual Bouguer gravity anomaly, also known as local

gravity anomaly, correspondence to the distribution of residual

mass in the shallow crust. Generally, the residual Bouguer gravity

anomaly can be used in the mineral exploration or the near-

surface geological structure detection (Rosid et al., 2020; Chen

and Zhang, 2022).

Gravity inversion is a necessary procedure for retrieving

geological information from gravity anomalies. However,

similar to other geophysical inversion problems, gravity

inversion problem is usually ill-posed and the result is

inherent non-unique. For the same gravity anomaly,

infinite mathematical solutions can be found for fitting the

input anomaly within a certain tolerance. Therefore,

geoscientists usually introduce certain prior information to

constrain the inversion process for obtaining a reasonable

outcome, such as minima structure constraint, smoothness

assumption (Li and Oldenburg, 1996; Li and Oldenburg,

1998), and so on. Nevertheless, how to select the prior

constraints are generally limited by researchers’ experience,

and improper prior constrains will inevitably introduce

spurious features into the inversion results. The joint

inversion with multidisciplinary geophysical data is an

effective approach to reducing the non-uniqueness of

inversion results (Bosch et al., 2006; Lelièvre et al., 2012;

Liu et al., 2022). But this approach relies on the

relationships between different physical properties, these

are also empirical and not suitable for all geological

conditions. Additionally, in traditional inversion strategies,

the large-scale systems of linear or non-linear equations must

be solved whatever using the direct or iterative method.

Especially for regularized inversion method, the ‘trade-off’

parameter is often obtained through multiple iterations, this

process is time-consuming.

Recent development of machine learning (ML) technique

brings a new strategy for scientists to solve tough problems.

ML term first appeared in literature can be traced to the 1950s

(Turing, 1950). Nevertheless, due to the limitation of

computer performance and the high requirement of

mathematical ability for researchers, ML has not received

much attention for a long time. In the past decade,

computer performance has developed rapidly, especially

with the emergence of general ML frameworks such as

TensorFlow, PyTorch, MXNet, Keras, and Theano. Kinds of

ML frameworks make us deploy and train the ML models

simply and efficiently. At the same time, the powerful GPU

continually enhances the training efficiency of complex ML

model and makes it feasible to deal with high dimensionality

problems with a large-scale degree of freedom. ML approach

has already shown extraordinary potential and for solving the

geophysical inversion problems in numerous geoscience

scenarios.

ML is a sort of data-driven method, which has been widely

used in geosciences, including seismology (Kong et al., 2018;

Ming et al., 2019a; Ming et al., 2019b), solid Earth geoscience

(Bergen et al., 2019), hydro-geophysics (Shen, 2018),

geomorphometry (Valentine and Kalnins, 2016) and sea ice

forecasting (Andersson et al., 2021). In this study, we

introduce ML to imaging the 3D density structure in the

shallow crust. For the 3D gravity inverse problem, the input

data can be regarded as a single-channel image, and the output

can be assumed as multi-channel images, so this problem can be

FIGURE 1
Schematic of GV-Net architecture.
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applied with CNN(Convolutional Neural Network), which is a

typical ML method.

During the training process, the model updates the

parameters according to the pre-defined loss function to

fitting the mapping relationship between the observed data

and the field source parameters. The well-trained ML model

transforms the conventional inverse problem into a forward

problem, which greatly shortens the time required for model

prediction. In this study, we first proposed the GV-Net model

inspired by U-Net (Ronneberger et al., 2015) for the 3D density

structure imaging. Then we generated a large number of model-

observation data samples by a random algorithm as training

datasets artificially. Subsequently, we test the influence of two

different loss functions with respect to the model training speed,

model convergence characteristics, and model prediction

accuracy. At last, we verified that the GV-net model is noise

resistant, and we also demonstrated the practicality of the GV-net

model through a real scenario.

2 Methodology

2.1 The architecture of GV-Net

In this study, we developed the GV-Net model based on

CNN technology. Figure 1 illustrates the architecture of the

GV-Net model, which is primarily composed of four

components, namely preprocessing, encoder, decoder, and

output respectively. The activation function uses the Relu

function, and the pooling method is maximum pooling.

The detailed procedure of the GV-Net model is illustrated

in Table 1. We use PyTorch framework to construct and train

the GV-Net model.

The input data of GV-Net is a single-channel image with 64 ×

64 pixels, each pixel represents a gravity data point. Then, we

gradually increased the number of channels to 64 through the

preprocessing part, with the horizontal resolution of the data in

the preprocessing part remains unchanged. The horizontal

resolution of the data is then reduced to 8×8 in the encoder

part by three Max-pooling processes, while the number of

channels is increased to 512. In the decoder part, the number

of channels of the model is reduced to 64 by three transposed

convolution operations, and the resolution will be increased to

64×64. Finally, the output part generates the 32 channels, which

have 64×64 data points in each channel to express the density

voxel layers in the three-dimensional space implemented by a

convolution layer.

2.2 Loss function

During the CNN training, themodel parameters will be updated

according to the variation of the loss function. Therefore, selecting a

suitable loss function is critical for improving the model

performance. We chose two sorts of loss functions as candidates

to test the effect on the GV-Net model, including training speed,

convergence characteristics, and prediction accuracy.

1) Mean squared Error (MSE) function

Mean squared error (MSE) is one of the most common loss

functions used in machine learning, which has been widely

adopted in regression problems (Mitra et al., 2020; Wang

et al., 2020; He et al., 2021). MSELoss function can be

expressed as

MSELoss m̂,m( ) � 1
N

∑N
i�1

m̂i −mi( )2 (1)

wherem is the true model, m̂ is the predicted model,N is number

of elements in model m

2) Dice function

Milletari et al. (2016) proposed a loss function based on Dice

coefficient to measure the similarity of two models. The dice

coefficient can be written as

Dice m̂, m( ) � 2∑N
i�1m̂imi∑N

i�1m̂
2
i + ∑N

i�1m
2
i

(2)

Then, the Dice function can be expressed as

TABLE 1 The algorithm of GV-Net.
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DiceLoss m̂,m( ) � 1 −Dice m̂, m( ) (3)

Based on Eq. 2, when the predicted model is closer to the real

model, the Dice coefficient is closer to one, which makes the

DiceLoss closer to zero. Huang et al. (2021) use this loss function

to deal with sparsity inversion problems with binary density

distribution and got good results.

In the following sections, we refer to the GV-Net with

MSELoss function as MGV-Net and refer to the GV-Net with

DiceLoss function as DGV-Net.

2.3 Result evaluation metrics

For evaluating the prediction accuracy of GV-Net and

comparing the effect of two different loss functions, we introduce

two metrics to quantitatively evaluate the predicted result from

different aspects. The first metric is called model relative error ε,
which can be used to evaluate the predicted density source, and this

metric is expressed as follows:

ε � m̂ −m‖ ‖2
m̂‖ ‖2 + m‖ ‖2 (4)

This metric function is range from 0 to 1, as shows in Eq. 4,

which means the more accurate the model predicts, the smaller ε is.

FIGURE 2
Schematic diagram for the gravity anomaly of discretized
prism models.

FIGURE 3
Examples of random density model.
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TABLE 2 Time cost.

Training Predicting

DGV-Net 2h34min04s 0.0061(s)

MGV-Net 1h25min57s 0.0053(s)

*The computer configurations and
hyperparameters setting :

Hardware configurations :

CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz

GPU: NVIDIA GeForce GTX 1080×3

Soft environment :

CUDA Version: 10.2

Python Version: 3.7.13

ML Framework: Pytorch 1.4.0

Hyperparameters setting :

Batch size: 128

Epochs: 300

Optimizer: Adma

Activation function: Relu

FIGURE 4
Loss curves and model relative errors for the training and validation datasets.
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The second metric index is to assess the gravity anomaly

generated by the predicted density model. We introduce the

mean squared of data misfit to express how the recovered gravity

fits the truegravityanomalyineachprediction,whichshows inEq.5.

�ω � 1
N

∑N
i�1

�di − di( )2 (5)

where N is the number of gravity anomaly data, di is the ith true

gravity anomaly, �di is the ith predicted gravity.

3 Training datasets

3.1 Voxel modeling

In geophysical research, it is necessary to modeling the

research object and then parameterization the characteristics

of the geophysical field source through a number of models. In

gravity field inversion, we generally use a series of regular

bodies to approximate the field source model for different

research problems, and each regular body has a specific

density. Common regular density models include sphere

model, cylinder model, and rectangular prism model.

In this study, to describe the characteristics of the stochastic

distribution of density contrast flexibly, we simulated the subsurface

structure with regularly arranged rectangle prism cells according to a

certain grid spacing, and the gravity data are measured from fixed

ground observation points. The density model and the observing

system illustrated in Figure 2. Borrowing the term pixel in two-

dimensional images, we refer to each density prism in three-

dimensional space as a voxel. The relationship between the

gravity anomaly and the density voxels can be expressed as:

d1

d2

d3

..

.

dN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

γ1,1 γ1,2 γ1,3
γ2,1 γ2,2 γ2,3
γ3,1 γ3,2 γ3,3

/
γ1,M
γ2,M
γ3,M

..

.
1 ..

.

γN,1 γN,2 γN,3 / γN,M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m1

m2

m3

..

.

mM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

where di is the gravity datum at i th observation station,mj is the

density contrast of j th prism, γi,j is the kernel operator, N is the

number of observation points, and M is the number of voxels.

FIGURE 5
Horizontal distributed densitymodel (A) The shape of the horizontal distributed densitymodel; (B)Gravity anomalies that correspond to the true
model; (C) The model recovered by DGV-Net; (D) The model recovered by MGV-Net.
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The kernel operator is defined by the volume of the voxel,

density contrast, the location of observation points, and the position

of the voxel. The kernel operator γi,j can be expressed as follows:

γi,j � G∫ze

zs

∫ye

ys

∫xe

xs

Δρ zp − z( )
r3

dxdydz (7)

where G � 6.67 × 10−1N ·m2 · kg−2 is the gravitational constant,
x, y, z are coordinates of the density body in the three directions

respectively, r �
����������������������������
(xp − x)2 + (yp − y)2 + (zp − z)2

√
represent

the distance from the field source to the observed position.

While the density is constant, which mean Δρ � ρc, Eq. 7

becomes (Nagy et al., 2000):

γi,j � ρcG||| xp − x( ) ln yp − y( ) + r[ ] + y ln xp − x( ) + r[ ]
− ztan−1 xp − x( ) yp − y( )

zp − z( )r
∣∣∣∣∣∣xexs
∣∣∣∣∣∣yeys
∣∣∣∣∣∣yeys (8)

3.2 Datasets generation

The ML model training is necessary to utilize large enough

labeled datasets. Because the conventional Green’s function

between the gravity response and field source cannot be

FIGURE 6
Predicted gravity anomaly and gravity misfit characteristics of horizontal distributed model (A) Gravity anomaly calculated by density contrast
predicted by DGV-Net; (B)Gravity anomaly misfit produced by DGV-Net; (C)Gravity anomaly calculated by density contrast predicted by MGV-Net;
(D) Gravity anomaly misfit produced by MGV-Net.

TABLE 3 The evaluating indicators of recovered horizontal distributed
model.

Model relative error (ε) MSE of gravity (�ω)

DGV-Net .14036 .0055

MGV-Net .14099 .063
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directly transformed to the weight values of the designed CNN

model. In the training process, an abundant training dataset needs

to be used to build themapping relationship between the input and

output. The features of the training datasets directly determine the

application scenarios of the model. In this study, we trained the

GV-net model with plenty of voxels by the presupposed prior

density assumption as the output of the GV-Net and calculated the

corresponding gravity anomaly at the observed grid as the input of

the GV-Net. The input gravity anomaly was the superposition of

all voxel anomalies in one field source. If repeated this generation

time by time, the location of a voxel in the field source model is

stochastic for simulating various density distribution situations as

much as possible.

Figure 3 shows four randomly generated density models.

The models are composed of rectangle prisms of different scales

and arrangements, so theoretically, they can approximately

represent the distribution of density anomalies with different

shapes. In this study, the size of each voxel is

50 m×100 m×100 m, and the density contrast of each block

is .5–1.0 g/cm3. A total of 19,200 sets of data are used for

training and 2,000 sets of data were used for validation for both

DGV-Net and MGV-Net.

4 Result

4.1 Model training

Figure 4 shows the loss function and model relative error of

DGV-Net and MGV-Net, respectively. To reduce time costs and

FIGURE 7
Dipping dyke density model (A) The shape of the dipping dyke density model; (B) Gravity anomalies that correspond to the true model; (C) The
model recovered by DGV-Net; (D) The model recovered by MGV-Net.

TABLE 4 The evaluating indicators of recovered dipping dike model.

Model relative error (ε) MSE of gravity (�ω)

DGV-Net .39563 .1079

MGV-Net .45065 .0412
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ensure the stability of the loss curves and error curves, the loss

value and error on curves are calculated by the prediction results

of 200 random samples from relevant datasets, rather than all

datasets.

During the training of DGV-Net and MGV-Net, both the

loss curves and error curves decreased smoothly with the increase

of epochs, but there are a few different behaviors between

training datasets and validation datasets. The curves associated

with validation datasets (Orange curves) tend to be stable when

the epochs reach a certain value, while the curves associated with

training datasets (Blue curves) are not stable until the end of

epochs. These features illustrated that for a randommodel, which

are most likely not in the training datasets, the GV-Net predicts

accuracy restricted to a level because of using the finite training

datasets.

Moreover, the validation loss curve of DGV-Net reaches to a

steady state faster than MGV-Net, which means the Dice loss is

more conducive to the convergence of the GV-Net model.

The model relative error curves in Figure 3 and Figure 3 show

that the prediction accuracy of DGV-Net is better than MGV-

Net. Therefore, we can estimate that DGV-Net will have better

performance than MGV-Net for anomalous models that are not

in the training datasets.

Table 2 shows the time required for GV-Net training

process and single prediction. We can see that the training

time when employing the root mean square loss function is

significantly less than that using the Dice loss function. The

time required for single prediction using the trained model is

far less than 1s. Consequently, when the GV-Net is used for

inversion problems, as long as the model is well-trained, fast

FIGURE 8
Predicted gravity anomaly and gravity misfit characteristics of dipping dyke model (A) Gravity anomaly calculated by density contrast predicted
by DGV-Net; (B)Gravity anomalymisfit produced by DGV-Net; (C)Gravity anomaly calculated by density contrast predicted byMGV-Net; (D)Gravity
anomaly misfit produced by MGV-Net.
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inversion can be executed for the same type of problems.

Comparison with other research for fast inversion solutions,

such as compressive inversion (Foks et al., 2014), and adaptive

mesh inversion (Davis and Li, 2011). Our approach reflects

sufficient efficiency.

4.2 Model validation

In order to illustrate the inversion effect of GV-Net more

intuitively, we designed three typical density models to evaluate

the performance of GV-Net with two different loss functions.

The three models were the horizontal distributed density model,

the dipping dyke density model, and the vertical distributed

density model respectively. The residual density and model grid

setting are consistent with the training datasets. To clearly show

the shape of the retrieved model, only the voxels with a density

greater than or equal to 0.3 g/cm3 are drawn for the results in the

following figures.

1) Horizontal distributed density model

Generally, gravity is sensitive to the lateral variations of the

density contrast, so we designed a model with two density blocks

that are totally separate in horizontal (Figure 5A) to test the

ability of GV-Net to identify lateral density variations. The

gravity response of this model (Figure 5B) sharply depicts the

contour of this model in the horizontal direction. The results

(Figures 5C, D) demonstrated that both DGV-Net andMGV-Net

can predict the outcome with reasonable accuracy for the density

contrast with horizontal distribution characteristics.

FIGURE 9
Vertical distributed model (A) The shape of the vertical distributed density model; (B) Gravity anomalies that correspond to the true model; (C)
The model recovered by DGV-Net; (D) The model recovered by MGV-Net.

TABLE 5 The evaluating indicators of recovered vertical distribute density
model.

Model relative error (ε) MSE of gravity (�ω)

DGV-Net .347 .0494

MGV-Net .39653 .1014
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Figure 6 shows the forward gravity and gravity misfit from

predicted density contrast. The max misfit in recovered gravity is

less than 5% of the maximum of the input gravity for the DGV-

Net model, and the max error in gravity recovered is reach 15%

due to the left block error in MGV-Net.

Table 3 summarizes the model relative error and the mean

square error of recovered gravity. From Table 3, we found that the

model relative errors don’t have a significant difference between

DGV-Net and MGV-Net, this feature may illustrate that the two

sorts of loss functions we used in this study have no distinct

differences for GV-Net to predict simple density model.

2) Dipping dyke density model

The dipping dyke model is a classical 3D density model that can

be used to evaluate the effectiveness of inversionmethods (Zhu et al.,

2020; Peng and Liu, 2021). Figure 7A illustrates a dipping dyke

model and Figure 7B is the forward gravity. Figure 7C and Figure 7D

are the inversion results predicted by DGV-Net and MGV-Net.

Table 4 lists the relative error of the predicted models and the mean

squared of gravity misfit. The prediction of DGV-Net recovered the

shape of the true model mostly but exists a big bias in density value.

The prediction of MGV-Net did not retrieve the true shape of the

real model and the density value is also incorrect. But we found that

the gravity misfit was not so bad as the density model, both models

gave acceptable gravity misfit.

Figure 8 shows the predicted gravity and gravity misfit of the

dipping dyke model. From Figures 8A, C, the predicted gravity

anomalies are generally consistent with input gravity anomalies,

but the gravity anomalies misfit have obvious non-Gaussian

characteristics (Figures 8B, D).

In our training datasets, considering the generation strategy

of our density model, models like dipping dyke are very rare. The

GV-Net can recover this dipping dyke model proving that our

method has the power to image the complicated density models

even if they were not included in the training datasets.

FIGURE 10
Predicted gravity anomaly and gravity residual characteristics of vertical distributed model (A) Gravity anomaly calculated by density contrast
predicted by DGV-Net; (B)Gravity anomaly misfit produced by DGV-Net; (C)Gravity anomaly calculated by density contrast predicted by MGV-Net;
(D) Gravity anomaly misfit produced by MGV-Net.
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3) Vertical distributed model

It is tough to revive vertical density information through

gravity inversion. The conventional gravity inversion methods

use the depth weighting function to control the density located

in a suitable depth, but this process is depending on the

researchers’ experience. To verify the performance of GV-

Net to separate the density distribution in the vertical

direction, we design an extreme vertical density model which

means the different bodies have different depths but the same

FIGURE 11
The density model and theoretical gravity with different noise levels. (A) The truemodel; (B)Gravity with noise-free; (C)Gravity with 1%Gaussian
noise; (D) Gravity with 2% Gaussian noise; (E) Gravity with 5% Gaussian noise; (F) Gravity with 10% Gaussian noise.
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horizontal position (Figure 9A). It is difficult to intuitively

retrieve any vertical characteristics from the forward gravity

(Figure 9B).

Table 5 summarized the model relative error and mean

squared error of recovered gravity, from these two metrics,

the DGV-Net has better performance in separating the density

bodies in the vertical direction. Figure 9C and Figure 9D show the

inversion results, the shallow body is well predicted by both

DGV-Net and MGV-Net, but for the deeper body, the DGV-Net

shows better results than MGV-Net.

The predicted gravity and gravity misfit of the vertical distributed

model are shown in Figure 10. The gravity misfit produced byMGV-

Net is obviously bigger than that obtained by DGV-Net.

4.3 Noise effect

Actual gravity data is affected by various factors, such as the

observation environment, instrument features, and human

operations, which inevitably contain a certain degree of noise.

In most cases, these noises are stochastic. We assumed that the

noise is Gaussian noise with zero mean. We found that the DGV-

Net mostly outperforms the MGV-Net in the model prediction

accuracy in section 4.1. Therefore, in this part, we chose DGV-

Net to test the robustness to the noise of our method.

We first use the well-trained DGV-Net model in section

4.1 to deal with the noise-contained gravity. The true density

model is shown in Figure 11A, and the forward gravity

contaminated by 0%, 1%, 2%, 5%, and 10% Gaussian noise

are shown in Figures 11B–F respectively. The results predicted

by DGV-Net are shown in Figures 12A, C, E, G, I, these results

illustrated that the DGV-Net model can accurately predict the

density structure while the noise is less than 2%, and this

model can’t retrieve any useful information when the noise

increases to 5%.

We reproduced the training datasets that contain different

noise strengths. 0%, .1%, .2%, .3%, .4%, .5%, 1%, 1.5%, 2%, 4%

and 6% Gaussian noise was randomly added in the process of

generating the training datasets, the occurrence probability of 0%

noise level is 3/13, and the occurrence probability of other noise

levels is 1/13. For the convenience of expression, we call the

DGV-Net model trained by noise-contained datasets as

NDGV-Net.

The results predicted by NDGV-Net are shown in Figures

12B, D, F, H, J, the density contrast can be effectively recovered

even with the noise level up to 10%. However, the NDGV-Net

model can restore the contour of density volume well, but it

sacrifices the accuracy in density value prediction. Table 6 shows

that the relative error of the result predicted by NDGV-Net for

noise-free gravity is far greater than the result predicted by DGV-

Net. These features illustrated that the robustness to noise of GV-

Net is mainly controlled by the training datasets. It is important

to balance the robustness and prediction accuracy through

FIGURE 12
Results predicted by DGV-Net and NDGV-Net with various
noise contained gravity data. Fig (A), (C), (E), (G) and (I) are the
DGV-Net inversion results when the noise levels are 0%, 1%, 2%, 5%
and 10%, respectively; Fig (B), (D), (F), (H) and (J) are the
NDGV-Net inversion results when the noise levels are 0%, 1%, 2%,
5% and 10%, respectively.

TABLE 6 The relative error(ε) of recovered models under different noise
contained gravity for NDGV-Net and DGV-Net.

Noise level 0% 1% 2% 5% 10%

DGV-Net .0059 .1768 .3354 .6515 .6888

NDGV-Net .1479 .1398 .1777 .186 .2892
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special noise setting of the training datasets for a specific

inversion problem.

5 Case study

To verify the ability of the proposedmethod in this study to deal

with real scenarios, we employed GV-Net to image the San Nicolas

sulfide copper-zinc mine in Zacatecas, Mexico. The mining area has

been studied in detail by different scholars using different inversion

methods (Phillips et al., 2001; Lelièvre and Oldenburg, 2009; Zelin

et al., 2019; Huizhen et al., 2021).

The residual Bouguer gravity anomaly is shown in Figure 13A,

and the geological profiles in the location of AA′ and BB’ are shown
in Figure 14, which are interpreted from logging data. On the basis of

the size of the research region, orebody burial depth, and

surrounding rock density characteristics, we regenerated the

training datasets suitable for this mining area, and the new

training datasets still divide the model into 32 × 64 × 64 three-

dimensional cells, the size of a single cell is 25 m × 25 m × 25 m, and

the density of the training datasets varies from .7 to 1.2 g/cm3 on the

basis of prior information from the geological profiles. Considering

that the actual datamay be containing noise, the same noise addition

strategy is adopted in the training datasets as in the NDGV-Net

training datasets.

We intercepted six two-dimensional profiles of the 3D

density structure along the AA’, BB’ positions and its left and

right 100 m, respectively. The corresponding cross-section

results are shown in Figure 15, in order to clearly highlight

the orebody position, only the voxels with a density greater than

0.6 g/cm3 is shown in Figure 15.

Figures 13B, C are the predicted gravity anomalies and

gravity misfit, respectively. We can see that the predicted

gravity anomalies and true gravity anomalies have the same

FIGURE 13
(A) Residual gravity anomaly map of the San Nicolas deposit (Huang et al., 2021); (B) Predicted gravity from invert density model; (C)
Characteristics of gravity anomaly misfit.

FIGURE 14
(A) Geologic cross-section along the AA′ line; (B) Geologic cross-section along the BB′ line; (C) Density of the major rock units.
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change trend, but there is a certain large and non-normal

distribution of gravity misfit characteristics.

The predicted results in Figure 15 shows that our inversion

method accurately restores the orebody position. The ore body size

is basically the same as the real ore, but the ore body morphology is

more like a regular prism, which should be related to the

characteristics of the training datasets adopted in this article.

Compared to the application of traditional inversion methods in

this area (Phillips et al., 2001; Zelin et al., 2019; Huizhen et al., 2021),

our method obtained a desirable result through the trained ML

model based on targeted training datasets and no longer rely on the

subjective experience of researchers.

6 Conclusions and discussions

This study purposes a CNN model named GV-Net, which

implements inversion of the residual Bouguer gravity anomaly

based on the ML technique. We first analyzed the effect of

different loss functions on the GV-Net model and evaluated

the prediction accuracy by three typical density contrast

models. Then we tested the robustness to noise of our

method by the noise or noise-free training datasets.

Ultimately, the practicability of the method has been

demonstrated by actual mining area data. The main

conclusions of this research are as follows:

FIGURE 15
Inversion result at different cross-sections (The black lines indicate the true outline of the sulfide deposit) (A) Density Cross-section at AA′ line;
(B) Density Cross-section at BB′ line; (C) Density Cross-section at 100 m south of AA′ line; (D) Density Cross-section at 100 m west of BB′ line; (E)
Density Cross-section at 100 m north of AA′ line; (F) Density Cross-section at 100 m east of AA′ line.
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1) The selection of the loss function will influence the training

speed, convergence characteristics, and model prediction

accuracy. In this study, the DiceLoss function has better

performance in model prediction accuracy, and the

MSELoss needs less time for the training process. Therefore,

when we try to solve a practical problem, an appropriate loss

function should be selected on the basis of weighing the

prediction accuracy of the model against the training time

cost of the model.

2) From the three synthetic tests, our GV-Net model has

shown the ability to revive the shape of shallow density

contrast, but it still lacks sufficient recovery for the

abnormal density distribution of complex structures or

abnormal bodies with obvious vertical distribution

characteristics. There is no significant difference

between DGV-Net and MGV-Net in predicting simple

density models, but for sophisticated models, the DGV-

Net has better performance in depicting the shape of

density blocks. The mean squared error of gravity is

acceptable for three synthetic models, but it seems

independent of the relative error of the model. This

feature may be caused by the absence of gravity

constraint in the model training phase.

3) The robustness to noise of the GV-Net is closely related to the

noise characteristics in the training datasets. While training

datasets are designed by reasonable noise control, the anti-

noise ability of the model is significantly improved.

4) In the GV-Net model, prior knowledge is directly included in

the training dataset, rather than relying on the experience of

researchers that is required by traditional inversion methods.

When we predict a density anomaly body using the trained

model, only the gravity anomaly is required as input, and we

will obtain a reasonable result.

5) Using the GV-Net model to solve inversion problems, the

training process is also time-consuming. But if a suitable AI

model with good generalization ability can be achieved, the

time needed to invert a density model is very small. The single

prediction time of all models in this study is in milliseconds

which demonstrated that our method can be used to fast

imaging for specific inversion problems.

6) Using GV-Net for inversion of actual mining area data, the

results are consistent with previous studies, which

demonstrates the practicability of this method.

Although the method proposed in this study can better

realize the fast inversion of residual Bouguer gravity anomaly,

there are still some problems that need to be further solved, such

as how to construct a training dataset that can represent real

geologically density distribution better. In addition, in the

model prediction process, the gravity data is used as the

input to directly invert the three-dimensional density model,

and the gravity misfit shown certain non-stochastic

characteristics.
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