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The Karakoram Terrane (KT) represents the southern margin of the Eurasian

Plate, mainly consisting of Late Jurassic-Early Cretaceous subduction-related

granites and post-collisional Miocene leucogranites, which intrude the Late

Neo-Proterozoic basement. We report for the first time the existence of the

Cryogenian KT basement as recorded from the geochemistry and

geochronology of tonalite gneiss (ca. 806 Ma) in the southeastern

Karakoram terrane, NW India. Geochemically, the studied tonalite gneiss is

slightly peraluminous (Molar Al2O3/CaO+Na2O+K2O=1.1), calc-alkaline

volcanic-arc granitoid, strongly fractionated REE (LaN/YbN=33.99), and high

Sr/Y =19.75, more akin to its affinity with Tonalite–trondhjemite–granodiorite

(TTG)/adakite. The whole-rock elemental data suggest that tonalite gneiss is

more likely sourced from ancient mafic lower crust where garnet remained in

the residue. The petrogenetic modeling of REE suggests that the melt similar to

the observed tonalite gneiss can be generated through ~50% partial melting of a

mafic lower crust with garnet, clinopyroxene, and amphibole assemblage. The

synthesis and comparison of present and published Proterozoic magmatic

records on the rocks from KT strongly dictate that the produced partial melt

similar to observed tonalite gneiss most likely served as the parental melt for the

development of TTGs in the Southern Pamir and more evolved granitoid in the

Central Tibetan terrane. We propose that the studied tonalite gneiss from the

southeast Karakoram is a product of Neoproterozoic Andean-type orogeny

formed on the northwestern margin of the Rodinia supercontinent. Thus, our

study favors the first time, the position of KT within the Cimmerian belt along

with other East Asian continental blocks.
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1 Introduction

The supercontinent Rodinia is considered to have assembled

during Mesoproterozoic to Neoproterozoic (~1300 to 900 Ma),

which fragmented later during late Neoproterozoic (Meert and

Torsvik, 2003; Li et al., 2008; Cawood et al., 2016). The timing

and origin of spatially distributed felsic magmatic rocks of

Neoproterozoic time from the Asian terranes provide evidence

on the assembly, growth and break-up of the Rodinia

supercontinent (e.g., Zhao et al., 2018). Various studies on the

paleogeographic reconstruction of Pamir, Tarim, Qiangtang, and

Lhasa Terranes from East-Asia suggest the location of these

continental blocks on the northwestern margin of the Rodinia

supercontinent (eg., Condie, 2001; Li et al., 2008; Dong et al.,

2011; Cawood et al., 2013; Cawood et al., 2016; Merdith et al.,

2017; Zhao et al., 2018; Hu et al., 2018a; Hu et al., 2018b; Zhou

et al., 2019; Kang et al., 2019). Later, these East Asian terranes

formed the part of Gondwanaland during the Paleozoic hence all

belong to Gondwanan ancestry (Crawford, 1974; Şengör 1984;

Yeh and Shellnutt, 2016). The Karakoram Terrane (KT),

southern Pamir, Tarim, Qiangtang, and Lhasa broke from the

Gondwanan margin in the Early Permian and moved in the

north which then collided with Eurasian margin in Middle

Triassic that formed the Cimmerian orogen (Yeh and

Shellnutt, 2016).

The KT represents the southern margin of the Eurasian

Plate and is considered geologically equivalent to the

southeast and central Pamir Terranes in the west and

Qiangtang Terrane in the east (Figure 1A; Robinson, 2015;

Villarreal et al., 2020). Geologically, the KT mainly consists of

the Late-Jurassic to Early Cretaceous Karakoram Batholith

(KB) which mainly consist of pre-collisional calc-alkaline

I-type granitoids as the main magmatic event that formed

due to subduction of Neo-Tethys oceanic lithosphere beneath

south Eurasian plate margin (e.g., Fraser et al., 2001;

Heuberger et al., 2007; Jain and Singh, 2009; Boutonnet

et al., 2012; Phillips et al., 2013; Sen et al., 2014; Pundir

et al., 2020a; Pundir et al., 2020b), and the Early

Cretaceous to Late-Miocene Karakoram Metamorphic

complex which mainly consists of regional Barrovian facies

kyanite- and sillimanite-grade metamorphic rocks and

leucogranites (e.g., Fraser et al., 2001; Rolland et al., 2009;

Streule et al., 2009; Wallis et al., 2014). Similar to the KT, the

southern Pamir records Late Jurassic-Late Cretaceous calc-

alkaline subduction related I-type granitoids (Liu et al., 2020

and references therein) and Qiangtang terrane from central

Tibet records Late Triassic to Late Cretaceous subduction-

related I-type granites (e.g., Kapp et al., 2003; Peng et al., 2015;

He et al., 2019). The Late Neo-Proterozoic terrane granitoids

along the southern margin of the Eurasian Plate is exposed

sporadically (e.g., the western Karakoram, the southeast

Pamir, and the southern Qiangtang and Northern Lhasa

region (central Tibet)) (Rolland et al., 2002; Dan et al.,

2020; Liu et al., 2020). In the KT the record of crystalline

Late Neo-Proterozoic basement occurs only in a few regions of

the western Karakoram where the metadiorite (ca. 651 Ma;
40Ar/39Ar) outcrops to the north of the Shyok Suture zone

(SSZ) (Rolland et al., 2002). A record of pre-Ordovician

granitic intrusion to the north of the Karakoram Batholith

is also reported (Fort et al., 1994). However, no shreds of

evidence on Late Neo-Proterozoic crystalline basement rocks

are available from southeastern KT, India, unlike the Lhasa,

Qiangtang, southeast Pamir, and western KT. Thus, the non-

availability of such Late Neo-Proterozoic magmatism records

in SE Karakoram limits our understanding of Late Neo-

Proterozoic evolution and Paleogeographic reconstruction

of the Karakoram and western Tibet. The geological,

geographical, and geochronological correlation of the KT to

the Pamir range to the NW, and central Tibet to the SE is

important to understand the origin and position of the KT in

the Cimmerian belt (e.g., Afghanistan, Pamir, Tarim,

Qiangtang, and Lhasa terranes) that formed the northern

margin of the Gondwanaland during the Paleozoic (e.g.,

Şengör, 1984).

This study presents the first whole-rock geochemical and

zircon U-Pb geochronology of a sample of Neo-Proterozoic

granite gneiss from the KT. We analyze the present set of new

data in combination with the published geochemical record on

similar Neoproterozoic granites of the Pamir Terrane and central

Tibet to constrain the petrogenesis of the KT basement during

the Neoproterozoic supercontinent cycle. Our study provides

significant evidence to reveal the Paleogeography of the SE

Karakoram in the context of Rodinia and Cimmerian terrane,

which existed in the geological past.

2 Regional geology

The India-Asia collision zone or Trans-Himalaya and KT

litho-tectonic units represent the southern margin of the

Eurasian Plate (e.g., Searle et al., 1998; Jain and Singh, 2008;

Searle and Hacker, 2019). The KT lies to the northwest of the

Himalayan Mountains and extends from the Afghan block in the

west to southwest Tibet in the east (Figure 1). The Rushan-Pshart

Suture zone forms the northern boundary of the KT, where it

abuts against the southern Pamir mountains, and the Shyok

Suture Zone (SSZ) forms its southern boundary, which separates

it from the Ladakh Batholith (Figure 1A; e.g., Schwab et al., 2004;

Searle and Hacker, 2019).

The study area forms the part of NW India where the KT can

be divided into three main geological units, namely 1)

Karakoram Fault (KF) zone, 2) Karakoram Metamorphic

Complex (KMC), and 3) Karakoram Batholith (KB) (e.g., Jain

and Singh, 2008) (Figure 1B).

The southern margin of KT bounds the ~1000 km long

lithospheric scale dextral strike-slip KF to the south (Searle
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et al., 1998) (Figure 1A). In the SE Karakoram, the KF splays into

two strands named the Tangtse strand in the SW and the Muglib

strand in the NE, which forms a zone consisting of mylonite,

granite gneiss, amphibolites, and leucogranites (e.g., Srimal,

1986; Searle et al., 1998; Weinberg and Mark, 2008). Locally,

this zone is known as Tangtse Metamorphic Complex (TMC) or

Pangong Injection Complex (PIC), and in the NW of Muglib

strand, it is known as Shyok Metamorphic Complex (SMC)

(Figure 1B; Searle et al., 1998; Pundir et al., 2020a). An

undeformed porphyritic granite body of KB is exposed to the

FIGURE 1
(A) Map showing the main tectonic structures and sutures in the Himalaya and Tibet (modified after Searle, 2011). The red dashed rectangle
indicates the map area in Figure 1B. (B) Geological map of the study region (modified after Jain 2014; Pundir et al., 2020a). LGF: Longmu-Ghoza Co
fault; E. AF: East Angmong Fault.
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FIGURE 3
(A–F) Microphotograph of the tonalite gneiss SM 4 M mainly consists of quartz (Qz), K-feldspar (Kfs), plagioclase (Pl), and biotite (Bt).

FIGURE 2
(A) High-grade metamorphic rocks and zone of partial melting observed to the north of the Shyok-Muglib strand of the KF known as SMC. (B)
Collected sample of tonalite gneiss SM 4 M from the SMC zone of KB.
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north of KMC (Pundir et al., 2020a; Pundir et al., 2020b). The KB

is mainly composed of hornblende-biotite and biotite bearing

subduction-related magmatic rock suites, which are considered

to be emplaced prior to the India-Asia collision (e.g., Jain and

Singh, 2008), which later suffered submagmatic to solid state

ductile deformation during Late-Cretaceous (Bose et al., 2022).

The granites are porphyritic, consisting of randomly oriented

~2–5 cm long plagioclase and K-feldspar phenocrysts embedded

in a fine-grained felsic groundmass (Pundir et al., 2020a).

However, the TMC/PIC and SMC mainly consists of mylonite

granite, foliation-parallel leucosome, i.e., deformed leucogranite

as well as undeformed leucogranites, granite gneisses,

amphibolites, bt-sammites and calc-silicate rocks (e.g.,

Reichardt et al., 2010; Boutonnet et al., 2012; Pundir et al.,

2020a; Pundir et al., 2020b). In this study, the granite gneiss is

exposed in the SMC (Figures 2A,B). This is biotite plagioclase

bearing granitoid and is found in association with subduction-

related Late-Jurassic Early- Cretaceous granitoids.

3 Sample selection and analytical
methods

The sample of granite gneiss (SM 4 M) was collected from the

SMC of the KT zone (Location: N 34.151128°; E 78.225104°)

(Figure 1A and Figures 2A,B) and treated for whole-rock

major and trace element analyses, and zircon U-Pb

geochronology.

The whole-rock major and trace element compositions were

analyzed using a wavelength dispersive X-Ray Fluorescence (Bruker

Tiger S-8) on pressed-powder pellets at Wadia Institute of

Himalayan Geology (WIHG), Dehradun, India. XRF technique

analytical precision for both major and trace elements lie

within ±2%–3% and ±5%–6%, respectively (Saini et al., 2007;

Khanna, 2009). The rare Earth elements (REEs) were determined

from the digested solution of rock powder using a Perkin-Elmer

SCIEX-ICP Mass Spectrometer model ELAN-DRC-e. Rock

standards (JG-2, GH, and MB-H) were used for calibration. The

FIGURE 4
(A) Plot of Na2O/K2O–CaO against SiO2 showing the approximate ranges for the alkalic, alkali–calcic, calc-alkalic, and calcic rock series (after
Frost et al., 2001). (B) FeOt/(FeOt/MgO) versus SiO2 (wt%) diagram showing the boundary between ferroan plutons andmagnesian plutons (after Frost
et al., 2001). (C) Rb versus Y + Nb tectonic discrimination diagram (Pearce et al., 1984). (D)Nb versus Y tectonic discrimination diagram (Pearce et al.,
1984), plotted to identify the tectonic setting of the analyzed samples.
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geochemical data processing and plotting were done using

Geochemical Data Toolkit software (GCDkit, Janoušek et al., 2006).

Zircon U–Pb dating was performed using LA-MC-ICPMS

(Neptune-plus, ThermoFisher Scientific Inc) fitted with a 193 nm

excimer laser (UV Laser, Model Analyte G2, Cetec-Photonmachine

Inc.), equipped with high-performance HelEx-II sample chamber

installed at WIHG, Dehradun. About 4 kg of the sample was

crushed, powdered, and processed for zircon separation using

jaw crusher, disk mill, gravity separation using Holman-Wilfley

shaking table, magnetic separation using magnetic barrier separator,

and heavy liquids separation using Bromoform (CHBr3) and

Diiodomethane (CH2I2). Euhedral to subhedral zircon grains

were hand-picked up using a stereo zoom microscope, and

zircons were mounted using PFA Teflon film at a temperature of

~275 °C. The internal zircon surfaces were exposed by means of

2400 grit sandpaper, and polished by 1- and 0.25-micron diamond

paste. The zircon mounts were gold-coated for cathode-

luminescence (CL) imaging using a Gatan Chroma CL UV

attached to a Carl-Zeiss EVO 40 EP scanning electron

microscope. The probe current varies from 10 to 20 nA. A

zircon spot diameter of 20 µm was preferred to carry out U-Pb

in-situ analysis. The standard 91500 zircon [(TIMS normalization

FIGURE 5
(A) Primitive mantle normalized spider diagram (after Sun and McDonough, 1989). (B) Chondrite-normalized REE patterns (after Sun and
McDonough, 1989).
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data 206Pb/238U = 1062.32 ± 2.22Ma; 2 sigma) (Wiedenbeck et al.,

1995) and Plešovice zircon standard ID TIMS 206Pb/238U age =

337.13 ± 0.37Ma (Sláma et al., 2008)] were used for correction of

U-Pb downhole fractionation, accuracy assessment and data

reduction (Paton et al., 2011), for detailed methodology see

Mukherjee et al., 2017. Isoplot R was used for processing and

plotting the U-Pb isotopic data (Vermeesch, 2018).

4 Petrography

The granite gneiss (SM 4 M) is a medium to coarse-grained

rock mainly consisting of quartz (Qz), plagioclase (Pl),

K-feldspar (Kfs), biotite (Bt), zircon (Zrn), and apatite (Ap)

(mineral’s symbols after Whitney and Evans, 2010) (Figure 3).

Biotite is the only ferromagnesian phase present in the sample

which are subhedral to euhedral mainly consisting of one set of

basal cleavage showing its primary nature (Figures 3A–F). The

quartz is showing slight undulose extinction and is devoid of any

sub-solidus deformation e.g., sub-grain rotation and grain

boundary migration. Plagioclase crystals are subhedral to

euhedral and display polysynthetic twinning (Figures 3B,C).

The K-feldspar is present in the form of orthoclase. As per

the International Union of Geological Sciences (IUGS)

recommended modal Q-A-P parameters (Supplementary

Figure S1; Streckeisen 1976; Le Maitre 2002), the granite

gneiss (SM 4 M) corresponds to tonalite.

5 Results

5.1 Whole-rock geochemistry, and zircon
U–Pb geochronology results of the
tonalite gneiss (SM 4M)

Whole-rock major and trace-element geochemical data for the

tonalite gneiss is given in Supplementary Table S1. The SiO2 content

of the tonalite gneiss is 64.85 wt% with 2.63 wt% K2O and 4.65 wt%

Na2O. Molar A/CNK [Al2O3/(CaO+Na2O+K2O=1.1)] ratio

suggests a slightly peraluminous nature of the tonalite gneiss

(Supplementary Table S1). The tonalite gneiss is alkali-calcic and

magnesian in nature and belongs to the subduction-related volcanic

arc granitoid (VAG), and VAG+syn-collisional granitoid (syn-

COLG) fields (Figures 4A–D). The tonalite gneiss shows negative

FIGURE 6
(A) Representative CL images of the studied tonalite gneiss, (B) 206Pb–238U ages and Concordia diagrams for LA-MC-ICP-MS zircon data plots,
(C) Kernel density plot showing the distribution of 206Pb–238U ages. (D) Weighted mean ages for the most concordant 206Pb–238U ages.
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TABLE 1 U-Pb LA-MC-ICPMS isotopic data of analyzed tonalite gneiss from Karakoram Terrane, NW India.

Spot U (ppm) Th (ppm) Th/U 207Pb/235U ±% 206Pb/238U ±% 207Pb/235U (Ma) ±Ma 206Pb/238U (Ma) ±Ma

SM 4 M (tonalite gneiss)

1_C 284 335 1.18 1.25 0.02 0.140 0.003 823 11 846 15

1_R 304 161.1 0.53 0.90 0.02 0.100 0.002 651.6 9.9 616 12

2_C 375 84.9 0.23 0.38 0.03 0.045 0.003 327 21 281 20

2_R 406 12.2 0.03 0.16 0.00 0.024 0.001 152.8 3.6 153.5 3.8

2_C 197 164 0.83 0.92 0.02 0.104 0.002 663.5 8.1 637 10

3_C 475 325 0.68 0.88 0.01 0.099 0.001 641 4.5 611.1 5

4_C 298 325 1.09 1.11 0.01 0.125 0.001 757.8 4.9 758 6.9

5_C 201 115 0.57 0.66 0.05 0.067 0.005 507 28 416 30

5_CR 172 133 0.77 1.30 0.02 0.140 0.002 846.9 9.8 846 13

5_CR2 169.6 157 0.93 1.15 0.02 0.128 0.003 775.5 9.7 775 14

6_C1 47.4 34.5 0.73 1.15 0.01 0.128 0.001 776.8 5.1 777.5 5

6_C2 39.9 32.5 0.81 1.21 0.02 0.137 0.002 804.2 8.8 826.8 9.5

6_CR 40.8 25.1 0.62 1.18 0.01 0.134 0.001 791.2 6.5 808.8 6.6

7_C 296 288 0.97 1.20 0.03 0.133 0.003 805 13 806 14

8_C 120.5 135.6 1.13 1.18 0.01 0.134 0.001 788.7 5.3 808.9 7.2

8_CR 164.9 169.1 1.03 1.14 0.01 0.130 0.001 774.7 4.4 790.2 5.4

9_C 430 350 0.81 1.17 0.01 0.133 0.001 786.7 4 801.9 5.9

9_R 313 344 1.10 1.06 0.01 0.120 0.001 731.6 3.2 728.3 4.6

10_C1 117.6 64.7 0.55 1.06 0.04 0.119 0.004 730 20 726 24

10_C2 107.6 58.2 0.54 1.18 0.02 0.135 0.002 791.1 9.9 814 8.7

11_R1 620 2.44 0.00 0.09 0.00 0.014 0.000 88.1 2.6 89.7 2.6

11_C2 352 15 0.04 0.16 0.01 0.022 0.001 149.8 4.7 140.5 4.1

11_R2 524 3.11 0.01 0.09 0.00 0.014 0.000 86.49 0.96 87.52 0.65

12_C 628 760 1.21 0.88 0.01 0.097 0.002 641.5 7.2 595.9 9.8

12_R 466 38.43 0.08 0.13 0.00 0.019 0.000 125.2 2.3 123.6 1.9

13_R 224 63.5 0.28 0.44 0.01 0.049 0.002 370 11 306.7 9.5

13_C 186.3 150 0.81 1.19 0.01 0.133 0.001 796.1 6.2 802.6 5.7

14_C1 181 110 0.61 1.03 0.05 0.116 0.005 717 23 705 30

14_C2 200 152 0.76 1.15 0.02 0.129 0.002 775.4 8 780 10

15_C 353 381 1.08 1.04 0.01 0.117 0.001 724.7 4.4 712.2 5.3

15_R 109.7 41.25 0.38 0.98 0.02 0.108 0.002 694.1 8.8 662.7 9.8

16_C1 284 236 0.83 1.11 0.02 0.124 0.002 759.3 9 752 12

16C2 49 28.2 0.58 1.24 0.02 0.136 0.001 819 10 819.4 6.9

17_C 234.4 230.1 0.98 1.06 0.01 0.116 0.001 733.2 6.4 709.2 7.8

17_R 314.1 29.2 0.09 0.19 0.00 0.028 0.000 176.3 2.8 175.6 2.1

18_C 76.8 72.4 0.94 1.09 0.02 0.116 0.002 746 9.6 707 10

18_C2 172 46.1 0.27 1.13 0.02 0.121 0.002 769.4 7.1 738 9.2

19_C 142 54.4 0.38 1.27 0.02 0.136 0.002 830.3 8.6 823.7 9.7

19_R 233 79.5 0.34 1.01 0.02 0.111 0.002 710 12 679 13

20_C 262 213 0.81 1.17 0.02 0.129 0.002 783.8 8.8 781 11

20_C2 123.3 110.2 0.89 1.16 0.01 0.129 0.001 781.6 4.7 783.5 5.3

21_C 228 158.7 0.70 0.99 0.02 0.109 0.002 698 11 666 13

21_C2 263 154 0.59 1.13 0.02 0.118 0.001 767 11 716.7 6.6

22_C 196.8 152.5 0.77 0.83 0.01 0.094 0.002 616.8 7.1 579 9.1

22_C2 206.7 174 0.84 0.97 0.01 0.107 0.001 689.2 5.6 655.2 7.6
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anomalies for Nb and Ti (Figure 5A), along with light REEs (LREEs)

enrichment relative to heavy REEs (HREEs) (LaN/YbN = 33.99; CeN/

YbN = 27.76) (Figure 5B).

Zircon grains from tonalite gneiss are long prismatic and

euhedral to subhedral in shape (Figure 6A). The CL images

shows the oscillatory growth zoning in the cores while the

rims are mostly homogeneous in nature (Figure 6A). Forty-

five spot analyses were carried out on 22 zircon grains. Rims

with Late Jurassic-Early Cretaceous have low Th/U values of

0.004–0.093, typical of metamorphic origin (e.g., Rubatto

2002) (Table 1). In contrast, the zircon cores from

Neoproterozoic ages have high Th/U values of

0.27–1.21 typical of magmatic origin (Table 1). The Late

Jurassic-Early Cretaceous zones in zircons are homogenous

indicating late-stage recrystallization, while the older Late-

Neoproterozoic zircons preserves oscillatory zoning

(Figure 6). The oscillatory zoned cores along with high Th/

U ratios suggest that the zircons are crystallized from silicate

melts, and the obtained ages from these can be considered as

crystallization age. There are four rims of Late-

Neoproterozoic age which have high Th/U ratio and are

discordant. Considering these ages geologically

insignificant, we have not considered these points in our

weighted mean age calculations. We use the ±3%

discordant filter to get the geologically meaningful age. The

cluster of data we have considered in age calculation are

concordant and is used in weighted mean age calculations.

The zircon grains yielded 206Pb/238U ages ranging from

~700 to 846 (n=29) Ma with major magmatic pulses between

~700 and 809 Ma (n=21) (Figures 6B,C). Fourteen analyses

provide an upper intercept age of 776.61 ± 2.72 with a

MSWD = 2.8 (Figures 6B,C). The sample bears two

different 206Pb-238U age groups; one with weighted mean

age of 806.07 ± 1.51 Ma (MSWD = 1.64; n = 6) which we

consider as the zircon crystallization age in the tonalite gneiss

whereas another age group with weighted mean age of

782.70 ± 1.43 Ma (MSWD = 2.68; n = 6; inset of

Figure 6D). These two mean ages represent two closely

related felsic magmatic pulses at a short time interval.

6 Discussion

6.1 Source characterization and likely
tectonic setting of neoproterozoic
magmatism in the KT

The studied tonalite gneiss sample is intermediate in

composition with SiO2=64.85 wt%, and MgO=2.88 wt% and

is slightly peraluminous in nature with A/CNK values of 1.1.

The high Sr/Y ratio=19.75, LaN/YbN=33.99 ratio point to its

similarity with the adakitic rocks (Defant et al., 2002). The

Chondrite-normalized spidergram (Figure 5B) shows a

steeply inclined REE pattern (high LREE/HREE ratios)

similar to the Neoproterozoic granites of Tibet, and TTG

suite (800 Ma) of southern Pamir (e.g., Zhang et al., 2018).

The observed features suggest a mafic lower crustal source

(e.g., granulite-facies) for the tonalite gneiss. We compared

the tonalite gneiss with the granites of similar age from the

adjacent terranes of central Tibet to assess their comparative

petrogenesis and likely tectonic setting (Table 2; Figure 4).

These Neoproterozoic granites are magnesian, calcic to alkali

calcic in nature and show affinity with VAG (Figure 4) and

follow the calc-alkaline trend (Figure 4). Hence, they bear

geochemical features similar to granites formed in the

subduction-related tectonic regimes.

6.2 A viable petrogeneticmodel linking the
neoproterozoic magmatism in the KT,
Southern Pamir, and Central Tibet

The qualitative analysis of whole-rock elemental data

demonstrates that the tonalite gneiss (SiO2=64.85,

MgO=2.88wt%, with High LREE/HREE and Sr/Y ratio),

might have formed through the melting of a mafic lower

crust as noted for the Neoproterozoic TTG suite of the

southern Pamir (Zhang et al., 2018), and for fractionated

granitoid suite from the Central Tibet (e.g., Amdo and

Jiayuqiao) (e.g., Liu et al., 2021). It is therefore imperative

to test the hypothesis quantitatively using trace and REE

modeling of mafic lower crustal composition (Weaver and

Tarney, 1980), which probably formed the Neoproterozoic

granitoid of these terranes. In the present study the analyzed

sample is from the metamorphic terrane, therefore it is

important to decipher the any metamorphic and other

alteration effects on the sample. The petrographic features

of the tonalite gneiss e.g., 1) primary euhedral crystals of

biotite having cleavage in the basal section 2) the absence of

sub-solidus deformation in the quartz grains e.g., sub-grain

rotation and grain boundary migration etc. suggest that the

rock preserved the magmatic texture and has not suffered any

alteration and high-grade metamorphism. There are no

evidences in this sample for alteration of biotite to chlorite.

Any low-grade metamorphism only can affect the alkali

element concentrations (e.g., K and Na) and LILE

concentrations (e.g., Rb, Ba, Sr, Pb, and Cs). In contrast,

these low-grade metamorphic activities have negligible

impact on the abundances of immobile elements (e.g., Hu

et al., 2018a), therefore, we carried out the REEs modeling in

our study.

The melts with a high Sr/Y ratio can be generated at a depth

of ~>30–40 km (>1.2 GPa) where garnet remains stable with

residues of garnet-amphibolite, or eclogite and plagioclase

remain unstable (Petford and Gallagher, 2001). The mineral

modes (Gt=0.30, Amp=0.10, Cpx=0.20) of a mafic source for
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the partial melting model were therefore chosen reasonably at

~900°C and at ~12–15 kbar (Qian and Hermann, 2013). The

mineral/liquid partition coefficients (Kds) were taken from Qian

and Hermann. (2013), Rollinson. (1993), and from GERM

Partition Coefficient (Kds) Database as given in

Supplementary Table S2.

The equilibrium batch melting was performed using the

equation (Schilling and Winchester, 1967):

TABLE 3 Trace and rare Earth elements (REEs) modeling results for the studied tonalite gneiss (SM 4 M), TTGs of the South Pamir terrane, and Central
Tibet.

Parent
(Lower
crust,
Weaver and
Tarney,
(1980)

Observed
results (SM
4 M (This
Study)

Calculated
Partial
Melting
results (F=0.5)

Observed results
(Average of
TTGs, Zhang
et al. (2018),
Southern Pamir)

Calculated FC results
(F=0.58)(Average of
TTGs

Observed results
(Average of
Granitoids Liu
et al. (2021); Yu
et al. (2021)Central
Tibet)

Calculated
FC results
(F=0.53)

La 9.5 18.01 18.40 28.12 28.70 30.33 30.90

Ce 17 37.98 31.89 51.67 53.82 64.71 57.42

Pr 2 4.23 3.71 5.80 6.40 6.77 7.00

Nd 8 17.11 13.02 20.91 21.51 23.33 23.38

Sm 2.75 3.67 2.96 4.69 4.86 4.42 5.27

Eu 1.1 0.87 0.98 1.15 1.15 0.71 1.18

Gd 3.95 2.76 2.22 2.86 3.73 4.00 4.06

Tb 0.58 0.38 --- 0.35 --- 0.62 ----

Dy 3.35 1.96 1.59 1.82 2.57 3.85 2.78

Ho 0.73 0.16 --- 0.35 --- 0.81 ----

Er 2 0.45 1.11 0.94 1.86 2.30 2.02

Tm 0.35 0.04 --- 0.14 --- 0.34 ----

Yb 1.9 0.38 0.66 0.90 1.10 2.20 1.20

Lu 0.3 0.06 0.12 0.13 0.20 0.32 0.21

Note: For less fractionated SM, 4 M (SiO2=64.85, MgO=2.88wt%) the parent is Lower crust (Weaver and Tarney, 1980), while the calculated partial melting results at (F=0.5) were used as

the parent for the highly fractionated TTGs (SiO2=67 wt%; MgO=1.61; Zhang et al., 2018) and Granitoids (SiO2=71.38 wt%; MgO=1.30; Liu et al., 2021; Yu et al., 2021).

TABLE 2 Compiled Sr-Nd and εHf(i) isotope data from Early-Neoproterozoic magmatic rocks from Northern Lhasa, Qiangtang terrane, Pamir and KT.

Northern Lhasa
(Central Tibet)

Amdo & Jiayuqiao
Microcontinent
Qiangtang terrane
(Central Tibet)

Pamir Plateau Karakoram Terrane
(This Study)

Age (Ma) 856 to ~748 920-767 840-835 800

ISr 0.708 to 0.711 – Tonalite, Trondhjemite: 0.705572-
0.708341

–

Granodiorite: 0.700794-701938

εNd(t) −2.4 to +10.4 – Tonalite, Trondhjemite: -9.71 to
-8.23 Granodiorite: -4.43 to -5.45

–

εHf(t) -2 to +12.4 -8.9 to +4.0 Tonalite, Trondhjemite: -14 to
-10 Granodiorite: -10 to -7

–

Inferences Derivation from the depleted mantle
(juvenile) with the older continental
crustal component assimilation (arc and
back-arc type)

Protolith derived from partial
melting of ancient crustal source

TTG suite derivation from partial
melting of a mafic lower crust (≥30) km
with a garnet amphibolite residue and
granodiorite derivation from partial
melting of a mafic crust at a shallower
level

Derivation from partial melting
of a lower crust where garnet
remained residue during partial
melting

References Hu et al. (2005); Dong et al. (2011); Hu
et al. (2018a); Hu et al. (2018b)

Liu et al. (2021); Guynn et al.
(2012); Yu et al. (2021); Zhang et al.
(2012)

Zhang et al. (2018) This Study
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FIGURE 8
Probability density plot for the inherited zircon ages from the Triassic to Miocene granitoid, U–Pb detrital ages, and Neoproterozoic U–Pb ages
from (A) the Karakoram, (B) Southern Pamir, and (C) Central Tibet (Data source-Karakoram: Boutonnet et al., 2012; Fraser et al., 2001; Heuberger
et al., 2007; Kumar et al., 2017; Parrish and Tirrul, 1989; Pundir et al., 2020a; Pundir et al., 2020b; Ravikant et al., 2009; Schwab et al., 2004; Searle
et al., 1998; Sen et al., 2014; Van buer et al., 2015; Weinberg et al., 2000; Southern Pamir: Chapman et al., 2018; Liu et al., 2020; Schwab et al.,
2004; Central Tibet: Hao et al., 2016; Ou et al., 2017; Schwab et al., 2004; Sui et al., 2013; Wang et al., 2020; Wu et al., 2016; Zhai et al., 2013). Density
plots of U–Pb detrital ages are taken from previous studies. Tibet: Gehrels et al., 2011; He et al., 2019; Song et al., 2017; Pamir: Chapman et al., 2018;
Karakoram: Borneman et al., 2015. Density plots of Neoproterozoic U–Pb ages. Data Source: Tibet: Hu et al., 2005; Dong et al., 2011; Liu et al., 2021;
Yu et al., 2021 (n=290), Karakoram: This study (n=45), Pamir: Zhang et al., 2018 (n=199).

FIGURE 7
Calculated trends obtained from geochemical modeling of partial melting (PM) of amafic lower crust (Weaver and Tarney, 1980), and fractional
crystallization (FC) of the melt produced (50%) shown in terms of: (A) (La/Yb)N versus YbN (B) La/Sm versus La.
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Cl

C0
� 1
F +D − FD

(1)

where, CL and C0 are the concentrations of an element in the

melt and source respectively, F is the weight fraction of melt, and

D is the bulk distribution coefficient.

For fractional crystallization we used the Rayleigh

fractionation equation (Rayleigh, 1896):

Cl

C0
� FD−1 (2)

where, CL and C0 are the concentrations of an element in the

residual melt and parent magma respectively, F is the weight

fraction of residual melt, and D is the bulk distribution

coefficient. We consider the proportions (Bt=0.20, Plg=0.45,

Kfs=0.05, Qz=0.30) of mineral mode present in the studied

tonalite gneiss as fractionating phases.

The calculated results are summarized in Table 3 and trends

of partial melting and fractional crystallization are shown on (La/

Yb)N vs. YbN (Martin, 1986) (Figure 7A) on La/Sm vs. La

(Figure 7B). The calculated results suggest that about 50%

melting of a mafic lower crustal source can generate a

composition similar to the tonalite gneiss SM 4 M

(SiO2=64.85, MgO=2.88wt%). Further fractional crystallization

(FC) (~42%) of generated melt can produce rock members

similar to the Tonalite–trondhjemite suite (SiO2=67 wt%;

MgO=1.61: average of Zhang et al., 2018 geochemical data)

from the Southern Pamir, and about 47% FC can produce

rock members similar to the granitoid suite (SiO2=71.4 wt%;

MgO=1.3; average of Liu et al., 2021; Yu et al., 2021) from the

Central Tibet (Table 3). The generation of the SM 4 M at a high

degree of partial melting (40%–60%) also supports its affinity

toward the tonalitic nature of the melt (Arndt, 2013). It is

therefore likely that melt similar to the low SiO2 and high

MgO tonalite gneiss SM 4 M served as parental magma which

evolved through fractional differentiation forming the high SiO2

and lowMgO rock members of the TTG suites of southern Pamir

and granitoid from Central Tibet. Based on geochemical and

zircon Lu-Hf isotope data Liu et al., 2021 also suggested that the

granodiorites and tonalites as the protolith of the central Tibet

granitic gneisses. However, the likely genetic connotation

between KT tonalite gneiss and rocks of TTG from Pamir

needs to be tested further using a large database.

6.3 Pamir-karakoram-Tibet as fragments
of rodinia supercontinent

We compile zircon U-Pb inherited ages from the Triassic

to Miocene granitoid and detrital zircon U-Pb

geochronological records from southern Pamir, Karakoram,

and central Tibet, and compare them with Neoproterozoic

magmatism of these terranes to decipher the geological

magmatic history of these blocks during the Rodinia

supercontinent cycle (Figure 8). The data compilation

suggests that the terranes witnessed intense magmatism

during Neoproterozoic and Cambrian times (Figure 8). We

also compile the Sr-Nd and zircon Lu-Hf isotope values of the

granitoids of ~920–748 Ma from these terranes to assess their

comparative petrogenesis and the likely source of their

formation (Table 2). The negative to positive εNd(t) and

εHf(t) isotope values from the Early-Middle Neoproterozoic

sedimentary deposits, as well as bedrock granite gneisses from

Tibet along with high (87Sr/86Sr)I values of 0.708–0.711

(Table 2), suggest the origin of the granitoids from

depleted mantle with the older continental crustal

component assimilation (Table 2; Yu et al., 2021).

However, the Neoproterozoic (857–767 Ma) granite gneiss

from the Amdo & Jiayuqiao microcontinents from the

Qiangtang terrane, Central Tibet have highly negative to

positive values (–8.9 to 4.0), and geochemically the granite

gneiss bears calc-alkaline nature, with the protolith derived

from partial melting of ancient crustal source (e.g., tonalites

and granodiorites) (Table 2; Liu et a., 2021). Similarly, the

middle Neoproterozoic (~840 Ma) TTG suite from the central

Pamir also have εNd(i) (−14 to −10) and zircon εHf(i)
(−9.5 to −8.7) and geochemically the granitoids belong to

TTG/adakites suites having enriched LILE, and LREEs as

compared to HFSEs and HREEs with high Sr/Y and (La/

Yb)N ratios suggesting its origin from partial melting of a

mafic lower crust (Zhang et al., 2018). Our observed

geochemical results from the present study also suggest

that the tonalite gneiss (SM 4 M) from the eastern

Karakoram melt might have derived from partial melting of

the mafic lower continental crust (Figure 5B). Therefore, we

argue that these continents might have experienced a similar

geotectonic evolution during Neoproterozoic time.

Considering limitations of interpretation based on only one

sample of tonalite gneiss, it cannot be argued firmly the exact

position of the KT within the Rodinia supercontinent but the

theory of plate tectonics suggests that no rock is accidental

(Fichter and Whitmeyer, 2019). The reason we got only one

tonalite sample of Cryogenian age in this zone might be that

partial migmatization have annealed and recrystallized the

zircons of the Late Neo-Proterozoic terrane. Therefore, we

argue that this sample bears significance in the Rodinia

supercontinent reconstruction. Based on identical

geochemical and geochronological records from the

Karakoram and south-central Pamir, we propose the

Karakoram, south-central Pamir and central Tibet

microcontinents as a single continental block during

Neoproterozoic. The Late Jurassic-Early Cretaceous rims

from the zircons are homogenous indicating the tonalite

gneiss have recorded thermal imprints during the

subduction of Neo-Tethys Oceanic lithosphere along the

Eurasian Plate margin.
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7 Conclusions

The elemental data suggest that the studied tonalite gneiss

is more likely sourced from the mafic lower crust where garnet

remained in the residue. Petrogenetic modeling suggests that

the parental melt similar to the tonalite gneiss can be

generated by ~50% partial melting of the mafic lower crust

which might have served as the parent to the TTGs and the

more evolved granitoid suite from the Southern Pamir and

Central Tibet during Neoproterozoic. The middle-

Neoproterozoic tonalite gneiss, recorded for the first time

from the KT, suggests Karakoram, south-central Pamir and

central Tibet microcontinents as a single continental block

during Neoproterozoic.
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