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Based on different reanalysis datasets, reconstructions of East Asia landfall

tropical cyclones (TCs) were compared with observations. The 20th-century

reanalysis version 3 dataset (20CRv3) received the most approval in this

assessment. It performed better in terms of annual frequency. The fifth

generation of atmospheric reanalysis dataset (ERA5) and Japanese 55-year

reanalysis dataset (JRA55) are also recommended in this study. Nevertheless, an

apparent inconsistency in reconstructed TCs before and after 1980 is visible.

Temporally, after the satellite era, the underestimation on TC frequency of the

National Centres for Environmental Prediction and National Centre for

Atmospheric Research (NCEP/NCAR) reanalysis dataset (NCAR) and 20-

century reanalysis of European Center for Medium-Range Weather Forecasts

(ERA20C) has been greatly improved. The downward trend of landfalling TCs is

well captured by ERA5 and ERA20C. Spatially, the underestimation of TC track

discrepancy is reduced in the post-satellite era. ERA5 and 20CRv3 showed

relatively consistent performance compared to the former reanalysis in pre-and

post-satellite time, whichmight be due to their better TC treatment. Despite the

essential need for high resolution, this study stressed the importance of

observation and assimilation development for the reanalysis TCs.
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1 Introduction

Tropical cyclones (TCs) are important natural hazards in East Asia and have been of

great concern to policymakers and researchers due to their large socioeconomic impacts.

As TC observational data are relatively limited spatially and temporally, atmospheric

reanalysis datasets play an indispensable role in TC research. Reanalysis datasets are used

as an observation supplement for large-scale systems, such as monsoons (Zhou and Wu,

2019) and the El Nino Southern Oscillation (ENSO) (Zhang et al., 2018), when

investigating their relationship with TCs, and the direct representation of TCs in

reanalysis data is important to those studies (Scoccimarro et al., 2012). Reanalysis
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data have also been used to describe the thermodynamic,

dynamic, and other environmental factors that favor TC

genesis (Pu et al., 2019). Some reanalysis data have even been

used in historical TC research for over a century (Liu et al., 2021).

Furthermore, reanalysis data act as a bridge between the model

and observations. Before the tracking method and identification

criteria made for TCs are adapted in models, reanalysis data can

provide reliability tests for those schemes (Bengtsson et al.,

2007a; Murakami and Sugi, 2010). Other than that, reanalysis

data can also specify the regional model boundary conditions for

the model-based future projection study of TCs (e.g., Walsh,

2015).

Investigations of reanalysis TCs have been performed in the

last 2 decades. It was found that reanalysis TCs are basin-

dependent in their representation of TC track, the position

difference is less in eastern America and eastern China, which

have the densest observations in their neighboring basins

(Schenkel and Hart, 2012). By using 6 reanalysis datasets,

Murakami (2014) discovered that with finer resolution and

assimilation of wind data, Japanese reanalysis gives the finest

and the most reasonable result in TC spatial distribution and TC

structure. Their research also showed that the interannual

variation in reanalysis TCs in the Western North Pacific

(WNP) and North Atlantic has a high correlation with

observation data. Furthermore, Hodges et al. (2017) also

affirmed that reanalysis TC genesis can reach close-to-realistic

annual counts through a proper identification scheme. The

limited resolution of reanalysis data means that they cannot

truly reproduce strong TCs (Murakami and Sugi, 2010; Strachan

et al., 2013). Malakar et al. (2020) investigated the intensity,

structure and evolution history of 28 TCs in the North Indian

Ocean and found that the Global Forecast System reanalysis and

ERA5 capture the realistic evolution of different TC cases, while

its interim dataset underestimates TC intensity and

intensification, and their study also stated the importance of

high resolution. However, a reasonable description of TC

intensity can not only be solved by increasing the resolution

but also be achieved by improving data assimilation, model

physical processes, and air-sea coupling (Murakami, 2014).

Previous studies gave us an increased understanding of how

TC reconstruction was realized by improving reanalysis data and

the TC tracking method. However, most studies do not show pre-

satellite time reanalysis TC results due to considerations of

inconsistency in the quality of TC data before and after the

satellite era. Meanwhile, there have been many developments in

East Asia landfalling TC climatology, landfalling TC’s trend and

variation on the scale of 60-year were investigated (e.g., Chan and

Xu, 2008; Shan and Yu, 2021). Data on landfalling TCs in East

Asia are considered reliable beyond 60 years, especially the more

intense ones.

This paper reports a succinct TC tracking method and its

application to the reconstruction of historical landfalling TCs in

East Asia by using different reanalysis data, tries to figure out if

there exits inconsistency before and after satellite era, and

answers the question that if there is any reanalysis dataset

considered to be better when we want to analyze the climate

change of tropical cyclones. The remainder of this paper is

organized as follows. Section 2 describes the observational and

reanalysis datasets used in our work, as well as the TC tracking

method used. Section 3 gives the results of the reanalysis TCs in

terms of track, genesis density, duration, variability and trend of

TCs before and after 1980. Section 4 provides a conclusion of this

work and briefly discusses the issues to be investigated in the

future.

2 Data and methods

2.1 Data

One observational and six reanalysis datasets were used in

this study, including the best-track data from the International

Best-Track Archive for Climate Stewardship (IBTrACS, Knapp

et al., 2010), NCAR (Kalnay et al., 1996) from NCEP/NCAR,

20CRv3 (Slivinski et al., 2019) from the National Oceanic and

Atmospheric Administration (NOAA), the Cooperative Institute

for Research in Environmental Sciences and the U.S. Department

of Energy, JRA55 (Kobayashi et al., 2015) from the Japan

Meteorological Agency, the ECMWF reanalysis interim

dataset (ERAI, Dee et al., 2011), ERA5 (Hersbach et al., 2020;

Bell et al., 2021) and ERA20C (Poli et al., 2016). Further details

are provided below.

2.1.1 Observation data
The IBTrACS project merges TC information from agencies

around the world and offers various TC variables, including

Universal Time Coordinate (UTC) time, longitude and latitude.

This study used best-track data from the Chinese Meteorological

Administration Shanghai Typhoon Institute (CMA, Ying et al.,

2014), obtained from IBTrACS version 04 (Knapp et al., 2010).

CMA data offer longitude, latitude, minimum central pressure

(MCP), storm type and max sustained wind speed (MSW) with a

2-min average time. The MSW is the highest surface wind that

occurs within the TC circulation. We used CMA’s 2-min average

MSW to satisfy the national standard, which states that typhoon

(TY) intensity occurs when the TC’s central 2-min average wind

speed exceeds 32.7 m/s but is no greater than 41.4 m/s. In

this study, we use TCs with a maximum intensity exceeding

32.7 m/s.

2.1.2 Reanalysis data
The assimilation method, resolution, period, and TC

treatment of the six reanalysis datasets used are given in

Table 1. All the reanalysis data we used are based on a

temporal frequency of 6 h, and each day contains four

timesteps of 00 UTC, 06 UTC, 12 UTC and 18 UTC. Five out
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of six reanalysis datasets used in this work adapt a four-

dimensional variation data assimilation, which yields a more

accurate large-scale flow and should produce TCs more precisely

(Whitaker et al., 2009; Dee et al., 2011). Based on all these data,

20CRv3 and ERA5 assimilate the International Surface Pressure

Databank (ISPD), which contains the TC minimum central

pressure from IBTrACS. Furthermore, 20CR has a special

treatment for TCs; it allows significant low-pressure values

caused by TCs to bypass quality control (QC) in the IBTrACS

data assimilation (Compo et al., 2011). In version 3, a 4D

incremental analysis method replaces the digital filter so that

low-pressure values of TCs are retained and yet do not cause any

system instability (Slivinski et al., 2019). The measures above

enable the 20CRv3 data to present a more accurate location, sea

level pressure and wind distribution around the TC (Slivinski

et al., 2019). ERA20C uses a method called “bogus TC” to

improve TC presentation, that is, it uses information, such as

TC structure and behavior obtained from observations, as well as

empirical formulas and gradient wind relationships to generate

more realistic TCs in the model (Ahn and Lee, 2002; Poli et al.,

2016). JRA55 assimilates the retrieval data (TCR) of the TC

surrounding wind profile from Dr. Michael Fiorino (from

NOAA). This technology makes the former JRA25 more

representative for TCs than other reanalysis data in the same

period. However, when applied to JRA55, the detection rate of

TCs appears to unexpectedly decline in the 2000s, which is most

likely affected by the artificial weakening trend of TCR’s global

average wind speed (Kobayashi et al., 2015).

2.2 Methods

2.2.1 Objective tracking method
The objective tracking method for reanalysis cyclone data in

this study was proposed by Hodges (1994). Objective tracking is

an approach that uses appropriate meteorological fields to

segment background and object points and then identifies the

initial feature points, tracks them by frame to obtain a series of

feature points, forming the systems’ path. In this study, the

tracking utilized the 850 hPa relative vorticity field and set the

segmentation threshold to 1 × 10−5 s−1, then, the initial feature

point was found and a search for the next timestep’s feature point

was conducted within a certain radius, and the positive vorticity

points of each timestep were processed in sequence. Finally, the

positive vorticity point’s position, time and 850 hPa relative

vorticity value were stored for further verification and

identification.

2.2.2 Identification scheme
At present, apart from manual identification methods, many

previous works focus on the TC warm core structure. Coupled

with thresholds, such as duration and low-level relative vorticity,

vorticity or temperature differences between levels are widely

used (Bengtsson et al., 1996; Camargo and Zebiak, 2002;

Bengtsson et al., 2007b; Zhao et al., 2009; Murakami and Sugi,

2010; Bell et al., 2013; Strachan et al., 2013; Hodges et al., 2017).

Alternately, the Okubo–Weiss–Zeta (OWZ) diagnostic method

focuses on the environmental conditions conducive to the

generation and development of TCs (Tory et al., 2013).

However, there is great disagreement among the different

tracking schemes, in which the determination of duration,

wind speed and genesis latitude thresholds play an important

role, and the difference in each scheme’s focus point can also lead

to disparities (Horn et al., 2014).

In this study, together with the landing criterion, we used an

overall identification method similar to Hodges et al. (2017).

Limitations in the track starting area were used, the initial point

of the track must be in WNP basin. The applied objective

tracking method has been shown to produce an extended TC

life cycle including the post-TC stage in which vorticity

disturbance has just emerged and the extratropical transition

stage of the positive vorticity system remains (Strachan et al.,

2013). To remove false alarms that are unlikely even to be

attributed to tropical depressions, a longer duration of no less

than 4 days (16 timesteps) was considered. Here, the duration

refers to the trajectory existence time, as a longer life cycle was

demonstrated in objective tracking TC, and a longer duration

condition has little impact on the TCs that we focused on.

Reanalysis TC position uncertainty was considered when

developing the landfall criterion. TCs were considered to be

TABLE 1 The assimilation method, model resolution, research period and TC treatment of the NCAR, 20CRv3, JRA55, ERAI, ERA5, and ERA20C
reanalysis datasets.

Name Assimilation Model resolution Period TC treatment

NCAR 3D-Var T62 (210 km) 1949–2019 None

20CRv3 4D-Var T254 (60 km) 1949–2015 Assimilate TC min central pressure contained ISPD dataset and special QC

JRA55 4D-Var T319 (55 km) 1958–2019 TCR assimilation

ERAI 4D-Var T255 (80 km) 1980–2016 None

ERA5 4D-Var T639 (31 km) 1950–2019 Assimilate TC min central pressure contained ISPD dataset

ERA20C 4D-Var T159 (125 km) 1949–2010 Bogus TC
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linked to landfall when the minimum distance between the

coastline and its track was less than 1°. Here, we focused on

five landfall regions, including China, the Philippines, Malaysia,

Brunei, and Vietnam, collectively described as the East Asia area.

Apart from the requirement below, a distinctive approach,

namely, the west-moving requirement, was added to our

identification scheme. The surrounding atmospheric

circulation is the dominant factor that affects TC movement

(Chan and Gray, 1982). In East Asia, tropical easterlies, monsoon

throughs and subtropical highs are strongly associated with TC

trajectories as part of background flows (Harr and Elsberry,

1995), and their combined effect drives TCs, showing straight-

forward or recurving trajectories (Chen et al., 2009). Most of the

studied landfall TCs in our concerned regions are straight-

forward or recurving when they move out of the genesis

basin, and their movement direction is mainly westward,

especially at the beginning (Camargo et al., 2007). Among all

the positive vorticity systems affecting East Asia, a considerable

false alarm was composed of extratropical cyclones, which are

dominated by westerlies and perform differently from TCs. We

have captured the key difference between these two cyclones’

trajectories mentioned above in East Asia, limiting the direction

of motion in the early stages of cyclone generation, successfully

separated extra-tropical cyclones and ensured the reliability of

TC landfall processes.

The key to finding the 850 hPa RV threshold at TY

intensity is to construct the connections between RV and

MSW values. A TY’s intensification can be accompanied by

enhanced positive vorticity near its center, along with the

appearance of a positive vorticity column through the middle

to upper troposphere (Yu et al., 2008). To avoid the

interference track such as tropical depression, we matched

the best-track (BT) TCs with reanalysis TCs using the direct

matching method (Hodges et al., 2017), and we found that the

maximum intensity times of all six-reanalysis data TCs

appeared to be early or delayed compared with the BT TCs

within their matching period. The maximum intensity time

lags within each dataset are shown in Figure 1. The time lag is

calculated by using the observation MSW maximum timestep

minus the reanalysis RV maximum timestep (in their

matching period). A positive value (blue) means that the

RV maximum appears early to the MSW maximum, while a

FIGURE 1
BT-RV time lag distribution for NCAR, 20CRv3, JRA55, ERAI, ERA5, and ERA20C (1980–2009). The Y-axis represents the sample number of
matching tracks, and the X-axis represents the lag time (6 h a step) between the reanalysis and observed TC.
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negative value (yellow) means a delay. The early and delayed

appearance of RV maximums compared to MSW maximums

are within the back and front 10 timesteps (60 h), which means

there is a great chance to find an RV maximum within the back

and front 60 h in the observational TC’s maximum MSW.

With the discovery above, we draw the MSW maximum and

time corresponding to the RV value in its surrounding 60 h, as

depicted in Figure 2. To objectively find the intensity threshold,

linear and e functions were used to fit those scatter points. With

the highest r2, the 20CRv3 MSW-RV relationship is reasonably

explained. The high-intensity reproduction failure of ERAI is also

mentioned by Malakar et al. (2020), who claimed that in the

North Indian Ocean, ERAI obtained a higher number of hits for

lower-intensity statements but failed to present higher-intensity

statements. To find a correct threshold for reanalysis TCs, the

corresponding value of RV for TY intensity was found. For

simplicity, we choose 6 × 10−5 s−1 as the final threshold. In

summary, the identification criteria we developed are given as

follows:

(1) The shortest distance between reanalysis TC tracks and

coastlines is less than 1°.

(2) The duration of TCs must exceed 4 days.

(3) The first point of TCs must be in the WNP basin (0°–35° N,

105°–210° E).

(4) The tracks must move west from the genesis time compared

to the third day (12 steps).

(5) The 850 hPa RV must reach the threshold of 6 × 10−5 s−1 at
south of 35° N.

The identification used here is highly based on the regional

circulation characteristics; therefore, it is a basin-dependent method

that should change accordingly when applied to other basins. The

threshold of RV chosen here is based on the MSW-RV relationship,

which can allocate different thresholds based on different reanalysis,

despite their resolution difference. However, this study attempted to

find a general threshold for TY intensity; thus, a RV threshold of

6 × 10−5 s−1 is chosen, and therefore the TC studied following

indicates tropical cyclone with max intensity exceeds TY.

FIGURE 2
BT max sustained wind (MSW) and matching 850 hPa relative vorticity (RV) scatter (blue) (1980–2009), with the fitting function (black straight
line), the TYwind speed threshold of 32.7 m/s (red dotted line), and the vorticity threshold corresponding to the typhoonwind speed threshold on the
fitting function (yellow dotted line).
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3 Results

3.1 TC track, genesis and lifetime

Figure 3 shows the TC tracks of the observations and six

reanalysis datasets. The classification of reanalysis TC

intensity levels was determined according to the fitting

function that was determined in subsection 2.2.2. The TY

trajectories of all reanalysis data are more widely distributed,

extending near the equator to the south, to the Indochina

Peninsula and the Bay of Bengal to the west, and covering

Northeast China, the Korean Peninsula and Japan to the

north. At the same time, it is noteworthy that reanalysis

TCs demonstrate the process of extratropical transition

more obviously, which reminds us that it is very

important to deal with the information of the extratropical

transition stage when using those data to evaluate TC

trajectory.

FIGURE 3
NCAR, 20CRv3, JRA55, ERAI, ERA5, ERA20C, and BT TC tracks (1980–2009) (black). Scatter in different colors indicate different intensity stages:
tropical depression (TD) is blue; tropical storm (TS) is cyan; strong tropical storm (STS) is green; typhoon (TY) is yellow; strong typhoon (STY) is red;
and super typhoon (Super TY) is purple.

FIGURE 4
Duration in the distributions of BT TCs and NCAR, ERAI,
20CRv3, JRA55, ERA5, and ERA20C (1980–2009) TCs.
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As the reanalysis TC tracks seem to be longer, as shown in

Figure 3, the durations and genesis position of reanalysis and

observation TCs were investigated. Characteristically, most

reanalysis datasets have longer life cycles than the observations

(Figure 4, red bar). The duration of observed TCs is mostly

distributed at 3–12 days, while ERAI, ERA5, ERA20C, JRA55,

and 20CRv3 TCs last longer than 12 days (Figure 4). As a

characteristic of the tracking method itself, most reanalyzes

have a consistent lifetime distribution (Hodges et al., 2017).

High resolutions like ERA5 and JRA55 are linked to a

longer lifetime, and course resolutions like NCAR and

ERA20C can surely infect the result of the life cycle.

Figure 5 shows the genesis distribution difference between

reanalysis and observed TCs. The reanalysis TC generation

position was closer to the equator and northern central

Pacific, especially in 20CRv3, JRA55, ERAI, and ERA5,

while the northern South China Sea and the Philippine

Sea had a greater genesis of observed TCs. Reanalysis TC’s

more distant generation, longer life cycle and the

extended track are coherent with the previous objective

tracking results (Strachan et al., 2013; Hodges et al., 2017).

No manual processing was applied to the initial tracks as we

intended to retain more information from the initial tracking

results.

3.2 TC detection rate

In this section, a direct method was used to evaluate the

restoration of the reanalysis to the observed TCs. Similar to

Hodges et al. (2017), we defined the probability of detection

(POD) as the reanalysis TC matching rate reaching that of the

observed TC. Additionally, the false alarm rate (FAR) was

defined as the proportion of the tracks in the reanalysis data

that could not be confirmed by observation data. Table 2 lists the

annual count, annual hit count, POD, FAR, correlation

coefficient and linear trend difference between the

reconstruction series and BT series for six reanalysis TCs. In

NCAR and ERA20C, the average annual reanalysis landfall TC

counts reach 7.39 and 7.32, respectively, with an average BT

landfall TC count of approximately 8.5, NCAR and ERA20C

were the only two reanalysis datasets that underestimate the

annual genesis number, while the other reanalysis datasets

appear to be slightly overestimated. Overall, numerically, the

FIGURE 5
The differences between the BT TGD (TC genesis density) andNCAR, 20CRv3, JRA55, ERAI, ERA5, and ERA20C (1980–2009) TGDs. The shadow
indicates that the difference is significant at the 0.05 level.
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observed annual frequency of TCs has been practically restored.

Furthermore, based on POD and FAR, 20CRv3 is the best of all

reanalysis data, for it retained a high POD value when the

application of the identification scheme reduced the FAR to a

small enough value. Notably, JRA55 shows an equal performance

for POD with 20CRv3, even though its FAR is slightly higher and

TABLE 2 The identification result, matching result, correlation coefficient (* means significant at the 0.05 level) and linear trend differences in the
NCAR, 20CRv3, JRA55, ERAI, ERA5, and ERA20C TCs.

Reanalysis
dataset

Period Average annual
count

Average hit
count

POD Far Correlation
coefficient

Linear trend
difference

NCAR 1949–2019 7.39 4.88 0.58 0.34 0.16 0.088

20CRv3 1949–2015 8.72 5.25 0.75 0.27 0.50* 0.013

JRA55 1958–2019 9.50 6.31 0.75 0.33 0.58* 0.024

ERAI 1980–2016 8.68 5.43 0.71 0.38 0.29 0.079

ERA5 1950–2019 9.09 5.93 0.70 0.35 0.51* 0.033

ERA20C 1949–2010 7.32 5.16 0.60 0.30 0.31* 0.063

FIGURE 6
The annual variation in NCAR (A), ERAI (B), JRA55 (C), ERA5 (D), 20CRv3 (E), and ERA20C (F) in the reference observations (dashed line). Blue
means reanalysis series, and yellowmeans observations. The thick solid line indicates the 5-year running average, and the thin solid line indicates the
linear regression fit curve. The red dash lines are the cutting line of the pre- and post-satellite era.
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can also be considered a good presentation for an actual TC. Four

out of six reanalysis data PODs reach to or above 0.70, and four

out of six data FARs are approximately 0.3, demonstrating that

the identification used in this work can largely determine the TC

characteristic. The correlation coefficients of the 20CRv3, JRA55,

and ERA5 TC series compared with the observations surpassed

0.5 and appeared to be significant at the 0.05 level, while the

NCAR value was 0.16 and considered statistically nonsignificant,

which is supportive of the result that 20CRv3, JRA55, and

ERA5 are better reanalysis datasets in terms of presenting East

Asia TCs making landfall compared with the other three datasets.

3.3 TC annual variation and inconsistency
in approximately 1980

Figure 6 gives the annual variation in TC counts during the

reanalysis dataset’s different research periods compared with

those in the observations. The annual TC counts in 20CRv3,

JRA55, and ERA5 have higher correlation coefficients (Table 2);

together, their annual variations are closer to the observations.

Similar to the observations, through their research period,

20CRv3, JRA55, and ERA5 show a downward trend, and

20CRv3 has the smallest linear trend difference from the

observations (Table 2). In contrast, NCAR, ERAI, and

ERA20C show an upward trend, in which NCAR and

ERA20C show an upward trend mainly because they

underestimated East Asia landfall TCs before 1975.

FIGURE 7
Scatter of resolution- POD (blue) and RMSE (red)
relationships, solid dots indicate results for full-time periods, when
squares indicate 1980–2009 and diamonds indicate 1950–1979.

FIGURE 8
The comparison of two periods of POD (A) and RMSE (B) of NCAR, 20CRv3, ERA5, and ERA20C and their linear trend with BT TCs in
1950–1979 (C) and 1980–2009 (D).
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We divided the NCAR, 20CRv3, ERA5, and ERA20C TC

series into two 30-year periods around 1980 to determine

whether reanalysis TCs have apparent inconsistencies during

the pre-satellite time and after. And as an investigation of how

resolution becomes the essential background of reanalysis TCs,

we performed the relationship between the POD and RMSE in

Figure 7. Before 1980, NCAR and ERA20C show an obvious

underestimation of the annual TC count, with maximum

underestimated counts both exceeding 9 (Figure 6). At the

same time, the root mean square error (RMSE) values of

those two reanalysis datasets are higher, and the POD values

are lower (Figure 8). ERA5 and 20CRv3 did not show an obvious

underestimation; however, the observed TC has a higher count

between 1960 and 1975, which explains why their linear trend

shows a downward overestimation in the first 30 years (Figure 8).

Most reanalysis data were more comparable to the observations

after 1980, even though they were obtained in different ways. A

higher POD value appears for all the reanalysis TCs; among

them, the increases in NCAR and ERA20C were more obvious,

and their RMSE decreased to the same level as the other two

reanalysis datasets. The linear trend of 1980–2009 restored by

reanalysis showed a consistent downward trend with the

FIGURE 9
The differences between the BT TCTD and NCAR (A,B), 20CRv3 (C,D), ERA5 (E,F) and ERA20C (G,H) TCTDs in 1950–1979 (A,C,E,G) and
1980–2009 (B,D,F,H). The shadow indicates that the difference is significant at the 0.05 level.
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observations. This downward trend was obtained more

accurately in ERA5 and ERA20C. In all the reanalysis

datasets, including ERAI and JRA55, the reanalysis datasets

almost uniformly overestimated the low values of TC

interannual variability in approximately 1998 and 2014

(Figure 6), which means that the interannual variability

amplitude of reanalysis TC is smaller than that of the

observation. Considering the extremely high, directly

matching POD value, this overestimation may be related to

the inaccurate estimation of TC intensity by the reanalysis

datasets. In summary, the reanalysis datasets with higher

resolutions tends to have more consistent POD and RMSE in

pre- and post-satellite era. In contrast, the reanalysis datasets

with lower resolution showed greatly improved when satellite

data are available. However, it is worth noting that at resolutions

below 80 km, the influence of satellite data becomes less

remarkable, and it is more likely that the results will be

determined by different data assimilation schemes (Figure 7).

In order to see the change in the difference between the

reanalysis and observation TCs’ spatial distribution before and

after the satellite era, we show themean TC track density (TCTD)

difference in the two 30-year periods in Figure 9. The TCTD is

calculated by the frequency of TC tracks over the 5° latitude × 5°

longitude area; one track will only be counted once in the same

grid box. After 1980, consistent with a longer life cycle, all four

sets of reanalysis data have a higher distribution of tracks near the

Caroline Islands, in the Bay of Bengal, in central and north-

eastern China to Japan, Korea and the northern North Pacific.

For Figures 9D,F the multi-distribution of TC tracks located near

the Caroline Islands can be explained by the TGD distribution,

with both 20CRv3 and ERA5 TC having a larger generation

frequency between 140°–180° N, compared to the observed tracks

(Figure 5). ERA5 has the highest horizontal resolution, which

corresponds to the smallest negative differences and the largest

positive differences of TC tracks after 1979, and this

correspondence of high resolution with less negative track

deviation is also mentioned in Roberts et al. (2020).

Compared to the overestimation of trajectories in the

above regional in reanalysis, it is more interesting to note

the large values of observed trajectories near the Northern

South China Sea, Taiwan Island and the Ryukyu Islands. The

matching passages between observed and reanalyzed

trajectories are distributed highly in this region, and the

average distance between matched trajectories of those data

does not exceed 3°N. Therefore, we believe that the

underestimations of the reanalysis in this region are not a

result of the inaccurate trajectories, but because of the missing

TCs in the reanalysis datasets. With more TCs missing, the

under-valuation of the NCAR and ERA20 shows further

expansion from the original area and is more pronounced

in the pre-1980 period (Figures 9A,C,E,G). In the case of

20CRv3 and ERA5 TCs in the pre-satellite era,

underestimations dispersedly appear at higher latitudes. It

is uncertain whether the missing TCs or the reanalysis TC’s

position uncertainty are blamed, as it is possible that the

reanalysis trajectories diverge more from the observed

positions after landfall and into higher latitudes.

4 Conclusions and discussion

4.1 Conclusions

In this work, a concise East Asia landfall TC

identification scheme was used to evaluate the reanalysis

TC spatially and temporally, and the NCAR, 20CRv3,

ERA5, and ERA20C TC’s performance before and after

1980 were carefully investigated. Overall, 20CR3 gives the

most satisfactory result in this assessment, ERA5 and

JRA55 also showed encouraging results. Most reanalysis

TCs showed discontinuities in approximately 1980, they

tended to show better simulations after that, and the

newer, higher resolution reanalysis’s discontinuities are

lesser found than others.

By evaluating the POD, RMSE and linear trends, the

reconstruction of NCAR and ERA20C improved

significantly after 1980. After 1980, the downward trend of

landfalling TCs is well captured by ERA5 and ERA20C,

however, nearly all reanalysis data failed to display the low

TC genesis years of approximately 1998 and 2014. Reanalysis

TCs have longer life cycles, and their paths also cover areas

near the equator to the south, the Indochina Peninsula and the

Bay of Bengal to the west, and Northeast China, the Korean

Peninsula and Japan to the north. The missing TCs are mostly

located around the Northern South China Sea, Taiwan Island

and the Ryukyu Islands, causing reanalysis TC paths appear

underestimates in such areas. In the pre-satellite era, the

underestimated range of TCTD became greater with the

absence of more TCs.

4.2 Discussion

Apparently, the resolution has a strong relationship with

the results presented by reanalysis of TCs. For the higher

resolution ones, such as ERA5, fewer underestimations and

larger overestimations of TC tracks occur compared to

20CRv3, which has similar TC treatments when forming

the data, but owns a lower resolution. However, it’s not

convincing that resolution is the only impact of the

disagreement between different reanalysis, especially

considering the inconsistency within the same reanalysis in

pre-and post-satellite time. NCAR used all available data at

that time, including multiple satellite data (Kalnay et al.,

1996). With no special treatment against TC, the unstable

performance of NCAR shows that the inclusion of satellite
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data alone can help reanalysis TC improve significantly.

ERA20C is also sensitive to changes in satellite data, its

inconsistency might arise from bogus TCs assimilation. The

number of assimilated bogus TC increased in post-satellite

time (Poli et al., 2016), but the details of bogus TC’s quality

change around this time and its influence still need further

investigation. There are reports about ERA5 back extensions

switched off quality control to avoid rejection of IBTrACS

observation data, but this initiative has also led to an

overestimation of TC intensity (Bell et al., 2021). Some

ERA5 TCs before 1979 are found too intense with much

deeper central pressure and may come with greater 10 m

wind (Bell et al., 2021). In our study, due to the relative

vorticity-based tracking method, the overestimated intensity

did not affect the tracking result excessively. The relatively

high credit of JRA55 and ERA5 TCs has been proposed in

former studies (Murakami, 2014; Hodges et al., 2017; Zarzycki

et al., 2021). This study shows that 20CRv3 TCs are also worth

further study. For future investigations, it is necessary to

demonstrate the relationship between intensity uncertainty

and the overestimation of low TC genesis years and find

out how the identification scheme affects the pre-satellite

time TCs. This study displayed the relationships of RV and

MSW peak intensity time, with the observation TC’s

intensification and weakening period becoming shorter

(Kishtawal et al., 2012; Wang et al., 2020), it’s also the

direction of interest to understand TC intensity evolution

in reanalysis.
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