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Mining-induced ground subsidence is a commonly observed geo-hazard that

leads to loss of life, property damage, and economic disruption. Monitoring

subsidence over time is essential for predicting related geo-risks and mitigating

future disasters. Machine-learning algorithms have been applied to develop

predictive models to quantify future ground subsidence. However, machine-

learning approaches are often difficult to interpret and reproduce, as they are

largely used as “black-box” functions. In contrast, stochastic differential

equations offer a more reliable and interpretable solution to this problem. In

this study, we propose a stochastic differential equation modeling approach to

predict short-term subsidence in the temporal domain. Mining-induced time-

series data collected from the Global Navigation Satellite System (GNSS) in our

case study area were utilized to conduct the analysis. Here, the mining-induced

time-series data collected from GNSS system regarding our case study area in

Miyi County, Sichuan Province, China between June 2019 and February

2022 has been utilized to conduct the case study. The proposed approach

is capable of extracting the time-dependent structure of monitored subsidence

data and deriving short-term subsidence forecasts. The predictive outcome and

time-path trajectories were obtained by characterizing the parameters within

the stochastic differential equations. Comparative analysis against the persistent

model, autoregressive model, and other improved autoregressive time-series

models is conducted in this study. The computational results validate the

effectiveness and accuracy of the proposed approach.
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1 Introduction

Ground subsidence is a cascading geo-hazard that considerably impacts human lives

and the evolution of landscapes (Gao et al., 2020a; Merghadi et al., 2020). Many factors,

including earthquakes, ore mining, groundwater drought, and land-use changes, are

considered to cause the widespread occurrence of ground subsidence (Gao et al., 2021;
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Zhou et al., 2021). Among them, mining-induced subsidence is

the most impactful, as it can damage surface construction, trigger

landslides, induce slope collapse, promote soil erosion, and cause

other geological disasters (Diao et al., 2018; Cui et al., 2021; Li

et al., 2022). Thus, a reliable approach for monitoring and

predicting ground subsidence is urgently required. It will not

only provide a sufficient assessment of subsidence caused

damage, but also assist in mitigating the related geo-risks and

potential losses.

The geo-hazard of ground subsidence and its associated risks

have been studied in detail due to its destructive nature and

socioeconomic impacts (Tang et al., 2021; Gao & Meguid 2022).

Interferometric synthetic aperture radar (InSAR) techniques

represent the mainstream approach to subsidence monitoring,

and have been frequently applied to assess active ground

deformation in densely populated regions. Synthetic aperture

radar (SAR) sensors offer wide-range coverage and can

accurately detect any surface change in a landscape (Armaş et

sl. 2017; Malik et al., 2022). Galloway & Burbey (2011)

summarized the advantages of using InSAR data to monitor

land subsidence caused by groundwater extraction. Armas et al.

(2017) utilized multi-temporal InSAR data to identify long-term

ground deformation patterns and integrated them with

multivariate dynamic analysis to investigate the factors that

cause subsidence. Chen et al. (2018) used time-series InSAR

to detect ground subsidence in regions with rapid urbanization.

Diao et al. (2018) selected RadarSat-2 images acquired from

InSAR to assess the geo-risk of subsidence caused by coal mining

and conducted a case study in Jiulong Mine, China. He et al.

(2020) integrated small baseline subset interferometry (SBAS)

data with InSAR data to detect surface deformation in urban

regions and assessed the impact of subsidence on buildings.

InSAR is utilized for subsidence monitoring as it can

simultaneously obtain the surface elevation using the phase

difference of two SAR images. However, in practice, the

collection of InSAR data is costly and time-consuming.

Conversely, the use of a Global Navigation Satellite System

(GNSS) to detect and monitor ground subsidence can be a

feasible and efficient alternative. GNSS can be applied to

identify and delineate subsidence-prone areas to create a

geospatial database of subsidence events or subsidence

inventory (Tang et al., 2020; Gao et al., 2020b). Using GNSS

technology, the temporal observation of subsidence can be

obtained by sampling in up to daily intervals, based on

practical needs (Eldhuset & Weydahl. 2013). Burbey (2006)

proposed the use of 3D GNSS data to monitor and detect

strain-induced ground subsidence. Ustun et al. (2010) applied

GNSS-based temporal observations of ground subsidence to

predict the landscape deformation. Monthly resolution GNSS

data regarding groundwater withdrawal-induced subsidence

were analyzed, and subsidence in the short term was

predicted. Yuwono et al. (2019) used both D-InSAR and

GNSS to obtain time-series data to analyze ground subsidence

in coastal regions. The GNSS dataset collected from a base station

in the case study area was analyzed, and the subsidence rate was

computed. Hinderer et al. (2020) combined InSAR, GNSS,

gravity, and precise leveling datasets to generate a

comprehensive spatial–temporal dataset for modeling the

ground subsidence process. Shahbazi et al. (2022) integrated

InSAR and GNSS datasets to perform a multivariate analysis of

hydrogeological factors that induced ground subsidence. Daily

time-series subsidence data were acquired and utilized to assess

future subsidence in both spatial and temporal domains.

In recent years, machine-learning and statistical modeling

approaches are becoming popular in analyzing time-series GNSS

dataset. Lee & Park (2013) applied classification and regression

tree (CART) and random forest to predict the coal-mining

induced subsidence in the temporal domain. The factors that

impact the speed of subsidence are analyzed according to their

importance. Abdollahi et al. (2019) trained a support vector

machine (SVM) to predict the water-induced ground subsidence

in the temporal domain which considered drawdown and other

influential factors. Taravatrooy et al. (2018) integrated k-mean

clustering with several machine-learning algorithms to predict

the time-series subsidence values and the prediction performance

has been further optimized. Rafie et al. (2020) combined fuzzy

inference system with artificial neural networks (ANN) to predict

the time-series ground subsidence. Based on their work, Ranjgar

et al. (2021) proposed using gray wolf optimization (GWO) to

optimize the adaptive neuro-fuzzy inference system to obtain

higher prediction accuracy in terms of time-series subsidence

prediction. Overall, all machine-learning algorithms have

achieved promising results in predicting short-term

subsidence in the near future. However, one major

shortcoming of using machine learning algorithms is that they

all lack sufficient interpretability. They are all serving as “black-

box” functions which does not provide any information to the

field engineers except the predictive outcome (Petch & Nelson

2021).

In this study, instead of applying machine-learning

algorithms, we propose using a stochastic differential equation

(SDE) to model time-series subsidence in the temporal domain.

The proposed approach produced short-term predictions of

subsidence using historic subsidence data and provided point

estimates of future subsidence values in the short term.

Moreover, it offers plausible time-path trajectories of the land

deformation process with interpretability, which contributes to

the feasibility of the onsite application of the proposed approach.

The parameters that characterize the SDE for each site can be

interpreted easily with sufficient intuition. This makes

formulating a model that can be extended depending on the

specific data patterns for each GNSS monitoring site easy. To

validate the usefulness of the SDE model, field data collected

from an ore mining site in Miyi County, Sichuan Province,

China, were utilized in this study. Time-series data collected

via a GNSS were utilized to develop and validate the SDEmodels.

Frontiers in Earth Science frontiersin.org02

Guo et al. 10.3389/feart.2022.1026895

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1026895


To evaluate the performance of the proposed SDE approach,

three-point estimation-related evaluation criteria was computed.

A comparative analysis with traditional time-series models was

also conducted in this study.

This paper has the following major contributions:

• It proposes a novel approach developing SDE models to fit

and predict the subsidence time-series.

• The fitted models with explicit fitted parameters increased

the interpretability and reproducibility in terms of applying

the SDE onsite.

The rest of the manuscript is organized as follows: Section 2

describes the theoretical foundation of SDEs and the process of

estimating model parameters. Section 3 introduces the basic

specifications of the ore mining site that was taken as the case

study area. Section 4 presents the computational results and a

comparative analysis. Finally, Section 5 concludes the paper and

provides future research directions.

2 Methodology

2.1 Stochastic differential equation

A stochastic differential equation (SDE) is a differential

equation containing one or multiple stochastic components

that can be used to derive a solution (Iversen et al., 2016).

SDEs are usually selected to model systems with large random

components, such as those in quantitative finance (Rukanda

et al., 2022), meteorology (Palmer 2019), and environmental

science (Li 2022a; Li 2022b).

The modeling process of an SDE typically consists of model

structure selection, parameter estimation, predictive modeling,

and prediction evaluation (Bjerregård et al., 2022). In this

research, all the aforementioned steps were performed for

short-term prediction of land subsidence. A generic SDE

describing the evolution of state variable Xt is stated as Eq. 1:

dXt � f(Xt, Ut, t)dt + g(Xt, t)dWt, (1)

where f(·) denotes the drift term that depicts the long-term

trend, g(·) is the diffusion term that describes short-term

stochasticity, Ut denotes the vector of inputs, and Wt is a

standard Wiener process. In practice, more than one state

variable is often necessary; thus, a set of SDEs is formulated

in that case. Here, the system dynamics are conveniently

described in continuous time as a set of SDEs, whereas the

data are available in discrete time (Bjerregård et al., 2022).

However, Eq. 1 is not well defined in some cases, as the

derivatives of dWt may not exist. Thus, the integral equation in

Eq. 2 is a better representation of the evolution of the state

variable.

Xt � X0 + ∫t

0
f(Xs,Us, s)ds + ∫t

0
g(Xs, s)dWs, (2)

where the second term ∫t

0
g(Xs, s)dWs can be derived using Ito’s

lemma. Therefore, with drift defined as f(Xt, Ut, t) and the

diffusion coefficient as g(Xt, t), we can obtain the density

function j(x, t) (see Eq. 3) of the random variable Xt in state

x at time t, which is the solution for the SDE in Eq. 1 (Björk

2009). We have

z

zt
j(x, t) � − z

zx
[f(x, t)j(x, t)] + z2

zx2
[D(x, t)j(x, t)], (3)

which is known as the Fokker–Planck equation or the

Kolmogorov forward equation.

2.2 Stochastic differential equation for
subsidence prediction

In this study, the ground subsidence system was complex and

constantly changing over time. The monitored subsidence data were

collected at different discrete time stamps. Hence, we defined the

observed subsidence Yk at time tk as a measurement based on the

state function h(·). The entire system can be defined in Eqs 4–6:

dXt � θx(ptμx −Xt)dt + σxX
βx
t dWx, (4)

dUt � θu(μu − Ut)dt + σudWu, (5)
Yt � h(Xtk, tk) + ek, (6)

where pt denotes the numerical instant subsidence prediction at

time t, μx is the local scaling factor for each GNSS monitoring

site, θx is a constant over time that governs how rapidly the

model returns to the predicted subsidence, ek is the measurement

error, where ek ~ N(0, σ2), σx characterizes the system white

noise, and h(·) has specific forms depending on the specific

modeling task. In this study, we define h(Xtk, tk) � Xtk and θx as

constantly positive, which produces a stochastic process that is

governed predominantly by past observations of ground

subsidence at the same location (Li et al., 2021a; Li et al., 2021b).

In addition, the point forecast provided by the

aforementioned SDE model systematically shifts in time with

respect to the prediction horizons, which is 1 h in this study.

Determining the appropriate input size tk for the model is critical

for achieving a sufficient prediction performance (Satyarthee

et al., 2013). Here, the autocorrelation function (ACF) was

computed to capture the temporal dependency structure

among the monitored ground subsidence datasets. The ACF

can be computed using Eq. 7 as follows:

ACFT,h � ∑T−h
t�1 (Yt − �Y)(Yt+h − �Y)∑T

t�1(Yt − �Y)2 , (7)

where Yt is the observed subsidence at time t; and �Y is the mean

of the historic observations within the time period of length T.
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To select statistically significant historic lags, the Ljung–Box

statistic is considered a reliable threshold for screening all historic

lags based on their ACF values (Tang et al., 2022). The

Ljung–Box statistic was computed using Eq. 8, as follows:

QH � T(T + 2)∑H

h�1(T − h)−1ACF2
T,h, (8)

where QH is the computed Ljung–Box statistic, which follows an

asymptotic chi-square distribution, and H is the selected

arbitrary value that the related literature suggested, based on

many empirical studies.

2.3 Parameter estimation

To estimate the optimal parameter settings of the SDE for

ground subsidence prediction, maximization of the approximated

likelihood was conducted. To satisfy the conditions on f(·) and
g(·) according to Eq. 1, the approximated likelihood function can

be expressed in Eq. 9 as follows:

L(θ;yN) � ⎛⎜⎜⎜⎝∏N

k�1
exp( − 1/2ϵ⊤k R−1

(k|k−1)ϵk)����������
det(R(k|k−1))√ ( ���

2π
√ )l ⎞⎟⎟⎟⎠p(Y0|θ), (9)

where l is the dimension of the samples;N denotes the number of

observations; (·)⊤ denotes the vector transpose; ϵk denotes the

white noise; R(k|k−1) denotes the conditional variance of the

prediction by SDE; and p(Y0|θ) represents the likelihood of

seeing observation Y0. To optimize the SDE parameter setting,

we targeted the log-likelihood function, as expressed in Eq. 10:

log(L(θ; (yN

∣∣∣∣Y0))) � −1
2
∑N

k�1(log(det(R(k|k−1)))
+ ϵ⊤k R−1

(k|k−1)ϵk) − log(2π)Nl

2
, (10)

where θ represents the parameter setting within the

predictive SDE.

2.4 Prediction performance evaluation
criterion

Once the SDEs are fitted with the optimal parameters derived

via the maximum likelihood estimation, the prediction outcome

should be assessed using the performance evaluation criterion.

Because we are performing point-based prediction for short-term

subsidence, three commonly utilized evaluation criteria,

including mean absolute error (MAE), mean absolute

percentage error (MAPE), and root mean square error

(RMSE), were applied in this study (Li 2022a).

First, MAE (Deng et al., 2022) was utilized to measure the

absolute difference between the measured subsidence and

predicted subsidence. This can be computed using Eq. 11.

MAE � ∑N
�1|Yt − Ŷt |

N
, (11)

whereN denotes the total number of observations, Yt represents

the actual subsidence, and Ŷt denotes the predicted subsidence. It

measures the absolute errors between the actual subsidence and

corresponding predictions.

Second, theMAPE (Li 2022a; Deng et al., 2022) computes the

errors in terms of percentage with respect to the actual

measurement. The MAPE can be computed using Eq. 12:

MAPE � 1
N

∑N

i�1

∣∣∣∣∣∣∣Yt − Ŷt

Yt

∣∣∣∣∣∣∣p100%, (12)

whereN denotes the total number of data samples; Yt represents

the actual subsidence; and Ŷt denotes the predicted subsidence. It

measures the proportion of prediction errors with respect to the

actual measured subsidence.

Third, RMSE (Li 2022b) measures the average squared error

and is sensitive to outliers in the test dataset. The formula used to

compute the RMSE is expressed in Eq. 13.

RMSE �
������������∑N

i�1(Yt − Ŷt)2
N

√
. (13)

whereN denotes the total number of data samples; Yt represents

the actual subsidence; and Ŷt denotes the predicted subsidence. It

measures the squared errors which is more sensitive to the

outliers when measuring the prediction performance.

2.5 Traditional parametric prediction
models

To demonstrate the accuracy and effectiveness of the

proposed approach, three traditional parametric predictive

models, namely, the persistence model, autoregressive (AR)

model, autoregressive with extra input (ARX) model, and

generalized autoregressive conditional heteroskedasticity

(ARX-GARCH) model, were selected for comparative

analysis.

The persistence model is an AR (1) model with Gaussian

noise, which can be expressed as

Ŷt � Yt−1 + ϵt, (14)
where ϵt denotes the Gaussian noise (white noise) and it follows

ϵt ~ N(0, σ2).
The AR model can be expressed as follows:

Ŷt � ψ0 +∑p

i�1ψiYt−i + ϵt, (15)

where ψ0 and ψi denote the intercept and coefficient between the

current observation and the historic lags in the subsidence time

series, respectively (Li 2022b).
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In comparison with AR, the ARX contains the truncated

Gaussian noise ϵt, which follows a Gaussian distribution truncated

at −(ψ0 +∑p
i�1 ψiYt−i + ϕpt). The ARX model can be expressed as

Ŷt � ψ0 +∑p

i�1ψiYt−i + ϕpt + ϵt. (16)

The ARX-GARCH model is an improved ARX model with

the same truncated Gaussian noise ϵt. However, the estimated

variance has a different formulation. The prediction and variance

are expressed in Eqs 17, 18, respectively:

Ŷt � ψ0 +∑p

i�1ψiYt−i + ϕpt + ϵt, (17)
σ2k � α0 +∑p

i�1αiσ
2
i−1 +∑q

j�1βiϵt−i, (18)

where αi and βi are both the fitted coefficients for historic

variance and noise. The estimated variance as expressed in Eq.

18 can be perceived as a linear combination of historic variance as

well as the historic noise.

3 Dataset summary

In this study, field data were collected from our case study

location, which is an ore mining site located in Miyi County,

Sichuan Province, China. Data collection was conducted via a

GNSS with multiple sensors configured over the subsidence

region to obtain a full-scale estimate of the land deformation

process. Eight GNSS-based sensors are displayed, and the

configuration is shown in Figure 1.

Data collection using GNSS was initiated in June 2019 after a

significant ground subsidence event caused by ore mining. At

each GNSS monitoring point, data were collected in hourly

intervals. The unit for monitoring the subsidence process is

millimeters, and the cumulative subsidence is visualized on

the right side of Figure 1. As the hourly rate of ground

deformation is too slow and inconvenient for computation, we

merged the dataset on a daily basis and computed the daily

instant subsidence from the original collected cumulative data.

The daily instant subsidence was computed through time-series

differencing, which subtracts the previous observation from the

current observation. The differenced time-series of subsidence

indicates the daily instant rate of ground subsidence which is

more valuable for monitoring the underlying geo-hazard. A

summary of the time series data collected from the eight

monitoring sites is presented in Table 1.

As can be seen in Table 1, the mean, standard deviation,

skewness, and kurtosis for all eight GNSS monitoring sites for

daily subsidence were calculated. Four monitoring points

(i.e., DAN201, DAN204, DAN205, and DAN208) can be

observed to have higher average daily changes than the other

four points. Thus, they were selected as representative points for

this study.

4 Experimental results

To predict daily subsidence in the short term, experiments

were conducted to determine the input size and train the SDE

FIGURE 1
Configuration of GNSS monitoring points in the case study area.
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model to accurately predict short-term instant subsidence. The

ACFs (see Eq. 7) are first computed to capture the temporal

dependency structure of the subsidence time-series data. The

results for the ACFs at the four selected GNSS monitoring sites

are shown in Figure 2.

As can be observed in Figure 2, we computed the ACFs for

all lags between lag-0 (current subsidence) and lag-15, which

denotes the historic instant subsidence 15 days ago. The values

of ACF vary between -1 and 1, whereas the Ljung–Box statistics

(see Eq. 8) are visualized as the boundaries of the pink region.

Any lags with an ACF value larger than the Ljung–Box statistic

(i.e., outside of the pink region) are considered to have a

significant statistical correlation with the current instant

subsidence series. All four monitoring points displayed

similar patterns; the first four lags were statistically

significant and were thus selected to train the SDE models

for the next step.

In this study, each of the four monitoring points (DAN201,

DAN204, DAN205, and DAN208) developed one SDE, and the

training was performed independently. The parameters for each

SDE were estimated by maximizing the log-likelihood function,

as expressed in Eq. 10 in Section 2.3. Once the value converges,

the optimal parameter setting is achieved, as summarized in

Table 2.

Table 2 provides the estimation of the SDE parameters at the

four selected GNSS monitoring points. The values of the log-

likelihood function, which denote the values after convergence,

are also presented. Using these obtained parameters, we

TABLE 1 Summary of the daily instant subsidence monitoring dataset.

GNSS point Mean Standard deviation Skewness Kurtosis Time

DAN201 0.4396 0.1383 2.4156 −0.7175 June 2019—February 2022

DAN202 0.1765 0.0597 0.7604 −1.1684 June 2019—February 2022

DAN203 0.1931 0.1273 1.5861 −0.9115 June 2019—February 2022

DAN204 0.2751 0.0879 1.2687 −0.6644 June 2019—February 2022

DAN205 0.2348 0.1174 1.3062 −1.3846 June 2019—February 2022

DAN206 0.1128 0.1046 0.9651 −0.7767 June 2019—February 2022

DAN208 0.5114 0.1347 3.4943 −1.1408 June 2019—February 2022

DAN209 0.1437 0.0975 1.1405 −0.3208 June 2019—February 2022

FIGURE 2
ACFs and the threshold based on Ljung–Box statistic.
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developed SDEs to perform 1-day ahead subsidence prediction

and 12-day ahead prediction simultaneously.

In the 1-day ahead subsidence prediction task, we used

subsidence data of 24 consecutive days as the

training–validation dataset and the following 1-day subsidence

as the test dataset. Nested cross-validation was performed based

on data from 24 consecutive days and the test was performed

independently. The training, validation, and test data for the four

GNSS monitoring sites are shown in Figure 3.

Figure 3 displays the training, validation, and test processes

for the instant subsidence series in the 1-day ahead prediction

task. The parameters for the SDE models were estimated using

the maximum likelihood estimation. Three performance

evaluation criteria, including the MAE (see Eq. 11), and

MAPE (Eq. 12), and RMSE (Eq. 13) were computed and are

summarized in Table 3.

In Table 3, the SDE produces the smallest values across all

selected GNSS points with respect to all evaluation criterions.

This demonstrates its superiority in performing short-term

subsidence prediction tasks. Meanwhile, the persistent model

produces the highest error rates and it confirms its inferiority in

capturing the temporal patterns within the subsidence dataset.

A 12-day ahead prediction of instant subsidence was also

performed for each GNSS monitoring site. Here, the subsidence

data from the previous consecutive 60 days were selected as the

training/validation dataset, and the subsidence measured in the

following 12 days was selected as the test dataset. The training,

validation, and test performance for the 12-day ahead prediction

task is shown in Figure 4. In addition, the performance evaluation

criteria, including the MAE (see Eq. 11), andMAPE (Eq. 12), and

MSE (Eq. 13) were computed and are summarized in Table 4.

According to Table 4, the SDE model provides the top

prediction performance in 12-day ahead subsidence prediction

tasks using the data collected from four selected GNSS

monitoring points. It produces the smallest MAE, MAPE, and

also RMSE which outperforms the traditional time-series models

and thus validated its superiority in capturing time dependence

structure within the time-series subsidence dataset.

Finally, to provide a visual comparison of the prediction

performance, Figure 5 summarizes all evaluation criteria across

TABLE 2 Parameters obtained via maximum likelihood estimation.

GNSS point Parameters

θ̂x μ̂x σ̂x β̂x θ̂u μ̂u σ̂u

DAN201 0.464 0.687 0.157 0.428 0.02 −0.08 0.05

DAN204 0.217 0.523 0.165 0.494 0.05 −0.02 0.02

DAN205 0.191 0.734 0.204 0.375 0.07 −0.03 0.04

DAN208 0.498 0.425 0.186 0.501 0.03 −0.01 0.07

Note: θ̂x , μ̂x , σ̂x , β̂x , θ̂u , μ̂u , and σ̂u denotes the parameter setting obtained via

maximum likelihood estimation.

FIGURE 3
1-day ahead prediction of instantaneous subsidence. (A) DAN201, (B) DAN204, (C) DAN205, (D) DAN207.
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TABLE 3 Summary of 1-day ahead prediction performance.

GNSS point Model MAE MAPE RMSE

DAN201 Persistent model 2.871 0.210 2.871

AR 1.452 0.187 1.452

ARX 0.994 0.136 0.994

ARX-GARCH 0.987 0.134 0.987

SDE 0.883 0.129 0.883

DAN204 Persistent model 1.912 0.287 1.912

AR 1.685 0.224 1.685

ARX 1.127 0.189 1.127

ARX-GARCH 1.058 0.172 1.058

SDE 0.777 0.155 0.777

DAN205 Persistent model 1.022 0.311 1.022

AR 0.927 0.297 0.927

ARX 0.535 0.165 0.535

ARX-GARCH 0.574 0.177 0.574

SDE 0.161 0.133 0.161

DAN208 Persistent model 3.245 0.161 3.245

AR 3.157 0.159 3.157

ARX 2.464 0.147 2.464

ARX-GARCH 2.387 0.127 2.387

SDE 1.924 0.103 1.924

Bold font indicates best results.

FIGURE 4
12-day ahead prediction of instantaneous subsidence.

TABLE 4 Summary of 12-day ahead prediction performance.

GNSS point Model MAE MAPE RMSE

DAN201 Persistent model 4.526 0.279 11.573

AR 3.457 0.234 9.782

ARX 3.131 0.217 8.057

ARX-GARCH 3.027 0.201 8.036

SDE 3.025 0.186 7.342

DAN204 Persistent model 1.989 0.288 7.449

AR 1.561 0.247 7.011

ARX 1.345 0.203 5.653

ARX-GARCH 1.234 0.191 4.576

SDE 1.035 0.175 3.222

DAN205 Persistent model 2.481 0.304 10.002

AR 1.587 0.216 8.019

ARX 1.398 0.192 6.941

ARX-GARCH 1.346 0.187 6.630

SDE 0.965 0.161 4.128

DAN208 Persistent model 3.518 0.344 9.992

AR 2.785 0.276 7.751

ARX 2.741 0.219 7.864

ARX-GARCH 2.583 0.215 6.571

SDE 2.289 0.171 5.227

Bold font indicates best results.
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the four selected GNSS sites. In both the 1-day ahead prediction

and 12-day ahead prediction tasks, DAN205 had the smallest

errors with respect to all criteria. This can be attributed mainly to

the stationarity of the measured incidence at this site. In

comparison, site DAN208 produced the highest prediction

errors for both tasks. This phenomenon is due to the large

variance and fast rate of measured instant subsidence. Table 1

confirms that the DAN208 data contains a large mean daily

subsidence, large variance, high skewness, and high kurtosis. All

basic statistics indicate the non-stationarity of the data collected

from DAN208, and thus the existence of more challenges in

developing accurate predictive SDE models.

5 Discussion

This research proposed using SDEmodels to train and forecast

instant surface subsidence. Currently, the mainstream of other

related research all selected machine-learning models to tackle this

task. In comparison, the main advantages of the SDEmodel can be

summarized into the following two aspects: First, the SDE model

has higher interpretability. As introduction in Section 2, the SDE

model is a parametric model where the engineers can directly

observe the fitted parameters. Comparatively, the machine-

learning models are “black-box” function which nobody is

aware of the inside functions. Second, the SDE model has

FIGURE 5
Summary of all evaluation metrics across the selected GNSS points.
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higher reproducibility. Since SDE model is also a data-driven

model, the engineers can always get the same model by fitting

the model over the same dataset. However, in comparison,

machine-learning models have lower reproducibility. A lot of

factors including random initialization, parameter setting, as

well as hardware quality all impact the overall training process.

Thus, no machine-learning models would reproduce the exact

same results.

On the other hand, the main disadvantage of the SDE model as

well as other parametricmodels, whichwere selected for comparative

analysis in this study, is also obvious. All the parametric models have

limited capacity in handling highly nonlinear patterns in the

temporal domain. As a contrast, the machine-learning models

such as artificial neural networks, can always overfit the training

dataset by simply adding more hidden layers and hidden nodes.

Thus, the SDE can be underfitting in complex tasks compared with

machine-learning models respectively.

6 Conclusion

In this study, GNSS technology was applied tomonitormining-

induced surface subsidence in the temporal domain. A stochastic

differential equation was established to forecast short-term

subsidence and capture the data-driven time-dependent

structure. Three key measurement metrics—MAE, MAPE, and

RMSE—were selected to evaluate the performance of the point

estimate of short-term subsidence. A comparative analysis against

the persistent, AR, ARX, and ARX-GARCHmodels was performed

using the same dataset collected from the case study area.

For hazard early warning, it is important to mitigate the risk

of casualties and property loss. Computational results revealed

that a stochastic differential equation model is an accurate and

effective approach. In comparison with traditional parametric

models, stochastic differential equations provide higher

interpretability and reproducibility.
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