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Shear wave velocity plays an important role in both reservoir prediction and pre-

stack inversion. However, the current deep learning-based shear wave velocity

predictionmethods have certain limitations, including lack of training dataset, poor

model generalization, andpoor physical interpretability. In this study, the theoretical

rock physicsmodels are introduced into the construction of the labeled dataset for

deep learning algorithms, and a forward simulation of the theoretical rock physics

models is utilized to supplement the dataset that incorporates geological and

geophysical knowledge. This markedly increases the physical interpretability of the

deep learning algorithm. Theoretical rock physicsmodels for two different types of

reservoirs, i.e., conventional sandstone and tight sandstone reservoirs, are first

established. Then, a full-sample labeled dataset is constructed using these two

types of theoretical rock physics models to traverse the elasticity parameter space

of the two types of reservoirs through random variation and combination of

parameters in the theoretical models. Finally, based on the constructed full-

sample labeled dataset, four parameters (P-wave velocity, clay content, porosity,

and density) that are highly correlatedwith the shearwave velocity are selected and

combined with a deep neural network to build a deep shear wave velocity

prediction network with good generalization and robustness, which can be

directly applied to field data. The errors between the predicted shear wave

velocity using the deep neural network and the measured shear wave velocity

data in the laboratory and the logging data in three real fieldwork areas are less than

5%,which aremuch smaller than the errors predicted by bothHan’s andCastagna’s

empirical formula. Furthermore, the prediction accuracy and generalization

performance are better than those of these two common empirical formulas.

The forward simulation based on theoretical models supplements the training

dataset andprovides high-quality labels formachine learning. This can considerably

improve the interpretability and generalization of models in real applications of a

machine learning algorithm.
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1 Introduction

Shear wave (S-wave) velocity plays an important role in

reservoir prediction (Du, 2014). S-wave velocity data are

required for pre-stack inversion and pre-stack attribute

analysis. However, in real field work areas, especially in old

wells, the high cost of acquiring shear wave velocity data leads to

lack of S-wave velocity data (Bagheripour et al., 2015). Therefore,

predicting the S-wave velocity in wells where these values has not

been measured is essential. The conventional S-wave velocity

prediction methods can be divided into three categories,

empirical formula method, theoretical rock physics model

method and machine learning prediction method.

The empirical formula method utilizes the existing logging

data from the target area to statistically analyze the relationship

between these data and the S-wave velocity. The formula is

generally obtained by fitting data point pairs based on some

kind of mathematical expression. There is no need to have a

complete theoretical derivation process, and this method is only

applicable to specific geological environments (Castagna et al.,

1985; Han et al., 1986; Eberhart-Phillips et al., 1989; Ameen et al.,

2009). The rock physics model prediction method is to establish

the relationship between elastic parameters and reservoir

parameters based on theoretical models. Therefore, the S-wave

velocity prediction is often more accurate than the empirical

formula (Gassmann, 1951; Biot, 1956; Xu andWhite, 1995, 1996;

Xu and Payne, 2009; Sun et al., 2012). Theoretically, the rock

physical model is not specifically limited to a particular region,

but there is a lot of noise in the real field data, and the predicted

results have great uncertainty. In addition, the application of the

rock physics model to predict S-wave velocity needs to consider

the influence of skeleton composition, fluid distribution and pore

shape, which make the application of the rock physics model to

predict shear wave velocity difficult since there parameters are

not easily accessible.

Neural networks have great advantages in dealing with

nonlinear problems, and S-wave velocity prediction is a

typical nonlinear problem. In recent years, S-wave velocity

prediction using well log data and back-propagation neural

network (BPNN) has been widely applied in practical field

areas (Eskandari et al., 2004; Alimoradi et al., 2011; Maleki

et al., 2014). Each hidden layer of the recurrent neural

networks (RNNs) has a feedback to a previous layer, and the

subsequent behavior can be shaped by the response of the

previous layer. Thus, RNNs are well suited for processing

sequential data, and since logging data are connected in-

depth, RNNs and their variants long short-term memory

(LSTM) networks and gated recurrent units (GRU) networks

have been introduced into the S-wave velocity prediction

(Mehrgini et al., 2017; Zhang et al., 2020) and other rock

parameters (Yuan et al., 2022). Moreover, convolutional

neural networks (CNNs) have tremendous advantages in

feature extraction, thus the CNNs were widely developed and

applied in many research fields (Yuan et al., 2018; Hu et al., 2020;

Hu et al., 2021), and a combination of RNNs and CNNs for

S-wave velocity prediction has been proposed recently (Wang

et al., 2022; Zhang et al., 2022). However, the neural network-

based S-wave velocity prediction method has poor generalization

and limited labels for establishing S-wave velocity prediction

networks, which brings many difficulties to real applications.

To overcome these limitations, we combine theoretical rock

physics models and deep neural networks (DNNs) for S-wave

velocity prediction. Synthetic datasets can be used when building

labeled datasets, if the synthetic datasets are sufficiently

complicated, that is, if the most important factors are

considered when generating the datasets, the trained network

may be able to process realistic datasets directly (Wu et al., 2019;

Yu and Ma, 2021; Gao et al., 2022). Therefore, a rich and

complete labeled dataset is first constructed using the

theoretical rock physics models, and then a deep S-wave

velocity prediction network is established using the DNN and

the data, such as the P-wave velocity and porosity in the full-

sample labeled dataset. Instead of using the data of a certain area

to train the neural network, the data generated by the theoretical

rock physics models are used for the training, and then the

established network is directly applied to the real target work area

for S-wave velocity prediction.

2 Theoretical rock physics modeling
for multi-type reservoirs

The rock physics model can link the elastic parameters to

physical parameters, fluid and lithology (Guo et al., 2022), and

specific theoretical rock physic model needs to be established for

different types of reservoirs due to different composition, texture

and pore microstructure of the reservoir rocks.

2.1 Theoretical rock physics modeling of
conventional sandstone reservoir

The porosity and permeability of the conventional sandstone

are quite high with relatively simple pore geometry, so the

conventional sandstone reservoir is high-quality reservoir. In

this study, the Voigt-Ruess-Hill (VRH; Hill, 1952) model is used

to calculate the moduli of the rock matrix, and then the Kuster-

Toksöz model (Kuster and Toksőz, 1974) is utilized to add stiff

and compliant pores to the rock matrix to calculate the moduli of

the dry skeleton, which are expressed as follows:

(KKT
* − Km) Km + 4μm/3

KKT
* + 4μm/3 � ∑N

i�1
xi(Ki − Km)Pmi (1)

(μKT
* − μm) μm + ζm

μKT
* + ζm

� ∑N
i�1
xi(μi − μm)Qmi (2)
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where xi denotes the volume concentration for eachinclusion;

Km and μm are the bulk modulus and shear modulus of the rock

matrix; KKT
* and μKT

* are the bulk modulus and shear modulus of

the dry skeleton, The coefficients Pmi and Qmi describe the effect

of the inclusion material i in the background medium m.

Then theWood model is utilized to calculate the bulk moduli

of the mixed fluid, and finally, the Gassmann equation

(Gassmann, 1951) is used to calculate the saturated rock moduli.

Ksat

Ksat −Km
� KKT

*

KKT
* − Km

+ Kfl

ϕ(Kfl −Km) (3)

μsat � μKT
* (4)

where Ksat and μsat are the bulk modulus and shear modulus of

the saturated rock.

2.2 Theoretical rock physics modeling of
tight sandstone reservoir

For tight sandstone reservoirs, the heterogeneity,

microscopic pore structure and pore fluid distribution of

rocks are quite complex (Guo et al., 2021). When saturated

with different fluids, the fluid flow caused by wave

propagation makes the overall elastic responses of rocks

more complex. For tight sandstone reservoirs, firstly, the

moduli of the rock skeleton are also calculated using the

VRH model and the Kuster-Toksöz model, and then the

squirt flow effect is considered to account for the velocity

dispersion and attenuation (White, 1975; Dvorkin et al.,

1995). A simple squirt flow model (Gurevich et al., 2010)

can be used to characterize the wave-induced flow effects

occurring at microscopic scales in tight sandstones. The idea

of a simple squirt flow model is to modify the dry skeleton of

the rock as if the compliant pores are saturated with fluid and

the stiff pores remain dry, which are expressed as follows:

1
Kmf(P,ω) �

1
Kh

+ 1

1
1

Kdry(P)−
1
Kh

+ ( 1
K*
f
(P,ω) − 1

Km
)ϕc(P)

(5)

1
μmf(P,ω)

� 1
μdry(P)

− 4
15

( 1
Kdry(P) −

1
Kmf(P,ω)) (6)

where Kmf is the bulk modulus of the modified skeleton at

different frequency and pressures. μmf is the shear modulus of

the corresponding modified skeleton. Kh is the bulk modulus of

dry rock under high effective pressure, which can be estimated

with the Kuster-Toksöz model, Kdry and μdry are the bulk

modulus and shear modulus in the dry condition, Km is the

bulk modulus of the rock matrix, ϕc is the compliant porosity and

K*
f is the modified fluid bulk modulus.

After obtaining the modified dry skeleton moduli, the

saturated rock elastic moduli are calculated by the Gassmann

fluid substitution equations (Han et al., 2021) as follows:

TABLE 1 Sampling range of conventional sandstone model parameters.

Parameter Lower bound Upper bound Description

Fluid saturation (oil,gas,water) 0 1 the sum of the three is 1

Feldspar, calcite content 0 0.1

Clay content 0 1 with the sum of other three minerals is 1

Quartz content 0 1 with the sum of other three minerals is 1

Porosity 0 0.3 greater than compliant porosity

Compliant porosity 0.0001 0.01 less than porosity

Compliant porosity aspect ratio 0.0001 0.001

TABLE 2 Sampling range of tight sandstone model parameters.

Parameter Lower bound Upper bound Description

Fluid saturation (gas,water) 0 1 the sum of the two is 1

Feldspar, calcite content 0 0.1

Clay content 0 0.4

Quartz content 0.4 1 with the sum of other three minerals is 1

Porosity 0 0.1 greater than compliant porosity

compliant porosity 0.0001 0.01 less than porosity

compliant porosity aspect ratio 0.0001 0.001
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Ksat

Ksat − Km
� Kmf

Kmf −Km
+ Kfl

ϕs(Kfl −Km) (7)

μsat � μmf (8)

where Ksat and μsat are the bulk modulus and shear modulus of

the saturated rock.

According to the established theoretical rock physics models,

the bulk moduli, the shear moduli can be obtained, and the

FIGURE 1
Correlation between reservoir parameters and S-wave velocity. (A) Porosity versus S-wave velocity. (B)Density versus S-wave velocity. (C) Clay
content versus S-wave velocity. (D) P-wave velocity versus S-wave velocity.

FIGURE 2
The structure of the deep S-wave velocity prediction
network.

FIGURE 3
Learning curve of neural network.
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P-wave velocity and S-wave velocity are calculated using the

relationship between moduli and density (Eqs 9, 10) as follows:

Vp �
���������������(Ksat + 4μsat/3)/ρ√

(9)
Vs �

�����
μsat/ρ√

(10)

where Ksat and μsat are the bulk modulus and shear modulus of

the saturated rock.

3 S-wave velocity prediction method

In this study, a combination of DNNs and rock physics

model is used for S-wave velocity prediction.

3.1 Data preparation

Two types of theoretical rock physics models from the

previous section are used to generate 128,000 synthetic data.

To ensure the generality and richness of the synthetic data, the

sampling ranges of these model parameters cover all possible

values, as shown in Tables 1, 2, and the sampling range of the

parameters is determined from the real field areas and

experimental measurements. Random values in the

parameter’s sampling space and random combinations of

different parameters are used to obtain corresponding S-wave

velocity dataset.

Since real field data normally contain noise from the data

acquisition, processing and interpretation procedures, we

add 10% Gaussian noise to the synthetic data to construct

a full-sample labeled dataset that mimics the real data, which

helps enhance the robustness of the neural network.

3.2 Feature parameter selection

The reservoir parameters reflect the characteristics of the

reservoir, and there is a certain connection between them and

the S-wave velocity. Since the trained neural network is to be

directly applied to the real field work area, four reservoir

parameters, such as porosity, density, clay content and P-wave

velocity, which are easily accessible in real field areas, are

selected. The correlation between the four parameters and the

S-wave velocity is as follows (see Figure 1), where R is the

correlation coefficient.

According to the correlation analysis in Figure 1, it can be

found that these four parameters have a good correlation with the

S-wave velocity. The P-wave velocity and density are positively

correlated with the S-wave velocity, and the porosity and clay

content are negatively correlated with the S-wave velocity, among

which the P-wave velocity has the strongest correlation with the

S-wave velocity, and the absolute values of the four correlation

coefficients are greater than 0.4. Thus, these four parameters will

be used as the input features of the S-wave velocity prediction

network.

3.3 Feature parameter normalization

Feature normalization is an important step in deep

learning. Since different features always have different

amplitudes, units, and ranges, the features with high

magnitudes will impose higher impact on networks. If the

data is not processed to the same range, the network may not

converge when it is trained, and the training time is long,

giving more weight to features with larger values, which will

limit the prediction accuracy of the regression equation. In

order to eliminate this effect, it is necessary to normalize the

FIGURE 4
Test results of 500 synthetic data. (A) Test results. (B) Relative errors.
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features to the same scale. This study uses the min-max

method to normalize the features, and the normalized data

are all between 0 and 1, the expressions are as follows:

Xnorm � X −X min

X max −X min
(11)

whereXnorm is the normalized value, X is the original value,Xmax

is the maximum value of the features,Xmin is the minimum value

of the features.

3.4 Deep shear wave velocity prediction
network building and training

In this study, a fully connected neural network with three

hidden layers (the number of hidden layer neurons is 10),

four inputs and one output is constructed using the P-wave

velocity, density, porosity and clay content as input features

and the S-wave velocity as the label (see Figure 2). The neural

TABLE 3 petrophysical parameters of five tight sandstone samples.

Sample Density (g/cm3) Porosity (percent) Permeability (md) Clay (percent) Quartz (percent)

S1 2.65 2.37 0.014 3 41

S2 2.64 3.77 0.023 5 40

S3 2.50 6.48 0.023 5.7 58.8

S4 2.47 6.71 0.069 5.5 68.6

S5 2.41 7.22 0.131 4.7 65.2

FIGURE 5
P- and S-wave velocities of samples from published
literatures. (A) Han et al. (2021). (B) Li et al. (2018).

FIGURE 6
Comparison of S-wave velocity measured in laboratory with
predicted value of DNN. (A) Prediction results. (B) Relative errors.
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network minimizes the mean square error between the label

and the output by back propagation using the gradient

descent method. The activation function chosen for this

network is the Rectified linear unit (ReLU) function to

increase the nonlinear characterization ability of the neural

network, the optimization algorithm is Adam, and the loss

function is the mean square error (MSE) function.

We use the full-sample labeled dataset constructed in

Section 3.1 to train the deep shear velocity prediction

network. Firstly, all the input features are normalized by

the max-min method so that all the features fall between

0 and 1. Then 80% of the labeled dataset is used for training,

10% for validation and 10% for testing. As shown in Figure 3,

the training and validation losses decrease simultaneously

and converge to relatively low values after 14 epochs of

training, which means that the neural network has been

fitted well. The validation loss reaches a global minimum

after 25 epochs and is as low as the training loss, indicating

that the network has been completely fitted and the trained

neural network can be generalized to new data for S-wave

velocity prediction.

For the trained network, the synthetic data with noise were

first tested, and the test results are shown in Figure 4. From

Figure 4A, it can be seen that the predicted S-wave velocity

using the neural network can match the real S-wave velocity

well both in terms of variation trend and values, except for

individual data points where the error can reach more than

10%, the error in all other data points is below 5% (see

Figure 4B).

4 Deep S-wave velocity prediction
network application

In this section we present the results of applying the neural

network to laboratory data and real field data.

4.1 Application to the laboratory data

We obtained the clay content, porosity, density, P-wave

velocity and S-wave velocity (dry conditions) of five tight

FIGURE 7
Comparison of three S-wave velocity prediction methods. (A) Prediction results. (B) Relative errors.
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sandstone samples from the published literature (Li et al.,

2018; Han et al., 2021). The physical parameters of the five

sandstone samples are shown in Table 3, and the P- and

S-wave velocities are shown in Figure 5. Four features data

from the published literature are introduced into the

previously trained network and then output the predicted

S-wave velocities.

As shown in Figure 6A, the data are concentrated around

the line y = x. The coefficient of certainty R2 of the prediction

results is above 0.85, and the root mean square error (RMSE)

is 0.12, indicating that the predicted S-wave velocities of the

neural network are in strong agreement with the laboratory

measurements. Most of the relative errors between the

predicted results and experimental measurements are

within 5% (see Figure 6B), which also indicates that the

constructed deep S-wave velocity prediction network has a

very good prediction performance, while the large deviation

of individual points may be due to some errors generated by

the experimental measurement process, resulting in low or

high measured values.

To illustrate the superiority of the constructed deep S-wave

velocity prediction network, the predicted results of the network

were compared with those predicted by the empirical formula

proposed by Han et al. (1986), Eq. 12 and by Castagna et al.

(1985), Eq. 13.

Vs � 0.794Vp − 0.787 (12)
Vs � 0.862Vp − 1.172 (13)

FIGURE 8
Data information of well 1 and S-wave velocity prediction results (Vs-label is the logging S-wave velocity, xx-predict indicates the result
predicted using a certain method, and xx-error indicates the corresponding relative error).
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The comparison results and the average relative errors are

shown in Figure 7. Figure 7A shows the two-dimensional

intersection of the S-wave velocities predicted by the three

methods and the laboratory measured S-wave velocities, and

Figure 7B shows the relative errors. From Figure 7A, we can

see that the intersection analysis results of the predicted and

true values of the three methods are all distributed around the

line y = x, which indicates that the prediction results have

certain accuracy. However, the value predicted by the deep

S-wave velocity prediction network is closer to the line y = x,

which indicates that the network is the most accurate among

the three methods. The errors between the predicted and true

values of the network are the smallest, as can be seen in

Figure 7B, which also confirm this conclusion. Also, it can be

found from the figure that Han’s empirical formula is more

applicable than Castagna’s empirical formula at the ultrasonic

frequency band in the laboratory.

For tight sandstone, the P-wave velocity increases with

increasing water saturation under high pressure conditions,

and the S-wave velocity basically does not change, while both

P-wave velocity and S-wave velocity increase with increasing

water saturation under low pressure conditions (Li et al., 2018).

FIGURE 9
Data information of well 2 and S-wave velocity prediction results (Vs-label is the logging S-wave velocity, xx-predict indicates the result
predicted using a certain method, and xx-error indicates the corresponding relative error).
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FIGURE 10
Data information of well 3 and S-wave velocity prediction results (Vs-label is the logging S-wave velocity, xx-predict indicates the result
predicted using a certain method, and xx-error indicates the corresponding relative error).

TABLE 4 Average relative error of the three S-wave velocity prediction methods in different wells.

Well DNN-average relative error
(%)

Han-average relative error
(%)

Castagna-average relative error
(%)

Well 1 2.24 6.68 2.86

Well 2 3.33 4.48 3.73

Well 3 4.62 8.24 7.33

Sandstone1&2 of well 3 2.56 4.24 3.47
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Han’s empirical formula is obtained by fitting the saturated water

sandstone data, while the data obtained in this study are

measured under dry conditions, therefore, Han’s empirical

formula results in a large prediction of the S-wave velocity

under high pressure conditions (Figure 7A), while the

prediction results of the S-wave velocity under low pressure

conditions are very close to the true values.

4.2 Application to the field well log data

The trained neural network was applied to the well log

data from three real field areas for S-wave velocity prediction,

where well 1 and well 2 were tight sandstone reservoirs and

conventional sandstone reservoirs, while well 3 included both

sandstone reservoirs and mudstone layers, and the results

predicted by the deep S-wave velocity prediction neural

network were compared with the real well log data and the

results predicted by empirical formulas. The prediction

results are shown in Figures 8–10, which show the logging

data used in the prediction task as well as the prediction

results and relative errors for the three methods. In Figures

8–10, Vs-label indicates real log shear wave velocity (black

line), DNN-predict indicates the DNN prediction result (red

line), Han-predict indicates the prediction result of Han’s

empirical formula (blue line), Castagna-predict indicates the

prediction result of Castagna’s empirical formula (yellow

line), and Table 4 shows the average relative errors of the

prediction results.

From Figures 8, 9 and Table 4, we can see that for both Well

one andWell 2, the S-wave velocity prediction results of the deep

neural network and the real log data have the same general trend

and small error, which has a good match. Compared with the

other two prediction methods, the error of the DNN prediction

results is smaller (2.24%, 3.33%) and the trend is closer to the real

S-wave velocity, which indicates that the established deep S-wave

velocity prediction network has good application in the real field

work areas.

For well 3, the deep neural network prediction results are

relatively poor, but from Figure 10 and Table 4, we can see that

the deep neural network still performs well in the two sandstone

reservoir sections (2.56%), while the prediction results of the

mudstone section deviate greatly from the true values. This is

owing to the fact that the rock physic responses of mudstone are

different from that of both tight sandstone and conventional

sandstone, and the labeled dataset constructed by the sandstone

model is less applicable tomudstone, so there exists a large prediction

error. In addition, the prediction accuracy of the deep neural network

FIGURE 11
Absolute error curve of S-wave velocity predicted by DNN. (A) Well 1. (B) Well 2. (C) Well 3.
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is also superior to the two empirical formulations, the same as the

results of wells 1 and 2, because this high clay content is taken into

account in the sandstonemodeling process. Figures 8–10 and Table 4

also show that Castagna’s empirical formula is more applicable than

Han’s empirical formula at the well-logging frequency band.

Figure 11 shows the absolute error (the absolute value of

the difference between the measured and predicted S-wave

velocities) of the S-wave velocities predicted based on the

deep neural network for the three wells. As can be seen from

the figure, the absolute error is basically below 0.15 km/s for

well 1, and below 0.2 km/s for well 2 as well as the sandstone

section of well 3, which indicates that the practicality of the

method proposed in this study is fairly good.

From the application of the laboratory data and the well log data,

the prediction accuracy of the deep S-wave velocity prediction

network established in this study is higher than the common

empirical formulas. Han’s empirical formula is more applicable to

the ultrasonic frequency band, while Castagna’s proposed empirical

formula is more applicable to the well-logging frequency band, which

may be because Han’s empirical formula is statistically based on the

data at ultrasonic frequency band, while Castagna’s empirical

formula is based on the well-logging data. Compared with the

two empirical formulations, the deep S-wave velocity prediction

network proposed in this study is applicable to the full frequency

band S-wave velocity prediction and has better generalization.

5 Conclusion

In this study, we proposed a shear wave velocity prediction

method based on DNNs and rock physics modeling. We have

applied the established deep S-wave velocity prediction network

to real field data directly. Theoretical rock physics models are

developed for the properties of conventional and tight sandstone

reservoirs. The geological and geophysical knowledge is

incorporated into the data set of the deep neural network by

means of forwarding simulation of the theoretical rock physics

models to construct a full-sample labeled dataset that traverses

the entire S-wave velocity space. A robust and generalizable deep

S-wave velocity prediction network without multiple training is

built by combining the full-sample labeled dataset and the deep

neural network. When the established network is applied to the

real field data, the errors of S-wave velocity prediction are very

small, all within 200 m/s, and the average relative errors are

below 5%. In addition, the prediction errors of the deep S-wave

velocity prediction network constructed in this study applied to

laboratory data (3.32%) and well log data (2.24, 3.33, and 4.62%)

are much smaller than that of Han’s empirical formula (10.30,

6.68, 4.48, and 8.24%) and Castagna’s empirical formula (11.40,

2.86, 3.73, and 7.33%). Compared with the two common

empirical formulations, the deep S-wave velocity prediction

network established has better prediction ability and

generalization ability. The network is applicable to the S-wave

velocity prediction in the full frequency band of sandstone

reservoirs, and can provide S-wave velocity information for

reservoir prediction work. The use of theoretical model

forward simulation supplements the training dataset for

machine learning, improving the interpretability of machine

learning algorithms and generalization of models in real

applications. Furthermore, we provide a new idea for the

construction of labeled datasets in machine learning tasks.
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