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Satellite-based remote sensing technology plays a significant role in identifying

tropical cyclones (TCs), and most of the current research focuses on intensity

estimation. However, analyzing the wind structure of TCs, which is directly

related to the danger they bring, remains a challenge. By adding prior

knowledge of TCs into the model, we propose a physics-incorporated

network based on multi-task learning to estimate wind radii and intensity,

whose layers can automatically extract rotation-invariant features related to

the TC core from multichannel satellite imageries. In addition, we build a more

comprehensive dataset, including global Statistical Hurricane Intensity

Prediction Scheme (SHIPS) predictors, to tackle the structure task. We

compare our model with existing methods, and it shows that our model

gets better results in estimating 50-knot and 64-knot wind radii and

achieves a 4.87-knot root-mean-squared error (RMSE) of intensity. By

predicting probability density functions, our model quantifies the uncertainty

of the result. The experimental results show that the incorporation of rotation

equivariance into the layers can enhance TC structure estimation. By

considering the feature importance of multi-source predictors, we find that

our model pays attention to key predictors related to the TC structure.

Specifically, the tangential wind speed at 500 km from the TC center and

the radius of the 5-knot wind both greatly reduce the error of the estimated

parameters. Finally, two case studies show that the proposed model performs

well most of the time during TCs’ rapid intensification. However, when TCs’

system is not well organized, estimating the wind structure is challenging.
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1 Introduction

TCs combined with high winds and heavy rainfall are considered extreme weather

phenomena that cause significant damage to coastal areas around the world, and the

potential damage level of a TC is determined by its surface wind field (Maclay et al., 2008).

Estimating TC near-surface winds accurately helps operational centers make better

forecasts. The radius of maximum winds (RMW) and different maximum radial
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extents of wind speed thresholds, like 34-, 50-, and 64-kt (R34,

R50, and R64), are used by operational centers to represent the

wind field. U.S. TC warning centers include these parameters in

input files (i.e., “TC vitals” files) for assimilation to improve TC-

focused numerical weather prediction (Knaff et al., 2021).

The most direct way to obtain TC winds is using spaceborne

active radars such as scatterometers (Figa-Saldaña et al., 2002;

Stiles et al., 2014), but it is not possible to get an expected

frequency because they are usually located on polar-orbiting

satellites that only scan the same TC twice a day. To meet

operational needs, we can use geostationary satellites, which

typically collect data every 15 minutes. Infrared imageries that

observe cloud features from geostationary satellites have been

used to locate the TC center and identify cloud band distribution

by the conventional Dvorak method (Dvorak, 1975). Knaff et al.

(2014b) demonstrated that features extracted from infrared

imageries are related to structural parameters such as wind

radii. With the advent of higher resolution instruments,

infrared imageries are more widely used to estimate the TC

structure, especially by statistical methods (Dolling et al., 2016;

Reul et al., 2017).

However, traditional statistical methods do not make

effective use of data. Following the success of deep learning in

the field of computer vision, Pradhan et al. (2018) first applied

deep convolutional neural networks (CNN) to estimate the

intensity of TCs and obtained better results than the optimal

model at that time. The current consensus is that incorporating

prior knowledge can efficiently enhance prediction skills. Chen B.

et al. (2018) blended multiple TC intensity estimations, thus

reducing the variance of results caused by rotation. Chen et al.

(2021) also obtained better performance on the TC structure task

by using convolutional kernels on polar coordinates compared

with Cartesian coordinates. By incorporating the knowledge of

meteorology, such as the rotation invariance of TCs, these

models achieve better results. In this study, we further

incorporate the rotation invariance of TCs into the model

structure using rotation-equivariant layers, which can output

permuted features with rotated input.

Besides optimizing the model structure, data is a crucial

component of deep learning. In addition to satellite imageries, we

can infuse auxiliary information to improve the model’s

performance (Chen B.-F. et al., 2019). Zhuo and Tan (2021)

showed that the inclusion of TC fullness can help the model

improve TC structure estimation. There are many available

auxiliary variables related to the TC structure. Knaff et al.

(2014b) showed that the radius of a 5-kt wind can represent

TC size variations. Environmental variables are also critical for

analyzing the TC structure since the ocean and the atmosphere

exchange a lot of energy when TCs are active. For example, the

central pressure deficit increases with increasing intensity, size,

and the Coriolis parameter (Chavas et al., 2017). A decrease in

the sea surface temperature (SST) under a TC’s eye has a

significant impact on the TC intensity (Schade, 2000). To

incorporate the previously mentioned and additional variables

into the model, we build a dataset by collecting large-scale SHIPS

predictors from multiple sources.

As mentioned previously, we propose the physics-

incorporated network to tackle the TC structure task by

extracting rotation-invariant features and combining multiple

sources of auxiliary information. To show the efficacy of our

methods, we conduct comparison experiments, the structure

ablation study, the predictor sensitivity study, and the case

study. First, we evaluate the model’s performance under an

operational setting and obtain 39.90, 21.35, 11.80, and

24.86 km mean absolute error (MAE) on R34, R50, R64, and

RMW. The RMSE of the model on intensity reaches an error of

4.87 kt. To make more informed predictions, Softmax is used as

the activation layer to predict probability density functions. We

can select bins with high confidence to further enhance the

credibility of the results. Second, we compare models with

and without rotation-equivariant layers, which shows that

rotation-equivariant layers can further extract rotation-

invariant features from infrared imageries on the TC structure

task. Third, we conduct experiments about predictors to get more

insight from the model. By incorporating these predictors, our

model surpasses the baseline in estimating the wind radii of TCs

by 18.5%, 18.2%, 18.6%, 20.2%, and 55.7% for R34, R50, R64,

RMW, and intensity, respectively. Then, we calculate feature

attributions on estimated parameters and find that it takes into

account important predictors associated with the TC structure.

Among the 120 predictors we use, the model focuses on

predictors related to the TC size derived from infrared

imageries. Finally, we select two TCs to analyze our model.

This study is organized as follows. Section 2 describes the

structure of our model and the composition of the dataset.

Section 3 discusses experiments and results, including

comparison experiments, the structure ablation study, the

predictor sensitivity study, and the case study. Section 4

concludes our study.

2 Methods

2.1 Physics-incorporated network

2.1.1 Network architecture
We develop the physics-incorporated network, as shown in

Figure 1, to estimate wind radii and intensity. The input to our

model consists of two parts: satellite imageries and predictors.

First, we use a deep residual network as the backbone to extract

features from images. Second, the predictors are concatenated as

the input of fully connected layers. In computer vision, much

work has confirmed the effectiveness of convolutional neural

networks with residuals (He et al., 2016; Chen H. et al., 2019; He

et al., 2020). Shortcut connections in the residual network help

the first few layers get updates efficiently, and the vanishing
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gradient problem no longer happens. We endeavor to improve

model performance by incorporating the physical knowledge of

TCs into themodel. It is known that a TC can be seen as a tropical

mesoscale convective system with rotation invariance. The

rotation-invariant feature is important for identifying

arbitrary-oriented objects. Feeding a rotated image to a

regular CNN is not the same as rotating feature maps of the

original image. Group equivariant convolutional neural networks

extend the equivariance of convolutional neural networks from

translation to rotation (Cohen and Welling, 2016), and more

experiments (Worrall et al., 2017) demonstrate the validity.

Given a transformation group G and a function Φ: X → Y,

equivariance can be expressed as follows:

Φ TX
g x( )[ ] � TY

g Φ x( )[ ] ∀ x, g( ) ∈ X,G( ), (1)

where Tg indicates a group action in the space. The

translation equivariant of CNNs can be expressed as follows:

Ttf[ ]pψ[ ] x( ) � Tt fpψ[ ][ ] x( ), (2)

where Tt denotes an action of the translation group (R2,+),
and we apply it to K-dimension feature maps f: Z2 → RK. The

convolution filter can be represented as ψ: Z2 → RK, and *

indicates convolution operation. Rotation-equivariant layers

are based on the cyclic group CN containing discrete rotations

by angles multiple of 2π
N . The rotation-equivariant convolution

can be defined as follows:

Tgf[ ]pψ[ ] g( ) � Tg fpψ[ ][ ] g( ), (3)

where G is a semidirect product of the translation group and

the rotation group. Our model stacks rotation-equivariant layers

with a higher degree of weight sharing. The extracted features

and multi-source predictors are concatenated as the input of fully

connected layers. At last, the output of the fully connected layers

is separated into five parts on average before feeding to the last

layer.

2.1.2 Loss function and metrics

The optimization objective of our model contains five

components: R34, R50, R64, RMW, and intensity. Manually

adjusting the loss coefficient for each task not only wastes

computational resources but also makes it difficult to trade off

each task. We use dynamic weight averaging (DWA) (Liu et al.,

2019) to learn the adaptive weights λk for each task k, where wk

represents the relative descending rate between epochs as follows:

λk t( ) ≔ K exp wk t − 1( )/T( )
∑i exp wi t − 1( )/T( ), wk t − 1( ) � Lk t − 1( )

Lk t − 2( ), (4)

where Lk(t) is calculated as the average loss value in epoch t

over iterations. For t = 1, 2, wk(t) is initialized as 1. T adjusts the

softness of task weighting, and it is set to 2. The sum of task

weighting is equal to the number of tasks. Compared with other

methods (Chen Z. et al., 2018), DWA is easy to implement since

it does not require internal gradient calculation. However,

assessing the uncertainty of estimations is difficult for

regression tasks. One way to estimate uncertainty is by

producing probabilistic output. To enable our model to

output probabilistic results, we convert the output value into

100 bins of equal width, and the last activation layer is replaced

with Softmax (Clare et al., 2021), which predicts the probability

density of the categories of targets. In this way, we collect notably

FIGURE 1
Overview of the physics-incorporated network. Residual neural network with rotation-equivariant (Ro-equ) layers extracts rotation invariance
features from satellite imageries. Then, the extracted features and SHIPS predictors are combined in one tensor to be the input of fully connected
layers in terms of feature representations. The last layer of the model applies softmax to output probabilistic results. Finally, we calculate the
expectation to get the final estimation value.

Frontiers in Earth Science frontiersin.org03

Yuan et al. 10.3389/feart.2022.1024979

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1024979


more information from our network predictions. To obtain the

final results, we calculate the expectation of the probability values

using the following equation:

E X[ ] � ∑
100

i�1
xiP X � xi( ). (5)

We choose MAE as the metric for wind radii tasks because of

its robustness to anomaly data and MSE as the metric for the

intensity task.

2.2 Tropical cyclone wind dataset

Currently, most of the datasets related to TC winds use

satellite data. It is worth noting that they do not consider

auxiliary information, including environmental variables.

Knaff et al. (2017) developed a global statistical–dynamical TC

wind radii forecast scheme using a subset of SHIPS predictors.

We can further make use of these predictors on the TC structure

task. As far as we know, there is no available dataset containing

these variables. Therefore, we build the Tropical Cyclone Wind

Dataset (TCWD), which includes multi-source variables and

satellite imageries, to further explore the TC structure.

TCWD collects Statistical Hurricane Intensity Prediction

Scheme (SHIPS) predictors related to climatology, persistence,

the atmosphere, and the ocean (DeMaria et al., 2005). These

predictors are used to predict the rapid intensification of TCs

(Kaplan et al., 2015; Xu et al., 2021). With a large number of

variables being added to the predictors, we can use deep neural

networks to learn complex nonlinear relationships. Predictors

related to brightness temperature (BT) are derived from GOES

infrared imageries, which provide information about the

structure of the deep convection near the TC center. Several

predictors are obtained from the GOES Channel 4 (10.7 μm)

imagery. The Channel 4 BT were azimuthally averaged on a 4-

km, TC-centered radial grid. The BT standard deviations from

the azimuthal average were also calculated at each radius. Storm

environment predictors are derived from numerical models such

as the global forecasting system (GFS), which include zonal and

meridional wind, shear, vorticity, and divergence. The zonal

component of motion distinguishes between TCs in easterly

and westerly basic currents. The divergence measures

synoptic-scale forcing. The climatological SST and the

climatological depth of the 20 °C isotherms are derived from

the 2005–2010 mean of the Navy Coupled Ocean Data

Assimilation analyses. Oceanic predictors along the path of

the TCs include oceanic heat content derived from Navy

Coupled Ocean Data Assimilation (NCODA) analyses.

The SHIPS development version dataset includes reanalysis

data for over 100 predictors, most of which are applicable every

6 hours, but only 20% of which are actually applied to operational

forecasts. Unlike the reanalysis data, the operational data are only

applicable when National Hurricane Center (NHC) forecasts are

available, and the Joint Typhoon Warning Center (JTWC)

maintains operational data for other regions. The operational

data tend to have larger errors than the reanalysis data. The

TCWD contains all available predictors from the operational

version of the SHIPS dataset at the time step of 0 h. The data are

interpolated every 3 hours.

The satellite imageries consist of four channels, as shown in

Figure 2. We collect infrared (IR) imageries, water vapor (WV),

and visible (VIS) from GridSat (Knapp et al., 2011), and the

passive microwave rain rate (PMW) from CMORPH (Xie et al.,

2017). The imageries are externally cut rectangles with the center

of the TCs as the center of the circle. For each imagery, there are

161 × 161 pixels, and the resolution is 7/100° lat/lon. The actual

distance between two pixels is about 7.7 km. We replace the

missing data with zero because it does not affect convolution

operations.

The wind radii and intensity labels come from JTWC and the

Tropical Cyclone Extended Best Track Dataset (EBTRK)

(Demuth et al., 2006). We interpolated the labels every 3 h to

get more samples and applied a nonzero-azimuthal average to get

the wind radii labels since they are recorded for each quadrant

(NE, SE, SW, and NW).

TCWD contains 90486 samples from 1614 TCs, of which

55,218 samples contain SHIPS predictors. The training set

contains 67,454 samples from 2004 to 2016. A total of

10,824 samples from 2017 to 2019 are selected as the

validation set, and 12,198 samples from 2018 to 2020 are

selected as the test set. Table 1 shows the sample number of

SHIPS predictors that are available. The TCWD is a benchmark

dataset for the structure analysis of TCs.

3 Experiments and result

3.1 Training and testing

We use the Adam optimizer (Kingma and Ba, 2015) to train

the network, and the learning rate is set to 0.001. Every ten

epochs, we reduce the learning rate by half. When the model

shows no improvement after 20 epochs, we will stop training. To

make the experiments consistent, we train and test our models on

the data that contains SHIPS predictors. To simulate operational

predictions, only IR and WV channels are used because the

PMW channel has a delay. We exclude the VIS channel because

the VIS channel is unstable at night. The input is filled with zero

when the predictors are not available.

3.2 Comparison experiments

In this section, we compare the performance of our model

with other TC structure estimate methods. The final model,
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combined with rotation equivariance and SHIPS predictors,

produces MAEs of 39.90, 21.35, 11.80, and 24.86 km for R34,

R50, R64, and RMW, respectively, which is better than those of

Knaff et al. (2016) and close to the deviation angle variance

technique (Dolling et al., 2016). To compare with other deep

learning methods, we collect satellite imageries from the same

source. However, there are still inconsistencies between datasets,

such as the year of the sample. A subjective comparison suggests

that the errors of all estimated parameters are lower than those

reported by Knaff et al. (2016) and Chen et al. (2021). The RMSE

of the model on intensity reaches an error of 4.87 kt, which is

currently the best model for estimating the intensity to the best of

our knowledge. Compared with DeepTCNet (Zhuo and Tan,

2021), our model yields better results on R50, R64, and intensity.

There are some gaps between our model and DeepTCNet in

estimating R34 and RMW because the DeepTCNet takes TC

FIGURE 2
Four channels of a TC from TCWD. (A) Infrared. (B) Water vapor. (C) Visible. (D) Passive microwave rain rate.

TABLE 1 Tropical cyclone wind dataset description.

R34 sample R50 sample R64 sample RMW sample Intensity sample

Training 32810 19950 12159 40551 48212

Validation 2291 1361 824 2835 2995

Test 3055 1808 1029 3762 4021
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fullness calculated from TC vitals (namely, R34 and RMW) as the

input. It is difficult for the DeepTCNet to achieve the

corresponding performance in a real-time setting. To evaluate

the performance of our model for each estimated parameters, a

scatter plot and a box diagram are used. The vertical axis

represents the estimated values of our model, while the

horizontal axis represents the labels from the best track. From

Figure 3, it is seen that the estimated TC wind radii are consistent

with the best track data. However, the model underestimates TCs

with high RMW due to the strongly convecting inner core. On

the other hand, since these parameters in the best tracks are not

subjected to vigorous post-storm review (Knaff et al., 2021), the

result of our model is reasonable. In particular, Figure 4 shows

that the estimated intensity is almost in line with the best track

data. Although our model tends to underestimate the intensity of

TCs, we can conclude that our model is robust and generalizes

well. Because we need to estimate multiple variables, we use

DWA to calculate the loss. We train a ResNet to estimate wind

structure with different loss coefficients in Table 3. Compared

with manually setting the loss coefficient, DWA achieves the

smallest normalized error. Finally, we evaluate the probabilistic

results from the model. Since we use the Softmax layer, we can

also get the probability of each interval, which is equally divided

by the minimum and maximum values of the label. Figure 5

shows that it is difficult to take the bin with the predicted highest

probability, that is, top 1, as the correct bin. But when we take the

top five bins, the chances of getting the correct result are greatly

FIGURE 3
Scatter plot of the degree of fit and dispersion for estimated R34 (A), R50 (B), R64 (C), RMW (D), and intensity (E). The model is evaluated on the
test set for TCs in 2018 and 2020.

FIGURE 4
Box diagram of the bias plot for TCs by different scales of
damage. Themodel is evaluated on the test set for TCs in 2018 and
2020. Although a small number of anomalous points can be
observed, themajority of estimation results are within the 10-
knot bias, which is sufficiently accurate.
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increased. Moreover, about 60% of the test samples are correctly

classified in the top 10 bins. Given that there are 100 bins, the

probabilistic results are valuable in weather forecasting. In terms

of probabilistic results, our model excels at estimating

R64 and R50.

3.3 Structure ablation study

This part performs ablation studies based on satellite data

and predictors by adding rotation-equivariant layers to

demonstrate the efficacy of the model structure. As shown in

Table 2, the incorporation of the rotation equivariance property

improves the errors of wind radii and intensity by 3.1% and 3.0%,

on average, compared with ResNet without the rotation-

equivariant layers (baseline). We also compare models with

the inclusion of SHIPS predictors, and the rotation

equivariance layers reduce the error of wind radii and

intensity by 1.3% and 5.0%, on average. This proves that our

model can extract more features independent of rotation by

assuming that the TC is fairly axis-symmetric with respect to the

center.

However, it should be noted that the errors for best track

wind radii could be as high as 40% decades ago, differing by year

and observation. The errors in the best track intensity have been

estimated to be more than 10% (Landsea and Franklin, 2013). In

recent years, TC warning centers have made efforts to reanalyze

the estimations. Moreover, as the quality of observations

improves, the error will become smaller. To mitigate the TC-

related damage, it is necessary to further improve the wind

structure estimations.

3.4 Predictor sensitivity study

We find that the model incorporating SHIPS predictors

surpasses the baseline in estimating the wind radii of TCs by

18.5%, 18.2%, 18.6%, 20.2%, and 55.7% for R34, R50, R64, RMW,

and intensity, respectively. Due to limited knowledge, it is

difficult to manually identify the importance of predictors. If a

feature is important, then it should be crucial for the output and

have a high value. So a baseline approach for computing the

contribution degree is to multiply the input with the gradient

with respect to the input (Shrikumar et al., 2017). However, this

method violates the axiom of sensitivity, which can be solved by

approximating the product of the gradient integral and the input

xi as follows (Sundararajan et al., 2017):

IntegratedGrads xi( )
� xi − xi′( )∫

1

0

zF x′ + α x − x′( )( )
zxi

dα. (6)

We get the top 10 most important predictors and

contribution degree to each parameter, as shown in Table 4,

by normalizing them across all the inputs for each feature (the

120 final predictors used in this study are listed in Supplementary

Table S1). Obviously, our model pays attention to IR-related

FIGURE 5
Percentage of all samples on the test set for TCs in 2018 and 2020 where one of the top k most likely bins predicted by our model is the
observed bin for R34 (A), R50 (B), R64 (C), RMW (D), and intensity (E), respectively. The k is set to 1, 5, and 10. Different colors are used to indicate the
gap between columns.
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TABLE 2 Comparison of our models with other methods.

Model Input Channel MAE (km) RMSE (kt)

R34 R50 RMW R64 Intensity

Knaff et al. (2016) IR 68.5 37.0 22.2 - -

Dolling et al. (2016) IR 38.5 23.2 13.5 - -

Chen et al. (2021) IR, WV, and PMW 50.58 - - - 10.43

Zhuo and Tan (2021) IR 31.82 21.83 13.51 13.51 8.7

ResNet (Baseline) IR and WV 49.87 26.29 14.93 31.19 11.59

+ Ro-equ layers IR and WV 48.54 25.61 13.94 31.05 11.24

+ SHIPS predictors IR and WV 40.64 21.49 12.14 24.87 5.13

Final model IR and WV 39.90 21.35 11.80 24.86 4.87

These bold values represent the optimal values for each column.

TABLE 3 Dynamic weight averaging contrastive experiment.

Loss coefficient R34 loss R50 loss R64 loss RMW loss Intensity loss Normalized loss

DWA 53.565 29.808 17.747 28.563 11.206 20.459

0.2:0.2:0.2:0.2:0.2 53.304 32.021 18.667 29.344 11.452 21.082

0.6:0.1:0.1:0.1:0.1 52.405 31.801 18.743 28.645 11.983 21.117

0.1:0.6:0.1:0.1:0.1 52.057 31.184 18.824 28.362 11.821 20.889

0.1:0.1:0.6:0.1:0.1 52.934 30.900 18.270 28.425 11.491 20.705

0.1:0.1:0.1:0.6:0.1 52.290 32.066 18.998 27.698 11.225 20.554

0.1:0.1:0.1:0.1:0.6 56.230 32.583 19.043 28.026 10.659 20.889

These bold values represent the optimal values for each column.

TABLE 4 Top 10 most important predictors and contribution degree to estimated parameters.

Rank R34 R50 R64 RMW Intensity

1 IR00_v20 0.069 IR00_v20 0.116 IRM3_v20 0.061 IR00_v19 0.060 IRM1_v20 0.066

2 IRM1_v19 0.063 IRM1_v20 0.098 IRM1_v20 0.051 IRM1_v20 0.057 IR00_v19 0.065

3 IRM1_v20 0.061 IRM3_v20 0.088 IR00_v20 0.051 IR00_v20 0.056 IRM1_v19 0.061

4 IRM3_v20 0.059 IRM1_v19 0.055 IRM1_v19 0.043 IR00_v18 0.054 IR00_v18 0.057

5 IR00_v19 0.058 IRM1_v18 0.052 PENC 0.043 IRM1_v19 0.053 IR00_v20 0.056

6 IRM1_v18 0.057 IR00_v19 0.051 IRM3_v19 0.040 IRM1_v18 0.047 IRM1_v18 0.055

7 IR00_v18 0.057 IR00_v18 0.051 IRM1_v18 0.039 IRM3_v19 0.047 IRM3_v19 0.054

8 IRM3_v19 0.053 IRM3_v19 0.050 IRM3_v18 0.038 IRM3_v18 0.046 IRM3_v18 0.053

9 IRM3_v18 0.052 IRM3_v18 0.043 T250 0.036 IRM3_v20 0.039 IRM3_v20 0.050

10 PENC 0.030 PENC 0.025 IR00_v18 0.030 CSST 0.030 IRM3_v6 0.025

For IR-based variables, IR00 represents the variables at the current time. IRM1 and IRM3 mean 1.5 and 3 h before current time, respectively. The postfix is used to distinguish different

variables.

IR00_v18 (V500) is an IR-based estimate of the tangential wind speed at 500 km from the TC center.

IR00_v19 (R5) is an IR-based estimate of the radius (km) of the 5-knot wind.

IR00_v20 is a scaling factor for R5 based on climatological values based just on intensity.

PENC is the azimuthally averaged surface pressure at the outer edge of the vortex.

T250 is 200–800 km area average 250 hPa temperature (°C × 10).

CSST is climatological SST.
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predictors, which are extracted from Geostationary Operational

Environmental Satellite (GOES) data. V500, R5, and the scaling

factor are TC size estimation variables that rank in top 3. V500 is

regressed by the sine of the latitude, and the first three

normalized principle components (PCs) are azimuthally

averaged radial profiles of IR brightness temperatures. R5 is

the radius where the TC wind field is indistinguishable from

the background flow in a climatological environment. Knaff et al.

TABLE 5 Top five most important predictors and contribution degree to estimated parameters except TC size estimation variables.

Rank R34 R50 R64 RMW Intensity

1 PENC 0.030 PENC 0.025 PENC 0.043 CSST 0.030 IRM3_v6 0.025

2 Z000 0.030 TWXC 0.018 T250 0.036 T250 0.025 IRM3_v11 0.020

3 PENV 0.029 TWAC 0.018 TWXC 0.028 IRM3_v6 0.021 IRM3_v16 0.020

4 CD20 0.019 PENV 0.013 COHC 0.024 IR00_v11 0.017 IRM3_v10 0.019

5 IRM3_v11 0.019 T150 0.013 DELV 0.019 IR00_v6 0.015 IR00_v11 0.018

For IR-based variables, IR00 represents the variables at the current time. IRM1 and IRM3 mean 1.5 and 3 h before current time, respectively. The postfix is used to distinguish different

variables.

PENC is the azimuthally averaged surface pressure at the outer edge of the vortex.

Z000 is 1000-hPa height deviation (m) from the U.S. standard atmosphere.

PENV is 200–800-km average surface pressure [(hPa −1000) × 10].

CD20 is climatological depth (m) of 20°C isotherms from 2005 to 2010 NCODA analyses.

IR00_v10/IR00_v11 is percentage area r = 50–200 km of the GOES Channel 4 BT < (−50)/(−60)°C.
TWXC is the maximum 850-hPa symmetric tangential wind at 850 hPa from NCEP analysis (ms−1 × 10).

TWAC is 0–600-km average symmetric tangential wind at 850 hPa from NCEP analysis (ms−1 × 10).

T150/T250 is a 200–800 km area average 150/250 hPa temperature (°C × 10).

COHC is the climatological depth (m) of ocean heat content (kJ cm−2) isotherm from 2005 to 2010 NCODA analyses.

DELV is the last 12-h intensity change (kt).

CSST is climatological SST.

IR00_v6 is the percentage area r = 50–200 km of GOES Channel 4 BT < − 10°C.
IR00_v16 is the average brightness temperature from 20- to 120-km radius (°C × 10).

FIGURE 6
Plots of estimated R34, R50, R64, RMW, and intensity of Hurricane Genevieve throughout its intensification.
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(2014b) showed that R5, V500, and intensity can explain the

R34 variance in linear regression. The radial scaling factor FR5 is

created by dividing the observed R5 by R5c as follows:

R5c � 7.653 + Vm

11.651
( ) − Vm

59.067
( )

2

, (7)

FR5 � R5
R5c

, (8)

where R5c has units of the degree latitude based on the

intensity Vm. The scaling factor affects the spatial distribution of

brightness temperatures, which is directly related to wind radii

(Knaff et al., 2014a).

In addition to these TC size estimation variables, we also list

other top five important predictors and contribution degrees in

Table 5. In these predictors, PENC, Z000, and PENV are all

variables related to pressure. For example, PENC describes the

azimuthally averaged surface pressure at the outer edge of the

vortex. The relationship between the radial distributions of the

pressure and azimuthal wind can be approximated as follows

(Chavas et al., 2017):

FIGURE 7
Plots of estimated R34, R50, R64, RMW, and intensity of Hurricane Willa throughout its lifespan.
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−1
ρ

zP

zr
+ v2

r
+ fv � 0, (9)

where p is air pressure, r is the radius from the TC center, v

is the azimuthal wind, ρ is the air density, and f is the Coriolis

parameter evaluated at the latitude of the TC center. CSST is

also important to estimate RMW because SST may play a role

in increasing the TC wind field (Maclay et al., 2008). TWXC

and TWAC are tangential wind-related predictors that

describe the quality of the TC cyclonic structure. As ocean

heat content controls the energy supply of TCs, CD20 and

COHC are both useful predictors (Wada and Usui, 2007).

Other important predictors include brightness-related

variables from infrared imageries that describe the strength

of convection and the cloud structure. These predictors can

also improve prediction skills in terms of the degree of

contribution.

3.5 Case study

Additionally, we select two TCs and plot our predictions and

labels to show concrete results.

Hurricane Genevieve was one of the most powerful and

long-lived hurricanes in 2020, which caused more than

$50 million in economic losses in Mexico. Genevieve

became a hurricane by August 17, and it started to rapidly

intensify the following day. By UTC 12:00 on August 18,

Genevieve reached its peak intensity, with maximum

sustained winds of 115 kt. As shown in Figure 6, our model

gives a closer estimate of the wind structure most of the time.

However, it would be challenging to predict the wind structure

when the system is disordered.

Another case is Hurricane Willa, which is shown in Figure 7,

which killed nine people and caused $825 million in damage after

its landfall inMexico. To beginwith, a new low-pressure trough, an

elongated region of low atmospheric pressure, developed to the

west of the original low on October 19. At UTC 00:00 on October

20, the system developed into a tropical depression while being

located approximately 425 km south of Manzanillo, Mexico.

Around UTC 12:00, the system’s tight inner core strengthened

into a tropical storm. The system was chaotic as we saw on the

satellite imageries until this moment, which was hard to be

estimated. Willa soon started to rapidly intensify.

Environmental conditions allowed Willa to strengthen into a

hurricane around UTC 06:00 on October 21. The eye of Willa

became well-defined on satellite imageries by UTC 18:00. It can be

seen that the estimation results of our model are relatively close to

the best track during this process, where the largest error is R34.

Continuing to rapidly intensify, Willa reached the peak intensity

with maximum sustained winds of 140 kt at approximately UTC

06:00 on October 22. The system weakened and made landfall at

UTC 01:20 on October 24. Following the landfall, Willa rapidly

weakened, degenerating into a tropical storm byUTC 06:00, which

became chaotic on satellite imageries. Six hours later, Willa

dissipated over northeastern Mexico. In general, our model has

a good performance in the rapid intensification of Hurricane

Willa. The estimation of wind radii is a challenge for our

model when the eye of TCs is not clear.

4 Conclusion

In this study, we develop a physics-incorporated network to

estimate the TCwind structure. Ourmethod boosts performance on

both the model and data sides. On one hand, rotation-equivariant

layers enhance the performance because of the rotation invariance of

TCs. On the other hand, multi-source predictors related to the TC

structure augment the performance from the perspective of features.

We apply dynamic weight averaging to achieve a balance among

multi-tasks in a simple way. By splitting the range of labels into

100 bins on an average, we provide more informed estimations to

quantify the uncertainty of network outputs. Specifically, the correct

bin is one of the top 10most likely for around 60% of the data points

of the estimated parameters. We compare our model with other

methods on the TC structure task. The structure ablation study is

performed to examine the efficacy of rotation-equivariant layers.We

also conduct predictor sensitivity studies to mine the relationship

between models and predictors. Hurricane Genevieve and

Hurricane Willa are used as examples to show our prediction.

Our model obtains 39.90, 21.35, 11.80, and 24.86 km MAEs on

R34, R50, R64, and RMW under an operational setting. It also

reaches an error in the intensity of 4.87 kt, which surpasses other

models. In the current experimental settings, we find that the

incorporation of rotation-equivariant layers reduces wind radii

and intensity errors compared with the baseline. In addition, with

the incorporation of predictors, we find the results are improved by

18.8% and 55.7% for wind radii and intensity estimation, on average.

The predictors are ranked by calculating feature attribution that

describes the degree of importance to the output. The result shows

that our model focuses on key predictors, including V500, R5, and

the scaling factor. We also find environmental variables such as

surface pressure and SST to be helpful. Our model gets close results

to the wind structure of Hurricane Genevieve and Hurricane Willa

during rapid intensification in the case study. However, the

performance of the model needs to be improved when the

system is unstable. It is worth noting that there are still

unavoidable errors in the labels we use, especially in wind radii,

which will be improved with more frequent post-season analysis.

In general, the physics-incorporated network is well-

designed for estimating the tropical cyclone wind structure

and can be applied to operational settings. Although

observations like scatterometers can directly detect the TC

wind field, our method can play a role in the rapid

intensification of TCs at a high frequency because early

awareness of these disasters results in saving many lives. With
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the emergence of more high-quality observations, estimation

could be more accurate in the future by incorporating

auxiliary information. Currently, although this study only

discussed the symmetric wind radii estimation, we provide the

dataset with asymmetric features such as wind shear when

considering the TC wind field’s asymmetries.
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