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One of the challenges that reservoir engineers, drilling engineers, and

geoscientists face in the oil and gas industry is determining the fracture

density (FVDC) of reservoir rock. This critical parameter is valuable because

its presence in oil and gas reservoirs boosts productivity and is pivotal for

reservoir management, operation, and ultimately energy management. This

valuable parameter is determined by some expensive operations such as FMI

logs and core analysis techniques. As a result, this paper attempts to predict

this important parameter using petrophysics logs routinely collected at oil and

gas wells and by applying four robust computational algorithms and artificial

intelligence hybrids. A total of 6067 data points were collected from three gas

wells (#W1, #W2, and #W3) in one gas reservoir in Southwest Asia. Following

feature selection, the input variables include spectral gamma ray (SGR); sonic

porosity (PHIS); potassium (POTA); photoelectric absorption factor (PEF);

neutron porosity (NPHI); sonic transition time (DT); bulk density (RHOB);

and corrected gamma ray (CGR). In this study, four hybrids of two

networks were used, including least squares support vector machine

(LSSVM) and multi-layer perceptron (MLP) with two optimizers particle

swarm optimizer (PSO) and genetic algorithm (GA). Four robust hybrid

machine learning models were applied, and these are LSSVM-PSO/GA and

MLP-PSO/GA, which had not previously used for prediction of FVDC. In

addition, the k-fold cross validation method with k equal to 8 was used in

this article. When the performance accuracy of the hybrid algorithms for the

FVDC prediction is compared, the revealed result is LSSVM-PSO > LSSVM-

GA > MLP-PSO > MLP-GA. The study revealed that the best algorithm for

predicting FVDC among the four algorithms is LSSVM-PSO (for total dataset

RMSE = 0.0463 1/m; R2 = 0.9995). This algorithm has several advantages,

including: 1) lower adjustment parameters, 2) high search efficiency, 3) fast

convergence speed, 4) increased global search capability, and 5) preventing
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the local optimum from falling. When compared to other models, this model

has the lowest error.

KEYWORDS
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Introduction

One of the challenges that reservoir management, drilling,

and exploitation of oil and gas resources, and finally energy

management have always faced is achieving decent productivity

with the least amount of cost (Zheng et al., 2017; Abad et al.,

2022). One of the most important reservoirs in the oil and gas

industry is natural fracture reservoirs. These reservoirs are

among the special reservoirs that change the fluid flow regime

of the reservoirs and affect the well productivity (Yang et al.,

2018; Radwan et al., 2021). Sometimes, in some areas, the

presence of deep fractures causes water conning in these

areas, and undesirable fluids flow to less permeable areas,

where they are wasted in the subsurface (Ali et al., 2021;

Sadeghnejad et al., 2022). Many techniques have been used to

identify fracture density. Among these techniques, coring

operations are crucial to identify reservoir rock fractures

(Rajabi et al., 2021; Sipahi and Develi, 2021). This operation is

so costly that it is done only in some limited reservoirs and is

extremely rare (Bessa et al., 2021). This paper attempts to use

low-cost petrophysical logs, which are required in all wells as part

of the drilling process, as well as four newly developed artificial

intelligence hybrid algorithms. The fracture density parameter

(FVDC) can be defined as the number of fractures per unit length

for a rock unit in cumulative fractures per unit volume. This

parameter can be extracted from visual reports, and it can be

written in the following formula (Lai et al., 2017):

FVDC � 1
L
∑n
i�1
Li (1)

In recent years, artificial intelligence has grown dramatically,

and many people have used it to predict important parameters in

various fields (Ahmadi et al., 2020; Nabipour et al., 2020b;

Nourani et al., 2022). Previous research has made some

TABLE 1 Compare the advantage and disadvantages of hybrid machine learning algorithms used for FVDC prediction.

ML
algorithm

Advantage Disadvantage

MLP-GA/PSO This algorithm can solve complex nonlinear problems with large input data
sets and it shows fast prediction after training. This algorithm has the ability
to work well with small amount of data. By combining the genetic
algorithm, it can provide a solution for continuous and discrete functions,
as well as problems such as mapping, which improves the accuracy of
performance with successive time repetition. When hybridized with MLP
network algorithms, this algorithm is significantly faster and more efficient
than other hybrid algorithms. When combined with the PSO optimizer
algorithm, it can be adjusted with fewer parameter and also the restriction is
easy and suitable for multi-objective optimization.

The disadvantages of this algorithm include the uncertainty of how much
each independent variable is affected by the dependent variable, the difficulty
and time required for calculations, and the proper performance of the model
depending on the quality of the training data. When this algorithm is
combined with the GA algorithm, despite its random nature, there is no
guarantee to optimize the solution, besides, the quality of the solution is not
particularly important for this algorithm. In other words, sometimes there is
no real solution and the problem remains unsolved. If this algorithm is not
implemented well, it may not produce an answer and may fail to converge. It
may occasionally increase the computational complexity of some problems.
When this algorithm is combined with the particle swarm optimization
(PSO) algorithm, it is collapsed in the high-dimensional space for the local
optimum, and the foot’s convergence rate is repeatable in the process.

LSSVM-
GA/PSO

The LSSVM algorithm is one of the best available algorithms for high-
performance accuracy for studies where there is insufficient data
information. This algorithm works well with unstructured and non-
dependent data. Moreover, it solves complex problems with a suitable
kernel function and has relatively good scaling. When combined with the
LSSVM algorithm, this algorithm does not need any derivative
information, and the genetic algorithm is faster and more efficient
compared to the traditional brute-force search methods. Genetic
algorithms have a wide solution space, a complex fitness landscape, are easy
to discover optimality, solve multi-objective function problems, evaluate
and perform various modified problems, manage a large search space, and
are highly resistant to problems in objective function evaluation. One of the
advantages of PSO algorithm over GA is the simplicity of its parameter
selection, which leads to speed up and prevent premature convergence,
which increases the performance accuracy.

When this algorithm is combined with the GA algorithm, problems of
identifying the fitness function, defining the representation of the problem
and early convergence will occur, as well as many problems will occur,
including population size, mutation rate, crossover rate, selection method
and its strength. It cannot easily combine problem-specific information and
is not good at local identification when combining. Among the disadvantages
of the PSO algorithm in relation to the LSSVM algorithm is that it does not
perform well in high-dimensional space and has a low convergence rate, and
setting random parameters to solve such problems is ineffective and cannot
achieve high performance accuracy.
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progress in fracture prediction using artificial intelligence,

including the following:

Initially, Ince (2004) used four inputs for fracture prediction

using Young’s modulus (E), compressive strength (fc), water-

cation ration (w/c) and maximum aggregate size (dmax), using

40 data points. Cement failure information is predicted using a

neural network (ANN) algorithm. Based on the results, it was

found that this algorithm has a very high capability in fracture

detection and cement fracture prediction (Ince, 2004). Six years

after Mr. Ince’s work, Jafari et al. (2012) predicted fracture

density using data from fifteen wells in the Asmari Formation,

southwestern Iran. In Jafari’s paper, bulk density (RHOB), deep

resistance (RT), and neutron porosity were used as input data to

predict this important parameter using an adaptive neuro-fuzzy

inference system (ANFIS) (NPHI). The presented results indicate

that this algorithm has a high prediction accuracy, with R2 =

0.98 and Error = 16.2, indicating that it has a low error (Ja’fari

et al., 2012). One year after the work of Jafari et al. (2012), Zazoun

(2013) used the robust ANN algorithm to predict fracture

density. A total of 1349 data points from 17 wells in the

Mesdar oil field in Algeria were used for this purpose. The

input data used in Zazoun’s paper to predict this important

parameter include RHOB, sonic transient time (DT), Caliper,

depth (D), NPHI, and gamma ray (GR). The presented results

indicate the high accuracy of this algorithm with a value of R2 =

0.812 (Zazoun, 2013). Two years after Zazoun’s work, in 2015,

Nouri-Taleghani et al. (2015) used the robust committee

machine intelligent system (CIMS) algorithm to predict

fracture density. For this purpose, they used 395 data points

from the Marun oil field, Iran. The input data used in Nouri-

Taleghani’s work to predict this important parameter includes:

RHOB, depth (D), caliper (HS), NPHI, photoelectric absorption

FIGURE 1
Flow diagram for workflow chart to develop four robust hybrid machine learning models for prediction of FVDC.

FIGURE 2
Flowchart diagram displaying the execution procedure
for GA.
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factor (PEF), and induced deep resistivity log(ILD). The

presented results indicate the high accuracy of this algorithm

with a value of R2 = 0.895 and the value of Error = 10.2 (Nouri-

Taleghani et al., 2015). Three years after Nouri-Taleghani’s work,

in 2018, Bhattacharya and Mishra (2018) used strong bayesian

belief network (BN) and random forest (RF) algorithms to

predict fracture density. For this purpose, they used 395 data

points from the Appalachian basin, United States. Input variables

to predict this important parameter include RHOB, GR, and HS

absorption. The presented results indicate the high accuracy of

this algorithm, and the absolute accuracy is between 74.8%

and 79.6%.

Away from direct observations from cores, numerous

methods for diagnosing and determining fractures in

subsurface reservoirs have been proposed. One of the methods

is fluid loss recordings during drilling, which can reveal fractures

in the subsurface rocks. It should be noted that natural fractures

are not always useful can result in drilling fluid waste and other

issues. However, the fluid loss does not accurately determine the

extent of the fracture. Another advanced method of fracture

diagnosis is the process of fracture detection using image logs

(FMI), which is very expensive. Computed Tomography (CT)

scanning for determining a reservoir’s fracture network in three

dimensions. However, it is a very costly and time-consuming

operation.

The LSSVM is one of the most powerful estimation

modeling tools that has been widely used by researchers to

model complex problems. As a result, combining LSSVM with

ultra-innovative algorithms such as PSO and GA has

demonstrated that it can dramatically improve the accuracy

of the output model. Therefore, we used LSSVM-PSO and

LSSVM-GA hybrid algorithms. This study tries to develop

four robust hybrid machine learning algorithms and employs

eight input variables related to petrophysical logs that have

not previously been used together in the literature. In this

article, four ML algorithms were used: MLP-PSO/GA and

LSSVM-PSO/GA. To the best of our knowledge, these

algorithms have been used in other industrial problems, but

they have not yet been used to investigate the fracture density

incident. Table 1 shows the merits and disadvantages of the

algorithms. In addition, in this study, information about

petrophysical logs and FMI logs (FVDC determination) was

used for input and output, respectively.

FIGURE 3
Flowchart diagram displaying the execution procedure
for PSO.

FIGURE 4
Flowchart for MLP-GA/PSO models used for prediction of
fracture density.
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Methodology

The diagram in Figure 1 shows the steps of building,

completing, and evaluating four robust HML algorithms to

predict FVDC. As shown in this Figure 1, we began by

collecting data from three wells (#W1, #W2, and #W3) in a

gas reservoir located in Southwest Asia. In the next step, the

maximum and minimum values of each variable are specified,

and then the data of all variables are normalized between -1 and

+1 (based on Eq. 2).

Ql
i � ( Ql

i − Qminl

Qmaxl − Qminl
)p2 − 1 (2)

Where:Ql
i = the normalized value of data records i; Qminl = the

minimum value of each i variable; and, Qmaxl = the maximum

value of each i variable.

Initially, the number of input variables was 12, but after

feature selection, this number was reduced to 8. Finally, the well

data from well #W1 is divided into training (70%) and testing

(30%) categories, and four new AI hybrid algorithms are

developed. We compared the algorithms’ results using statical

parameters and finally selected the best algorithm and

generalized the best hybrid algorithm (LSSVM-PSO) using the

other two wells #W2 and #W3, and the results were confirmed.

Due to their powerful capability to map correlation among

data and find solution for different problems, ML models’

application has become much popular in various fields of

science and engineering over the last few decades (Choubin

et al., 2019; Ghalandari et al., 2019; Qasem et al., 2019; Torabi

et al., 2019; Ahmadi et al., 2020; Band et al., 2020; Mosavi et al.,

2020; Shabani et al., 2020; H Ghorbani and Davarpanah, 2021).

For instance, ML methods have been applied for tackling a

variety of challenges in petroleum engineering such as

petrophysical (Rajabi et al., 2022c; Jafarizadeh et al., 2022;

Tabasi et al., 2022; Zhang et al., 2022), reservoir

characterization (Hassanpouryouzband et al., 2020; Abad

et al., 2021a; Hassanpouryouzband et al., 2021; Zhang et al.,

2021; Kamali et al., 2022; Kamali et al., 2022; Rajabi et al., 2022d;

Hassanpouryouzband et al., 2022; Ibrahim et al., 2022; Zhang

et al., 2022), production (Mirzaei-Paiaman and Salavati, 2012;

Ghorbani et al., 2020; Abad et al., 2021b) drilling (Soares and

Gray, 2019; Syah et al., 2021; Beheshtian et al., 2022; Pang et al.,

FIGURE 5
Flowchart for LSSVM-GA/PSO models used for prediction of
fracture density.

TABLE 2 Control parameters for MLP-GA/ PSO models used for the prediction of fracture density.

MLP GA PSO

Control parameter Value Control parameter Value Control parameter Value

Input variables 8 Population 60 Swarm size 60

Neurons in input layer 8 Selection method Roulette wheel Maximum iterations 100

Hidden layers 2 Crossover Uniform (p=1) Cognitive constant 2.05

Neurons in hidden layer 1 10 Mutation Uniform (p=0.04) Social constant 2.05

Neurons in hidden layer 2 5 Mutation rate 0.11 Inertia weight 0.98

Neurons in output layer 1 Selection pressure (Roulette wheel) 2 Var maximum 1

Maximum iterations 100 Var minimum −1

Var maximum 1 Maximum velocity 2

Var minimum −1 Minimum velocity 0.01
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2022). To predict fracture density using conventional well logs in

this study, two ML algorithms, multi-Layer Perceptron’s and

least-squares support-vector machines, were combined with two

evolutionary optimizers: genetic algorithm and particle swarm

optimization. One reason for choosing MLP and LSSVM to

predict FVDC is that the MLP algorithm is very flexible and

can form a suitable mapping to learn the pattern of input

variables to determine FVDC and provide an acceptable

result. The Least Squares Support Vector Algorithm (LS-

SVM) analyzes input data using a set of supervised learning

methods and performs regression analysis by identifying the

appropriate pattern. In order to optimize and increase the

performance accuracy of the algorithms, we have used GA

and PSO optimizers. The advantages and disadvantages of the

algorithms are presented in Table 1.

Multi-layer perceptron’s model

An artificial neural network (ANN) is an intelligent tool used

for establishing complex non-linear relationships between a set of

variables. As a result, ANN can predict the dependent (output)

variable(s) of interest with high accuracy (Barjouei et al., 2021).

There are various types of neural networks that have been widely

employed in the energy industry and other industries (Taherei

Ghazvinei et al., 2018; Ghalandari et al., 2019; Nabipour et al.,

2020b; Shamshirband et al., 2020). To develop a high-efficiency

ANN model, several key factors must be considered: 1) network

architecture (number of nodes and layers), 2) transfer functions

applied between layers, 3) selection of training algorithm used for

optimizing the prediction performance, and 4) selection of

proper features (i.e., which independent variables to consider).

It should be mentioned that the aforementioned factors play a

FIGURE 6
Chematic of 8-fold cross validation for FVDC prediction.

FIGURE 7
Schematic of Qatar’s North field.
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vital role in determining the degree of prediction accuracy of

ANN models (Maimon and Rokach, 2005). The MLP algorithm

is regarded as the most important type of artificial neural

network, and it consists of one input and one output layer, as

well as one or more layers between the input and output layers

known as “hidden layer(s)”. Being trained in a supervised

manner by the back propagation algorithm, MLP has been

extensively used in solving a wide range of problems (Rady

and Anwar, 2019). The MLP algorithm is applied for dealing

with large and complex sets of data as a flexible and versatile

ANN (Bishop and Nasrabadi, 2006). Consequently, the MLP

model was chosen in the present work for FVDC prediction.

A three-hidden-layer structure was found to be the optimal

structure for the MLP model evaluated in this study after a trial-

and-error analysis. The number of nodes within hidden layers

was equal to eight, ten, and one for the 1st, 2nd, and 3rd layers,

respectively. Based on the trial-and-error analysis, “tansig”,

“purelin” and “tansig” were selected as transfer functions for

the 1st, 2nd, and 3rd layers, respectively. Although Levenberg-

Marquardt (LM) algorithm is the most commonly applied for

MLP training due to its performance in rapid convergence to

optimal solutions. However, when dealing with large complex

non-linear datasets, this algorithm suffers strongly from trapping

at local minima (Nawi et al., 2014). To tackle this challenge, PSO

and GA algorithms were combined with MLP to enhance the

global optimization of the developed models (MLP-GA and

MLP-PSO).

Least-squares support-vector
machines

In 1995, Vapink proposed a rubout ML algorithm with

high efficiency called Support Vector Machine (Cortes and

Vapnik, 1995). Since its inception, this supervised ML

algorithm has been widely used to address regression and

classification tasks. The SVM algorithm presents some

advantages over neural network algorithms, including: 1)

no network predetermination is required; 2) no need to

determine the number of layers and neurons; 3) SVM

requires fewer control parameters than ANN (Gholami and

Fakhari, 2017). Despite these advantages, this ML technique

involves a complex learning process that involves the

implementation of a set of nonlinear equations solved via

quadratic programming (Mahdaviara et al., 2020; Abad et al.,

2021a). To address the learning complexity of SVM, some

changes were made to the SVM algorithm by Suykens and

Vandewalle in 1999 (Suykens and Vandewalle, 1999). The

modified version of this technique is the least-squares

support-vector machine (LSSVM). The LSSVM algorithm

simplifies the learning process by solving a set of linear

equations rather than complicated non-linear equations. In

the LSSVM model, the approximation is performed using the

following cost function (see Eq. 3) (Suykens et al., 2002).

F(x) � ωT∅(xi) + b (3)

where xi represents the independent variable to the function,

∅(xi) signifies kernel function, ω stands for weight vector, b

denotes bias vector, and T indicates transpose matrix.

Independent variable (xi) is in N*n dimensions, where N

denotes the stand number of samples included in dataset and

n represents the number of inputs parameters. More information

about the theoretical description of the LS-SVM model can be

discovered by referring to the previous publications (Rashidi

et al., 2021).

Although the kernel function has a significant impact on

the LS-SVM prediction performance, no standard methods

have been proposed for its selection (Abad et al., 2021a;

Rashidi et al., 2021). Therefore, for the LS-SVM model

TABLE 3 Feature selection’s lable for input variables.

Parameter Character

SGR S1

PHIS S2

POTA S3

HS S4

BS S5

PEF S6

NPHI S7

DT S8

RHOB S9

CGR S10

URAN S11

THOR S12

FIGURE 8
Determination of number of combination input variable for
feature selection in well #W1.
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proposed in this study, four commonly used kernel functions,

such as multilayer perceptron kernel, polynomial kernel,

radial basis function (RBF) kernel, and linear kernel, were

evaluated. The kernel function efficiency analysis displayed

that the RBF kernel is outperformed all the four kernel

functions tested. Furthermore, to boost the prediction

performance of the LS-SVM model, GA and PSO

optimizers were used to determine the optimum values of

control parameters of the model proposed.

Optimization algorithms

Genetic algorithm

The Genetic Algorithm (GA) is a well-known multi-purpose

optimization algorithm that is extensively used in a wide range of

prediction issues (Holland, 1984). This optimization algorithm

process mimics natural selection processes that involve

population modification procedures. These processes include

random mutation and crossover using a randomly selected

population of individuals (Mitchell, 1998; Sivanandam and

Deepa, 2008; Hassanat et al., 2019). The flowchart displayed

in Figure 2 illustrates the execution procedure of the GA

algorithm, adapted from Sivanandam and Deepa (2008). GA

performs some adjustments to the population’s individuals based

on the RMSE values they represent. The individual with the

lowest value of RMSE is retained as the global best (Gb). Other

individuals with sub-optimal values of RMSE are chosen for

modifications to proceed further and enter to the next

generation. Individuals who outperform those with high

values of RMSE, are randomly replaced in the next

generation. The overall population becomes gradually fitter

and fitter through this sequence of natural selection and the

Gb solution improves. The individuals are adapted via selection,

mutation, or crossover as GA continues its iterations. The

iterations are continued until, either a preset value of low

RMSE is accomplished, or a specified number of iterations are

carried out (Ashrafi et al., 2019; Mohamadian et al., 2021).

Particle swarm optimization

In 1995, Kennedy and Eberhart established a new

evolutionary optimization algorithm based on the natural

swarming of birds, called particle swarm optimization (PSO).

In this optimizer, a population of random solutions “swarm”, is

initiated, and an optimum solution then obtained by updating

generation. The solutions, in this algorithm, are called “particles”

(Abad et al., 2021a). The flowchart shown in Figure 3 presents the

execution steps that are involved in the PSO algorithm, adapted

from Rajabi et al. (2022b). This algorithm initializes a swarm of

particles by specifying maximum (Vmax) and minimum values

(Vmin). In each iteration of optimization, the best positions

globally obtained by the swarm of particles (Gb) and the best

positions achieved by the particles (Pb) are recorded and

transferred to the next iteration (Kuo et al., 2010; Kıran et al.,

2012). With reference to this information about the lowest Pb

and Gb positions recorded, the velocity attributes of each particle

are modified (see Eq. 4), adjusting its position as given by Eq. 5.

Vi(t + 1) � wVi(t) + c1r1(Pbi(t) − xi(t)) + c2r2(Gb(t) − xi(t))
(4)

xi(t + 1) � xi(t) + Vi(t + 1) (5)

where xi and Vi represent the location and velocity vectors; w

signifies weight or inertia which is applied for adjusting the

velocity of particle in each iteration; r1 and r2 stand for uniform

TABLE 4 Feature selection’s result to number of combination input variable for well #W1.

Number
of input variables

Input variables RMSE for FVDC (psi)

1 S1 0.6153

2 S1, S10 0.4873

3 S1, S10, S6 0.3940

4 S1, S10, S6, S7 0.3209

5 S1, S10, S6, S7, S9 0.2393

6 S1, S10, S6, S7, S9, S2 0.1813

7 S1, S10, S6, S7, S9, S2, S8 0.1308

8 S1, S10, S6, S7, S9, S2, S8, S3 (Best combination) 0.1026

9 S1, S10, S6, S7, S9, S2, S8, S3, S11 0.1108

10 S1, S10, S6, S7, S9, S2, S8, S3, S11, S12 0.1325

11 S1, S10, S6, S7, S9, S2, S8, S3, S11, S12, S4 0.1612

12 S1, S10, S6, S7, S9, S2, S8, S3, S11, S12, S4, S5 0.1988
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TABLE 5 Determination of statical parameter to prediction of FVDC of three wells of gas reservoirs located of Southwest Asia for each well seperatly (#W1, #W2 and #W3).

Units Variables Spectral
gamma
ray

Sonic
porosity

Potassium Photoelectric
absorption
factor

Neutron
porosity

Sonic
transition
time

Bulk
density

Corrected
gamma
ray

Fracture
density

Symbol SGR PHIS POTA PEF NPHI DT RHOB CGR FVDC

Units API % PPM Barns/cm3 % µs/ft g/cm3 API 1/m

Well #W1 (2929 data
point)

Mean 34.58 9.71 1.08 6.52 14.06 67.17 2.58 40.78 0.63

Std.
deviation

16.05 10.30 1.06 4.44 7.10 10.00 0.17 28.06 2.01

Variance 257.37 106.09 1.13 19.71 50.44 100.01 0.03 786.96 4.02

Minimum 6.02 0.001 0.01 1.91 0.00 41.87 1.20 3.31 0.00

Maximum 78.33 47.74 4.89 17.48 46.67 117.20 2.98 121.40 19.20

Skewness 0.04 0.70 1.02 1.43 0.44 0.36 −2.06 0.50 4.61

Kurtosis −0.60 −0.78 −0.03 0.46 0.50 0.06 13.53 −0.99 25.26

Well #W2 (1527 data
point)

Mean 36.96 1.81 0.52 4.23 11.89 68.61 2.64 43.24 0.98

Std.
deviation

15.87 4.24 0.54 1.44 6.11 10.28 0.12 29.50 2.53

Variance 251.84 17.99 0.29 2.08 37.27 105.53 0.02 869.64 6.38

Minimum 6.02 0.003 0.02 2.23 0.02 44.14 2.03 2.53 0.00

Maximum 78.33 26.24 3.77 11.82 34.36 92.14 3.04 110.25 19.20

Skewness 0.23 3.27 2.23 3.87 0.29 −0.12 −0.60 0.40 3.62

Kurtosis 0.00 10.91 5.92 17.92 −0.30 −1.12 2.16 −1.04 15.52

Well #W3 (1611 data
point)

Mean 36.32 1.63 0.27 9.19 13.37 60.09 2.60 42.69 0.48

Std.
deviation

15.41 3.80 0.53 5.35 6.24 7.86 0.13 29.73 1.69

Variance 237.41 14.43 0.28 28.59 38.97 61.76 0.02 883.20 2.85

Minimum 6.02 0.001 0.01 2.12 0.81 48.38 2.23 1.06 0.00

Maximum 76.05 30.10 5.27 16.95 46.67 100.32 3.17 110.25 16.00

Skewness −0.06 3.92 5.54 0.34 0.80 1.69 −0.64 0.42 4.62

Kurtosis −0.38 18.30 37.09 −1.81 2.79 4.40 1.40 −1.03 23.80
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random numbers [0, 1]; c1 and c2 , respectively, denote cognitive

and social coefficients (>0); i represent a series 1, 2, 3, . . ., n,

where n is the total number of particles forming the swarm.

Hybrid machine-learning models for
fracture density prediction

Multi-layer perceptron-genetic
algorithm/particle swarm optimizer
models

Hybrid forms of MLP and LSSVM algorithms with PSO

and GA optimizers have presented themselves as promising

hybrid methods for diverse prediction purposes in different

engineering sections, particularly in the oil and gas industry.

For instance, these hybrid methods have shown significant

accuracy in the prediction of different parameters, such as

shear wave velocity (Ghorbani et al., 2021; Miah, 2021; Rajabi

et al., 2022a), viscosity of waxy crude oils (Madani et al., 2021),

estimating formation pore pressure (Rajabi et al., 2022b), safe

mud window (Beheshtian et al., 2022), gas flow rate (Abad

et al., 2022), casing collapse (Mohamadian et al., 2021), rock

porosity and permeability (Nourani et al., 2022), two-phase

flow pressure drop modelling (Faraji et al., 2022), rate of

penetration in drilling (Hashemizadeh et al., 2022), gas

condensate viscosity (Abad et al., 2021a), prediction based

on biodiesel distillation (Vera-Rozo et al., 2022), oil holdup

(Zhang et al., 2011). The promising accuracy achieved by the

optimized LSSVM and MLP models for different prediction

purposes trigged the idea to establish solid hybrid methods

based on these algorithms and evaluate their performance in

the FVDC prediction using conventional well logs.

The MLP algorithm was hybridized with GA and PSO

optimizers to identify the optimum values of biases and

weights applied to the MLP model, where two hybridized

machine-learning models, namely MLP-GA and MLP-PSO,

were established. Figure 4 illustrates the flowchart of the MLP-

GA/PSO models, adapted from Zhang et al. (2022).

The PSO optimizer applied has a setup of 60 particles with

100 iterations to reach the optimal solution. The setup of the GA

optimizer used includes 60 populations with 100 iterations. The

control parameters of the MLP-GA/PSO models used to predict

fracture density are listed in Table 2.

Least-squares support-vector machines
-genetic algorithm/particle swarm
optimizer models

Like the MLP algorithm, the LSSVM algorithm was

hybridized either with GA or PSO optimization

algorithms to identify the optimal values of its controlT
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parameters. Among all four kernel functions tested for the

LSSVM model in the present work, the RBF kernel presents

the best efficiency. The optimum values of control

parameters for LSSVM, RBF kernel variance (σ2) and

regularization parameter (γ) were found to be 0.6814 and

2.2065, respectively. The control parameters of GA and PSO

were similar to those used in the optimization of the MLP

algorithm (see Table 2). Figure 5 illustrates the flowchart of

the proposed LSSVM-GA/PSO model for fracture density

prediction, adapted from Ghorbani et al. (2021).

Feature detection for fracture density
prediction and cross validation

The performance speed and accuracy of the HML

algorithms of MLP-PSO/GA and LSSVM-PSO/GA can be

increased by selecting the best input variables that have the

greatest impact on FVDC, which increases the performance

accuracy of these algorithms. This method necessitates the use

of the feature selection method and ranking input variables for

accessibility in accordance with the 2N rule (N is the number of

input variables) (Wahab et al., 2015; Beheshtian et al., 2022).

For example, if the number of input variables is 11, there are

2048 possible combinations of this feature (Chandrashekar

and Sahin, 2014). Filtering, packing, and embedded methods

are the three feature selection methods used to determine the

best input variables for FVDC prediction (Jain and Zongker,

1997). One of the feature selection methods is the

“embedded” method, which is selected during the training

process. To determine the best combination of input variables

to predict the desired output, an optimal subset of all input

variables is used (Mahendran and Durai Raj, 2021). This

method has the unique feature of detecting the dependence

between variables with more calculations. The second

available method is the “filtering” method, which depends

on the general characteristics of the training data set. This

method performs the feature selection process as a pre-

processing criterion, and by reducing the cost of

calculations, it can be generalized and generalizes the

model (Wahab et al., 2015; Roffo et al., 2020). The third

method available in feature selection is “Wrapping.” The

advantage of this method is based on the valuable

evaluation of the input variables, and the tendency to pack

to determine the best features creates a feature that

distinguishes it from the filtering method (Abad et al.,

2021a; Abad et al., 2022). This method is one of the most

accurate methods, and it is used in this article. This method

can be applied easily with the help of an optimization

algorithm such as GA. This algorithm can evaluate and

compare the combinations of input variables to predict the

FVDC by minimizing the cost function (RMSE). This method

FIGURE 9
Schematic of the cumulative distribution function (CDF) to description four input variables dataset. The variable is: SGR; PHIS; POTA; PEF. In this
figure, the blue and red line an input variable and standard deviation respectively.
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selects RMSE as the cost function, the combination with the

lowest value is chosen as the best. This method uses a simple

multi-layer perceptron model (MLP-GA) to identify multiple

combinations based on the lowest RMSE solutions (Jain and

Zongker, 1997; Farsi et al., 2021). In this method, the GA

algorithm determines crossover and mutation settings to find

solutions with high-performance accuracy, and subsequent

iterations are tested to find better solutions.

Overfitting must be avoided when determining the best

architecture for the MLP algorithm. To avoid overfitting, a

wide range of methods were used to determine the size of test

and train to the extent of 30% and 70% randomly. This

method is classified into several categories. This method is

one of the best because it does not allow for overfitting. A

practical way of using this 8-fold method can be solve the

problem of overfitting. This method considers these seven

packets to be train and one packet to be test. This set is

overlapped as a complete data set and this application is fully

trained, which improves performance accuracy. The

presented MLP result is highly dependent on the random

set values for the weights and was implemented for the

remaining training subsets. This model is selected for the

minimum RMSE for that training subset and this method is

repeated 10 times and in this repetition a method is used for

the training set. Then, the RMSE values are presented as

averages for the subset shown in Figure 6.

FIGURE 10
Schematic of the cumulative distribution function (CDF) to description five input/output variables dataset. The variable is: NPHI; DT; RHOB; CGR
and FVDC. In this figure, the blue and red line an input variable and standard deviation respectively.
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Data distribution and
characterization

In order to predict the FVDC variable in this study,

6067 datasets were collected related to three gas wells (#W1,

#W2 and #W3) in Qatar’s North field. Qatar’s North field is one

of the world’s giant gas fields, located in the Persian Gulf. This

field is harvested collaboratively by several countries, which is

related to Qatar in this section. This field has gas reservoirs

located three thousand meters below the sea and consists of two

TABLE 7 Prediction of FVDC prediction performance for training, testing and total dataset based on four robust hybrid machine learning LSSVM-PSO,
LSSVM-GA, MLP-PSO and MLP-GA based on dataset of well #W1.

Dataset Models MRE MARE STD MSE RMSE R2

Units (%) (%) (1/m) (1/m) (1/m) —

Training subset (70% ~ 2049 data point) MLP-GA −0.0380 0.4874 0.0912 9.987E-03 0.0999 0.9980

MLP-PSO 0.0070 0.3965 0.0775 6.756E-03 0.0822 0.9985

LSSVM-GA 0.0002 0.3618 0.0671 4.784E-03 0.0692 0.9989

LSSVM-PSO −0.0064 0.2394 0.0443 2.120E-03 0.0460 0.9995

Testing subset (30% ~ 880 data point) MLP-GA 0.0205 0.7390 0.1006 1.179E-02 0.1086 0.9974

MLP-PSO −0.0242 0.5717 0.0783 6.656E-03 0.0816 0.9985

LSSVM-GA 0.0510 0.4564 0.0631 4.265E-03 0.0653 0.9990

LSSVM-PSO 0.0227 0.3378 0.0453 2.199E-03 0.0469 0.9995

Total dataset (100% ~ 2929 data point) MLP-GA −0.0204 0.5630 0.0942 1.053E-02 0.1026 0.9987

MLP-PSO −0.0024 0.4491 0.0777 6.726E-03 0.0820 0.9985

LSSVM-GA 0.0154 0.3902 0.0659 4.628E-03 0.0680 0.9989

LSSVM-PSO 0.0023 0.2689 0.0446 2.144E-03 0.0463 0.9995

FIGURE 11
llustration of cross plot for training subset (70% ~ 2049 data point) based on four roboust hybrid machine learning LSSVM-PSO, LSSVM-GA,
MLP-PSO and MLP-GA based on dataset of well #W1.
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FIGURE 12
llustration of cross plot for training subset (70% ~ 2049 data point) based on four roboust hybrid machine learning LSSVM-PSO, LSSVM-GA,
MLP-PSO and MLP-GA based on dataset of well #W1.

FIGURE 13
llustration of cross plot for training subset (70% ~ 2049 data point) based on four roboust hybrid machine learning LSSVM-PSO, LSSVM-GA,
MLP-PSO and MLP-GA based on dataset of well #W1.
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gas formations, Kangan and Dalan. Each formation is divided

into two reservoirs, and the field is divided into four layers K1,

K2, K3 and K. The K1 and K3 layers are mainly dolomites and

anhydrite, with marl and shale. On the other hand, the K2 and

K4 layers participate in the formation of gas reservoirs. The gas

formation in this field is estimated to be about 1800 trillion cubic

feet and about 50 billion barrels of gas condensate. A schematic of

this field is shown in Figure 7.

Out of the 6067 data sets, the 2929 dataset related to well

#W1 at a depth of 3700–4286 with a 0.2 m interval section is

used, and the 1527 dataset related to well #W2 at a depth of

3649–3954 with a 0.2 m interval section, while the 1511 dataset

related to well #W3 at a depth of 3772–4094 with a 0.2 m interval

section is used. The data collected initially included spectral

gamma ray (SGR); sonic porosity (PHIS); potassium (POTA);

hole size (HS); caliper (BS); photoelectric absorption factor

(PEF); neutron porosity (NPHI); sonic transition time (DT);

bulk density (RHOB); corrected gamma ray (CGR); uranium

(URAN) and thorium (THOR).

The feature selection method was used in order to remove

unnecessary inputs and filter the data. Information about input

variables and their related labels is presented in Table 3 and

Figure 8. According to the feature selection method used in this

article, as well as the reports in Table 4, it is determined that the

FIGURE 14
Fracture density’s (FVDC) histogram and distribution line for determination of highly accuracy for four roboust hybrid machine learning LSSVM-
PSO, LSSVM-GA, MLP-PSO and MLP-GA based on dataset of well #W1.

FIGURE 15
The RMSE vs. iteration for determination of the for four
roboust hybrid machine learning LSSVM-PSO, LSSVM-GA, MLP-
PSO and MLP-GA based on dataset of well #W1.

TABLE 8 Development and generalization of new robust hybrid
machine learning LSSVM-PSO algorithm that structured by
training subset of well #W1 for prediction FVDC related to wells
#W2 and #W3.

Models MRE MARE STD MSE RMSE R2

Units (%) (%) (Psi) (Psi) (Psi) —

Well #W2 0.0212 0.4069 0.0620 4.028E-03 0.0635 0.9979

Well #W3 −0.0144 0.2120 0.0417 1.895E-03 0.0435 0.9980
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first reports are taken for one category and the lowest RMSE

value is reported for them, as well as for categories two, three,

and... up to twelve. Finally, after reporting the best and lowest

RMSE value for each category, we finally present the best report

for the combination of inputs (which is 8 inputs here). The

presented feature selection results are shown in Table 4. Feature

selection results show that S1, S10, S6, S7, S9, S2, S8, S3 (SGR,

PHIS, POTA, PEF, NPHI, DT, RHOB, CGR) show the best

combination for FDVC prediction. After feature selection, the

statical parameters of each well #W1, #W2 and #W3 and all wells

of gas reservoirs located in Southwest Asia are shown in Tables 5,

6, respectively. The correlations between the input variables and

output are explained further below. SGR is a measure of the

radioactivity in the formation that is used for the determination

of shale volume. Field practices show that in the fractured zone of

formations presents a high GR value, due to the radioactive salts

deposited on the fracture surface or inside the crack. A potassium

log represents a continuous measure of the radioactive element

potassium. Similarly, the presence of potassium salts deposited

on the surface of fractures or inside the cracks in fractured

formations causes a high potassium value. CGR log is similar to

SGR log, except that CGR only accounts for thorium and

potassium elements emitted by formation rock. As a result, it

is expected that CGR log will behave similarly to SGR log in

fractured formations. Bulk density is a log that represents the

continuous measure of the bulk density of the formation. This log

is applied for measuring the total porosity of reservoir formation.

As a result of the filled-with-fluid fractures, the bulk density log

decreases, as evidenced by a negative peak on the bulk density

log. Neutron log provides a continuous record of the total

porosity of reservoir formation, so it behaves similarly to the

bulk density log in fractured zones. Sonic log is also a porosity log

measures the travel time (DT) of acoustic waves through the

formation. The time it takes for acoustic waves to travel through a

unit length of rock is recorded in the DT log. As a result, the

velocity of acoustic waves is expected to be low in fractures filled

with fluid, and as a result, the DT log and sonic porosity logs are

both expected to be high (Serra, 1983; Asquith et al., 2004;

Haghighi, 2007; Taherdangkoo and Abdideh, 2016).

One of the functions that can interpret data and is very

efficient is the cumulative distribution (CDF) functions, which

can be used for any of the input and output variables (shown in

Eq. 5). Figures 7, 8 show the interpretation of input and output

variables for FVDC prediction. The information in these two

forms is interpreted as follows (Abad et al., 2021a; Barjouei et al.,

2021; Hazbeh et al., 2021):

εX(x) � T (X≤x), for all xϵR (6)

where; εX (x) = The cumulative distribution functions; x = point

for each input/output variable; X = the specific point data for

each input/output variable x; and R = all data records for each

input/output variable.

The schematic of Figure 9 shows the CFD diagram for four

input variables datasets that include spectral gamma ray (SGR);

sonic porosity (PHIS); potassium (POTA); photoelectric

absorption factor (PEF).

• The value of CFD, for spectral gamma ray is SGR <
22.5 API for about 20% of the all-data record, 22.5 <
SGR < 50 API for about 62% of the all-data record, and

SGR > 50 API for about 18% of the all-data record.

• The value of CFD, for potassium is POTA < 0.1250 PPM

for about 25.8% of the all-data record, 0.1250 < POTA <
1.56 PPM for about 60.6% of the all-data record, and

POTA > 1.56 PPM for about 13.6% of the all-data

record.

• The value of CFD, for sonic porosity is PHIS < 0.1059% for

about 26% of the all-data record, 0.1059% < PHIS < 13.8%

FIGURE 16
llustration of cross plot of new robust LSSVM-PSO algorithm
structered by training subset of well #W1 for prediction FVDC
related to wells #W2.

FIGURE 17
llustration of cross plot of new robust LSSVM-PSO algorithm
structered by training subset of well #W1 for prediction FVDC
related to wells #W2.
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for about 56% of the all-data record, and PHIS > 13.8% for

about 18% of the all-data record.

• The value of CFD, for photoelectric absorption factor is

PEF < 3.9 Barn/cm3 for about 20% of the all-data record,

3.9 < PEF < 11.5 Barn/cm3 for about 53% of the all-data

record, and PEF > 11.5 Barn/cm3 for about 3% of the all-

data record.

Based on Figure 9, the variables SGR and POTA are almost

normally distributed, whereas the variables PHIS and PEF do not

conform to normal distributions.

Figure 10 depicts a CFD diagram for a dataset with five input/

output variables: neutron porosity (NPHI), sonic transition time

(DT), bulk density (RHOB), corrected gamma ray (CGR), and

fracture density (FVDC).

• The value of CFD, for spectral gamma ray is NPHI < 13%

for about 46% of the all-data record, 13 < NPHI < 22.4%

for about 45% of the all-data record, and NPHI > 22.4% for

about 9% of the all-data record.

• The value of CFD, for sonic porosity is DT < 68.5 μs/ft for

about 13% of the all-data record, 54 < DT < 68.5 μs/ft for

about 50% of the all-data record, and DT > 68.5 μs/ft for

about 37% of the all-data record.

• The value of CFD, for potassium is RHOB < 2.65 g/cm3 for

about 64% of the all-data record, 2.65 < RHOB < 2.8 g/

cm3 for about 33% of the all-data record. and RHOB >
2.8 g/cm3 for about 3% of the all-data record.

• The value of CFD, for photoelectric absorption factor is

CGR < 9.9 API for about 12% of the all-data record, 9.9 <
CGR < 50 API for about 51% of the all-data record, and

CGR > 50 API for about 37% of the all-data record.

• The value of CFD, for fracture density is FVDC < 0.15 1/m

for about 40% of the all-data record, 0.15 < FVDC < 4 1/m

for about 54% of the all-data record, and FVDC > 4 1/m for

about 5% of the all-data record.

Based on Figure 10, the variable NPHI, DT and RHOB are

almost normally distributed, whereas variables CGR and FVDC

do not conform to normal distributions.

Result and discussion

One of the most important criteria used to compare the

results of FVDC prediction using four hybrid artificial

intelligence algorithms, LSSVM-PSO/GA and MLP-PSO/GA is

the use of the following statistical indicators (Eqs 7–13) (Choubin

et al., 2019; Shamshirband et al., 2020).

Percentage error (PE):

PEi � FVDC(Measured) − FVDC(Predicted)
FVDC(Measured)

x 100 (7)

Mean relative error (MRE):

MRE � ∑n
i�1PEi

n
(8)

Mean absolute relative error (MARE):

MARE � ∑n
i�1|PEi|
n

(9)

Standard Deviation (STD):

STD �
�����������������∑n

i�1(PEi − Dimean)2
n − 1

√
(10)

Dimean � 1
n
∑n

i�1(FVDCMeasuredi − FVDCPredictedi)

Mean Square Error (MSE):

MSE � 1
n
∑n

i�1(FVDCMeasuredi − FVDCPredictedi)2 (11)

Root Mean Square Error (RMSE):

RMSE � ����
MSE

√
(12)

Coefficient of Determination (R2):

R2 � 1 − ∑N
i�1(FVDCMeasuredi − FVDCPredictedi)2∑N
i�1(FVDCPredictedi − ∑n

I�1FVDCMeasured i

n )2 (13)

In order to develop hybrid machine learning robustness

(LSSVM-PSO/GA and MLP-PSO/GA), information about well

#W1 (2929 dataset) was used to predict FVDC. In this way, 70%

of the 2929 data set (2049 subset) was used for training and

construction and development of these algorithms, and 30% of

the 2929 data set (880 subset) was used to test the results related

to the algorithms. The train, test, and total results for each

algorithm are shown in Table 7. The two most important

parameters for determining and distinguishing the best

artificial intelligence algorithms are the values of RMSE and

R2 (Nabipour et al., 2020b; Farsi et al., 2021), which are discussed

in detail.

The statistical error results in Table 7 shows that each of the

four robust hybrid machine learning algorithms (LSSVM-PSO,

LSSVM-GA, MLP-PSO, and MLP-GA) provides a more reliable

prediction. After reviewing the results, it has been determined

that the highest performance accuracy is related to the LSSVM-

PSO algorithm. The error value according to Table 7, theMELM-

PSO model has: RMSE = 0.0460 1/m; MARE = 0.2394 ٪; R2 =

0.9996 for training subset; RMSE = 0.0469 1/ m; MARE = 0.3378

٪; R2 = 0.9996 for testing subset; and RMSE = 0.0463 1/ m;

MARE = 0.2689 ٪; R2 = 0.9995 for total subset.

Figures 11–13 shows the illustration of the cross plot for

training, testing, and total subset based on four robust hybrid

machine learning algorithms: LSSVM-PSO, LSSVM-GA, MLP-

PSO, and MLP-GA based on the dataset of well #W1. In the first
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place, these graphs show an eye scan for the accuracy of the

operation of each algorithm, and in the second place, they show

the correlation coefficient for the predicted points versus the

measured points against the tradeline line. After examining the

diagram, it is found that the performance accuracy of the

algorithms for predicting FVDC includes LSSVM-PSO>
LSSVM-GA> MLP-PSO> MLP-GA, respectively.

Figure 14 shows the histogram for the prediction error value

of FVDC for the four AI-based hybrid robust based on the dataset

of well #W1. As shown in this figure, the normal error

distribution for the LSSVM-PSO model is not better than for

other models. In addition, as it is clear, the MELM-PSO error

range is much less than other models. The ratio is lower than for

other models, indicating that this robust artificial intelligence

hybrid model outperforms other models in terms of performance

accuracy.

Figure 15 shows the RMSE value per iteration. Based on this

figure, it is determined that the convergence speed of all four robust

hybrid machine learning algorithms is the same, and all four

algorithms converge at iteration = 4 and continue with the same

convergence speed. At the end of this step (iteration = 200) as it was

clear at the beginning (iteration = 4), the accuracy of the algorithms

is LSSVM-PSO> LSSVM-GA> MLP-PSO> MLP-GA, respectively.

Generalization of new robust Least-
squares support-vector machines-
particle swarmoptimizer algorithm to
predicted fracture density

After reviewing the results of the four applied robust artificial

intelligence hybrid algorithms (LSSVM-PSO, LSSVM-GA, MLP-

PSO, and MLP-GA) using well information from well #W1, it

was found that the LSSVM-PSO algorithm has higher

performance accuracy than other algorithms (i.e., LSSVM-GA,

MLP-PSO and MLP-GA). To develop and generalize the best

artificial intelligence algorithm for FVDC prediction, this robust

algorithm predicted with information from two other wells

(#W2 and #W3). The results presented in Table 8 and the

results presented in Figures 16, 17 demonstarte the high-

performance accuracy of this algorithm. It is also suggested

that the developed algorithm be applied to other important

reservoir engineering parameters.

Conclusion and recommendation

The datasets of three wells from a gas reservoirs located in

Southwest Asia were analyzed to predict the fracture density

using petrophysical log data. The input variables were filtered

using the feature selection method, and the following input

variables were used in this paper: spectral gamma ray (SGR);

sonic porosity (PHIS); potassium (POTA); photoelectric

absorption factor (PEF); neutron porosity (NPHI); sonic

transition time (DT); bulk density (RHOB); and corrected

gamma ray (CGR). To predict this important parameter, four

hybrid algorithms (LSSVM-PSO/GA and MLP-PSO/GA) have

been used. In order to build hybrid algorithms, 2929 datasets

related to #W1 data were used to build and develop hybrid

algorithms (training = 2049 subset, testing = 880 subset). After

reviewing the results and comparing algorithms using statical

parameters, it was determined that the performance accuracy of

algorithms for FVDC prediction is LSSVM-PSO> LSSVM-GA>
MLP-PSO> MLP-GA. LSSVM-PSO is the best algorithm for

predicting FVDC among the four algorithms (RMSE = 0.0463 1/

m; R2 = 0.9995). This algorithm has several advantages,

including: 1) lower adjustment parameters, 2) high search

efficiency, 3) fast convergence speed, 4) increased global

search capability, and 5) prevention of fall in the local

optimum. A comparison of this model to other models reveals

that it has a significantly lower error than other algorithms, and

after investigating other wells in this field, it was discovered that

the generalizability of this algorithm is very suitable and can be

used to predict FVDC for other gas fields. It is strongly

recommended that this algorithm be used when high speed

and accuracy are required, as well as when the noise level of

numbers is low. In addition, the k-fold cross validation method

with k equal to 8 was used in this article. Researchers can predict

the amount of empty space in the rock (existing fractures) by

comparing the flow in the porous medium and studying the flow

to determine the amount of rock fractures. The following key

points can be considered in future works:

1) Applying the predicted fracture density as input for flow

simulation, which can further confirm the validation of the

predictions made by the hybrid models developed and is

undoubtedly useful in modeling flow in fractured

reservoirs.

2) Test and evaluate the hybrid models developed for fracture

density prediction on new datasets from another field to

provide valuable insight on their generalizability.
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Nomenclature

ANN Artificial neural network

dmax Maximum aggregate size

w/c Water-cation ratio

fc Compressive strength

E Young’s modulus

DT Sonic transient time

ANFIS Adaptive neuro-fuzzy inference system

RHOB Bulk density

RT Deep resistanceDeep resistivity

NPHI Neutron porosity

RT Deep resistanceDeep resistivity

CIMS Committee machine intelligent system

FVDC Fracture density

HS CaliperHole size

D Depth

PEF Photoelectric absorption factor

Qi The normalize value of data records i

Qmin The minimum value of each variable

Qmax The maximum value of each variable

SGR Spectral gamma ray

PHIS Sonic porosity

POTA Potassium

BS Caliper

L Length

n number of sample unit

URAN Uranium

CGR Corrected gamma ray

THOR Thorium

b Bias

C Cost Function

c1 Positive cognitive coefficient (individual learning factors PSO)

c2 Positive social coefficient (global learning factor for PSO)

GA Genetic algorithm

Gb The global best value found in the swarm

LS-SVM Least Squares Support Vector Machine

LM Levenberg-Marquardt

MLP Multi-Layer Perceptron

PSO Particle swarm optimization

Pb The cognitive best value of particle

RBF Radial basis function

RMSE Root means square error

SVM Support Vector Machines

T transpose matrix

Vi Particle ith velocity in PSO swarm

Xi Particle ith position in PSO swarm

Vi(t + 1) Particle velocity for next iteration

xi Independent variable

(xi) Kernel function
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