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Restoration of hyperspectral images (HSI) is a crucial step in many potential

applications as a preprocessing step. Recently, low-rank tensor ring

factorization was applied for HSI reconstruction, which has high-order

tensors’ powerful and generalized representation ability. Although low-rank

TR-based approaches with nuclear norm regularization achieved successful

results for restoring hyperspectral images, there is still room for improved

tensor low-rank approximation. In this article, we propose a novel Auto-

weighted low-rank Tensor Ring Factorization with Hybrid Smoothness

regularization (ATRFHS) for mixed noise removal in HSI. Nonlocal Cuboid

Tensorization (NCT) is leveraged to transform HSI data into high-order

tensors. TR factorization using latent factors rank minimization removes the

mixed noise in HSI data. To highlight nuclear norms of factor tensors differently

effective, an auto-weighted strategy is employed to reduce the more

prominent factors while shrinking the smaller ones. A hybrid regularization

combining total variation (TV) and phase congruency (PC) is incorporated into a

low-rank tensor ring factorization model for the HSI noise removal problem.

This efficient combination yields sharper edge preservation and resolves this

weakness of existing pure TV regularization. Moreover, we develop an efficient

algorithm for solving the resulting optimization problemusing the framework of

alternating minimization. Extensive experimental results demonstrate that our

proposed method can significantly outperform existing approaches for mixed

noise removal in HSI. The proposed algorithm is validated on synthetic and

natural HSI data.
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1 Introduction

Hyperspectral imaging is acquired by employing specialized

sensors to capture data at numerous narrow wavelengths,

ranging from 400 nm to 2500 nm in the same region. It is

generally represented as a three-dimension image in which

each image represents one of the tens or hundreds of narrow

wavelength ranges or spectral bands. However, HSIs are

frequently contaminated by various noises during the capture

and transmission process, including Gaussian noise, stripes,

deadlines, impulse noise, and hybrids (Bioucas-Dias et al.,

2013), making further analysis and use of HSIs challenging.

Therefore, the noise removal from HSI is an essential task as

a preprocessing step and attracted lots of attention (Dabov et al.,

2007; Zhang et al., 2013; Chen et al., 2017; Wu et al., 2017;

Aggarwal and Majumdar, 2016; Wang et al., 2017; Zhang et al.,

2014; Huang et al., 2017; Fan et al., 2017; Chen et al., 2018; Liu

et al., 2012)).

Because a high-dimensional HSI is composed of hundreds of

separate images banded together, each band of HSIs is regarded

as a two-dimensional image. Then, traditional image restoration

methods are applied to remove noise band-by-band, such as

BM3D (Dabov et al., 2007) and low-rank matrix approximation

(Zhang et al., 2013; Zhang et al., 2014; Chen et al., 2017). The

matrix-based denoising approach uses conventional two-

dimensional image denoising methods and unfolds the three-

dimensional tensor into a matrix or treats each band

independently. Traditional HSIs denoising algorithms can

only evaluate the structural properties of each pixel or band

separately, neglecting the significant relationships between all

spectral bands and global structure information. Various

improved approaches have been developed to compensate for

the shortcomings by considering the correlation between all

spectral bands.

An HSI is a three-dimensional image stack having two

spatial dimensions and one spectral dimension. Therefore,

tensors are realistic representations of HSIs data. For the

past few years, to fully capture the spatial-spectral

correlation of the HSIs, many researchers have employed

tensor decompositions to analyze HSI, such as the low-rank

tensor method with total variation regularization (Wu et al.,

2017), tensor completion with three-layer transform via

sparsity prior (Xue et al., 2019a) and Laplacian scale mixture

(Xue et al., 2021; Xue et al., 2022), missing data recovery (Liu

et al., 2014; Yokota et al., 2016), hyperspectral image super-

resolution (Dian et al., 2019; Dian and Li, 2019), hyperspectral

image restoration with low-rank tensor factorization (Zeng

et al., 2020; Xiong et al., 2019; Chen et al., 2019a; He et al.,

2022), and hyperspectral image denoising (Chen et al., 2022a;

Chen et al., 2022b). These tensor decomposition approaches

have the advantage of simultaneously investigating the spatial-

spectral correlation between the HSIs inside all bands and better

preserving the image’s spatial-spectral structure. Nevertheless,

they fail to capture HSI’s intrinsic high-order low-rank

structure and cannot keep a sharper edge.

Many studies have demonstrated the advantages of low-rank

tensor approximation techniques in dealing with high-order

tensor data. Recently, tensor-ring (TR) (Zhao et al., 2016;

Huang et al., 2020) was developed to describe a high-order

tensor as a sequence of cyclically contracted third-order

tensors, which is the extensional version of tensor train (TT)

(Oseledets, 2011). Due to its ability to promise to represent

complex interactions within high-dimensional data, TR has

received increasing attention. It was utilized in many high-

dimensional incomplete data recovery applications, such as

HSI CS reconstruction (Chen et al., 2020; He et al., 2019),

tensor ring networks (Wang et al., 2018), tensor completion

(Yuan et al., 2020; Ding et al., 2022), missing data recovery in

high-dimensional images (Wang et al., 2021), and HSI denoising

(Chen et al., 2019b; Xue et al., 2019b; Xuegang et al., 2022).

Compared to traditional tensor decomposition, TR

decomposition imposed on the tensor approximation has two

superiorities. First, the TR factor can be rotated equivalently and

circularly in the trace operation, but the traditional tensor

decomposition technique cannot turn the core tensor. Second,

Since TR provides a tensor-by-tensor representation

architecture, the original data structure can be better maintained.

Two representative works on the TR low-rankness

characterization are low-rank TR decomposition (LTRD) and

TR rankminimization (TRRM) (He et al., 2019). introduced a TR

decomposition and total-variation regularized method for the

missing information reconstruction of remote sensing images

(Chen et al., 2020). described a nonlocal TR Decomposition for

HSI denoising. Although the TRD-based approaches have shown

good denoising results, TR rank parameter estimation is an NP-

hard problem.

The TRRM-based methods, based on the nuclear norm, are a

biased approximation to the TR rank and do not need to choose

the optimal TR rank. It is more efficient than the former (Wang

et al., 2021). presented a weighted TR decomposition model with

TR factors nuclear norms and total variation regularization for

missing data recovery in high-dimensional optical RS images

(Chen et al., 2018). introduced the sum of nuclear norms of all

unfolding matrices by the mode-k matricization as the convex

surrogate of tensor Tucker rank for the tensor completion

problem. To explore the latent features of the whole HSI data,

a TRRMmodel with TR nuclear norm minimization is proposed

by (Yuan et al., 2020) and elaborated by a convex surrogate of TR

rank of circularly unfolding matrices for high-order missing data

completion (Yu et al., 2019). proposed a TRRM-based method

with nuclear norm regularization on the latent TR factors by

exploiting the rank relationship between the tensor and the TR

latent space. An improved version (Ding et al., 2022) by

penalizing the logdet function onto TR unfolding matrices is

proposed as remedies. However, these approaches are predicated

on the convex relaxation by weight nuclear norm of the
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unbalanced TR unfolding matrices, which need manually choose

the optimal weight values, resulting in poor solutions in

execution. Furthermore, the conventional TR-based methods

are inadequate to directly exploit the characteristics of low-

rank by the original data and still have much room for

improvement.

Due to the unfolding matrix with a much higher rank and

larger size, the SVD operators of the rank minimization

framework on the unfolding matrix in the TRRM-based

methods are time-consuming (Wang et al., 2021). has

employed three low-dimensional tensor factors of TR

decomposition as a convex surrogate of TR rank for more

convenient calculation. The SVD computation is considerably

decreased due to the low dimension of TR factors. A better low-

rank representation can be efficiently exploited by transforming

lower-order tensors into higher-order tensors. As a result,

TRRM-based approaches that leveraged low-rank and edge

preservation on the original data were insufficient.

Inspired by the high effectiveness of rank minimization on

TR latent factor for tensor completion, in this paper, to effectively

promote the low-rankness of the solution, we introduce an auto-

weight TR factors nuclear norm minimization with hybrid

smoothness regularization by total variation (TV) and phase

congruency (PC) to restore HSI image, which can more

accurately approximate the TR rank and sharper promote

edge preservation.

Contributions to this article are as follows.

1) To fully exploit the high-dimensional structure information

and the low-rankness of HSI, an auto-weight TR nuclear

norm, based on the convex relaxation by penalizing the

weighted sum of nuclear norm of TR factors unfolding

matrices, is proposed to recover the clean HSI part.

2) To highlight TR unfolding matrices differently effectively, an

auto-weighted strategy is utilized to shrink the larger matrices

while shrinking the smaller ones. By jointly regularizing TV

and PC to promote local smoothness, this efficient

combination yields sharper edge preservation and resolves

this weakness of existing pure TV regularization.

3) An optimization algorithm with an alternating minimization

framework is developed to solve the proposed approach

efficiently. Experiments demonstrate that the proposed

approach can effectively deal with gauss, strip, and mixed

noise and outperform the state-of-the-art competitors in

evaluation index and visual assessment.

This paper is organized as follows. To facilitate our

presentation, we first introduce some notations, TR

decomposition, tensor augmentation, and phase congruency

regularization in Section 2. In Section 3, our proposed model

is presented. We then develop an efficient framework of

alternating minimization for solving the proposed model. In

Section 4, extensive experiments on both simulated and real

datasets were carried out to illustrate the merits of our model. We

finally conclude this paper with some discussions on future

research in Section 5.

2 Preliminaries

2.1 Background and notations

We deploy lowercase letters to denote scalars, e.g., m ∈ R.

And vectors are denoted by boldface lowercase letters, e.g., y. The
upper case letters are represented for matrices, e.g., Y. An Nth-

order tensor is given by lowercase letters calligraphic letters

FIGURE 1
Illustration of TR representation of an Nth-order tensor Y ∈ RI1×I2 ...×IN .
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throughout this paper, e.g., Y ∈ RI1×I2 ...×IN where Ij is the

dimension of mode j and j=1,2 . . . , N. The (i1, i2, . . . , in)

entry of tensor Y is given by Y(i1, i2, . . . , iN). A tensor sequence

is defined by the set {Y(k)}Nk�1: � {Y(1),Y(2), ...,Y(N)}, where
Y(k) is the kth tensor of the sequence. diag(Y) denoted a

column vector consisting of the diagonal elements of Y. We

use E to represent an identity matrix. The Frobenius norm of Y is

defined as ‖Y‖F2 � ������
〈Y ,Y〉

√
. The nuclear norm ‖Y‖* is the sum of

singular values of a matrix Y.

2.2 Tensor ring low-rank factors

Tensor ring (TR) decomposition is briefly introduced in this

subsection. TR representation is to decompose a tensor of higher

order into a sequence of latent tensors. As shown in Figure 1, a

linear tensor network can graphically represent the TR

representation by circular multilinear products over a series of

third-order tensors. The number of edges denotes the order of a

tensor (which includes matrix and vector). The size of each mode

is indicated by the number beside the edges (or dimension). A

multilinear product operator between two tensors in a specific

manner, also known as tensor contraction, corresponds to the

summation over the indices of that mode when two nodes are

connected.

For i=1, . . . , N, the TR factors are denoted by a third-order

tensor U(i) ∈ Rri−1×Ri×ri . The syntax {R1, R2, . . . , RN, RN+1}is

indicated by the TR rank, which controls the model complexity of

TR decomposition and satisfies the R1= RN+1. Then, Y can be

estimated by tensor with TR format, as

M([U]) � <U(1),U(2), . . . ,U(N) > . Therefore, the element-

wise form can be expressed by Y(i1, i2, . . . , iN) � Trace(U(1)

(r1, i1, r2),U(2)(r2, i2, r3), . . . ,U(N)(rN, iN, r1)). Trace(Y) is the

matrix trace operation. Y(n) denotes the standard mode-n

unfolding of tensor Y.
The relationship between the tensor rank and the

corresponding core tensor rank is elaborated, which can be

explained by the following theorem. For the nth core tensor

U(n), according to the work of (Yuan et al., 2020; Chen et al.,

2020), we define the Y< n> is another mode-n unfolding of tensor

Y used in TR operations denoted by Y< n> ∈ RIn×In+1...INI1I2...In−1 .

Thus, we have Y< n> � U(n)
(2)(U(≠≠n)

< 2> )T, where U(≠n)
< 2> is a matrix

FIGURE 2
Illustration of the procedure to construct a high-order tensor by spatial and spectral similarities of HSI.

FIGURE 3
Comparison of the denoising results with TV regularization and PC regularization. (A) Noisy image from HYDICE urban HSI data, (B) Gradient
magnitudemaps, (C) PC featuremaps,(D)Restored by themodel with TV regularization [PSNR:33.58dB; SSIM:0.9345],(E) Restored by themodel with
PC regularization [PSNR:33.41dB; SSIM:0.9541] (F) Restored by the model with hybrid smoothness regularization combining TV and PC [PSNR:
34.27dB; SSIM:0.9741].
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by the second unfolding along mode-2 by sequentially merging

all core tensors except the nth one and U(n)
(i) ∈ RRi×In−1In is the

mode-i unfolding of the nth core tensor. The relation of tensor

ring rank and the corresponding factors rank have the following

inequality for all n = 1, . . . , N.

Rank(Y(n))≤Rank(U(n)
(2)) (1)

The detailed proof is available in (Yuan et al., 2020; Chen

et al., 2020). The rank of the mode-n unfolding of the tensor Y is

upper bounded by the rank of the dimension-mode unfolding of

the corresponding core tensor U(n), allowing us to impose a low-

rank constraint on [U] to investigate the underlying tensor’s

more low-rank structure.

2.3 Nonlocal cuboid tensorization for HSI
augmentation

Tensor augmentation is an essential preprocessing step for

exploiting the local structures and low-rank characteristics since

higher-order tensors provide more significant image structure

via TR decomposition. There are three main ways to transform a

tensor into a higher-order one, namely the Reshape Operation

(RO) (Yuan et al., 2019), high-order Hankelization (Yokota et al.,

2018), and Ket Augmentation (KA) (Yuan et al., 2019). However,

the recovered tensors applied RO and KA often have apparent

blocking artifacts, while the data were permuted and rearranged

without exploiting any neighborhood information. Patch

Multiway Delay Embedding Transform (Yokota et al., 2018) is

a high-order Hankelization approach, which provides a patch-

wise procedure to extract more local information. But this

technology increases the amount of HSI data, which makes

high computational complexity. An augmented scheme called

Nonlocal Cuboid Tensorization (NCT) (Xuegang et al., 2022) can

represent HSI data into a high-order one for exploiting low-rank

structure representation preferably, simultaneously exploring the

nonlocal self-similarity and the spatial-spectral correlation.

Therefore, our proposed ATRFHS approach leverages NCT to

build HSI augmentation by grouping nonlocal similar cuboids

in HSI.

Subsequently, we present the principle of the NCT method.

For the recovery processing of an HSI image, T ∈ Rx×y×b and

X ∈ Rx×y×b with x×y spatial size and b spectral bands denote the

observed and recovered images, respectively. Firstly, for

exhibiting rich redundancy in spectra, all cuboid patches Ci
with the size of s×s×p across full bands C ∈ Rs×s×b of HSI in

the same spatial locations along the spectral direction with the

interval p2 are extracted, we search for its k2-1 nearest neighbors

patches in a local window by Euclidean distance in the same

spectra band for each cuboid patch. The k2-1 similar cuboid

patches are stacked into a third-order tensorN ∈ Rsk×sk×p. There

are (2bp − 1) cuboid patches in the same spatial locations with

different spectra bands. Thus, as shown in Figure 2, they are

grouped into a four-order tensor Mi ∈ Rsk×sk×p×h where

h � (2bp − 1).The part HSI with the size of x×y×p is divided

into T � xy
S2 cuboid patches with the size of s×s×p.

2.4 Phase congruency regularization

The regularization term can be regarded as the prior

knowledge from underlying properties on recovered HS

images. Total variation (TV) (Wang et al., 2017) is one of the

prevalent regularization approaches applied for image

restoration. TV regularization has long been acknowledged as

a practical approach for improving image processing

smoothness. For third-order hyperspectral data T , the total

variation of HSI is denoted by

‖T ‖TV � ∑
x,y,b

(∣∣∣∣T x,y,b − T x−1,y,b
∣∣∣∣ + ∣∣∣∣T x,y,b − T x,y−1,b

∣∣∣∣
+ ∣∣∣∣T x,y,b − T x,y,b−1

∣∣∣∣) (2)

The TV model can effectively remove noise while

simultaneously preserving the fine details of the image’s edge.

However, it is prone to misdiagnose the noises as the edge when

the image edge is substantially contaminated by noise and cannot

disentangle the noises from the edge. Furthermore, an edge-

preserving regularization with gradient magnitudes diffusing

along the edges rather than across them results in a staircase

(blocky) effect.

To alleviate this shortcoming, phase congruency features are

employed in this research to accurately preserve edge

information and improve region structure smoothness from a

noisy image. Since phase congruency (Morrone and Owens,

1987) is compatible with the properties of signals from

corresponding points, it can adequately detect image features.

Figure 3 compared the denoising results with TV regular and PC

regular. We can see the discrepancy from Figure 3 that high-

order information with PC feature maps from Figure 3C is more

affluent than the first-order information with horizontal and

vertical gradients from Compared to Figure 3D and Figure 3E,

restored results in Figure 3F using hybrid smoothness regular

combing TV and PC regularization can preserve more details of

original images.

Monogenic Phase Congruency (MPC) (Luo et al., 2015; Yuan

et al., 2019) has recently increased the precision of feature

localization and demonstrated superior computational

efficiency and accuracy compared to standard phase

congruency. At any specific point x in an image, MPC can be

mathematically formulated as

C(x) � E(x)⌊1 − ξ × acos(W′(x)
B′(x))⌋ ⌊W′(x) −M⌋

B′(x) + η
(3)
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where E(x) is a weighting function constructed by applying a

sigmoid function to the filter response spread value, which is

given by (Luo et al., 2015) in detail. Both ξ and η are gain

factors approximately from 1 to 2, which sharpen the edge

response. M compensates for the influence of noise. W′(x) is
local energy information. Similarly, B′(x) is the local amplitude

at point x. MPC is capable of retaining both the irregular

structure and being impervious to impulse noise. The l1-norm

with phase congruency regularization is generally employed in

the fidelity term for impulse noise, similar to total variation

regularization.

MPC feature maps are calculated by Eq. 3. Then, monogenic

phase congruency regular is obtained by

‖P(T )‖PC � ∑b

i�1C(T (: , : , i)) (4)

FIGURE 4
Illustration of the proposed ATRFHS for HSI Denoising.

FIGURE 5
The distribution of the singular values of unfolding matrixes.
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3 Proposed model and optimization
solution

In this section, we propose a new model for HSI

denoising based on weighted low-rank TR factorization

using latent factors rank minimization with TV and PC

regularization. Then, we introduce an auto-weighted

mechanism to establish a tensor completion model and

develop the corresponding algorithm based on an

alternating minimization framework to solve the model.

Figure 4 illustrates the proposed ATRFHS for HSI

denoising.

TABLE 1 Quantitative results of all the methods under different noise cases FOR WDC and urban DATASETs.

Noise
case

Datasets Index QRNN3D LRTF-
L0

LRTDGS SBNTRD L1-2
SSTV

ANTRRM OURS

Case 1 WDC mall MPSNR(dB) 37.58 37.92 37.68 38.03 37.12 38.12 38.24

MSSIM 0.9234 0.9108 0.9242 0.9524 0.9085 0.9417 0.9534

MFSIM 0.9785 0.9692 0.9741 0.9793 0.9764 0.9742 0.9798

ERGAS 152.79 98.48 164.64 108.48 292.47 102.47 91.47

Indian pines MPSNR(dB) 34.57 33.98 33.806 34.27 33.48 33.12 33.78

MSSIM 0.9019 0.8918 0.8906 0.9130 0.9067 0.9078 0.9192

MFSIM 0.9729 0.9701 0.9736 0.9430 0.9741 0.9712 0.9781

ERGAS 134.17 76.58 89.47 78.98 80.55 80.24 74.12

Case 2 WDC mall MPSNR(dB) 32.78 33.78 34.89 34.87 34.89 35.02 35.19

MSSIM 0.9262 0.9235 0.9115 0.9231 0.9320 0.9312 0.9387

MFSIM 0.9818 0.9788 0.9784 0.9797 0.9872 0.9789 0.9814

ERGAS 282.16 78.98 88.83 74.43 70.27 71.48 68.69

Indian pines MPSNR(dB) 29.47 30.24 31.98 32.12 31.34 32.74 33.12

MSSIM 0.7914 0.8645 0.8947 0.9014 0.9124 0.9014 0.9145

MFSIM 0.9691 0.9147 0.9657 0.9678 0.9665 0.9602 0.9624

ERGAS 424.75 142.19 325.18 213.79 87.93 132.47 121.97

Case 3 WDC mall MPSNR(dB) 29.67 30.47 30.65 31.21 30.84 31.02 31.47

MSSIM 0.8701 0.8963 0.8837 0.8947 0.8667 0.8941 0.9024

MFSIM 0.9258 0.9247 0.9347 0.9419 0.9513 0.9284 0.9258

ERGAS 146.9 169.4 164.5 174.9 161.8 145.9 124.3

Indian pines MPSNR(dB) 33.47 33.12 34.85 34.67 35.31 35.04 35.42

MSSIM 0.9047 0.8987 0.9102 0.9147 0.9204 0.9147 0.9194

MFSIM 0.9541 0.9412 0.9567 0.9641 0.9678 0.9412 0.9524

ERGAS 247.6 183.4 194.7 357.6 368.6 143.7 134.7

Case 4 WDC mall MPSNR(dB) 31.68 31.83 31.20 31.87 30.89 32.11 32.24

MSSIM 0.8762 0.8635 0.8615 0.8831 0.8320 0.9014 0.9087

MFSIM 0.9714 0.9678 0.9745 0.9743 0.9578 0.9618 0.9724

ERGAS 124.47 104.75 135.71 89.65 90.67 88.65 83.37

Indian pines MPSNR(dB) 28.98 29.47 30.67 30.25 28.04 30.27 30.96

MSSIM 0.8114 0.8997 0.8974 0.8914 0.8378 0.8914 0.8987

MFSIM 0.9214 0.9404 0.9374 0.9378 0.9375 0.9289 0.9345

ERGAS 187.63 104.19 125.18 113.79 286.78 114.64 102.32

Case 5 WDC mall MPSNR(dB) 29.78 31.45 31.86 30.89 31.32 32.11 32.53

MSSIM 0.8867 0.9017 0.8947 0.8897 0.9220 0.9314 0.9337

MFSIM 0.9145 0.9457 0.9378 0.9401 0.9591 0.9498 0.9507

ERGAS 286.3 186.7 157.8 148.6 178.3 133.8 101.5

Indian pines MPSNR(dB) 31.58 33.38 33.57 33.75 34.08 35.01 35.47

MSSIM 0.8979 0.9378 0.9378 0.9265 0.9304 0.9527 0.9574

MFSIM 0.9970 0.9577 0.9687 0.9555 0.9654 0.9504 0.9542

ERGAS 245.8 189.6 201.5 347.7 147.6 134.5 114.5

The best results for each quality index are shown in bold.
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3.1 The proposed algorithm

To facilitate the presentation, for recovering a clean HSI from

an observed HSI, by imposing the nuclear norm regularizations

on the TR factors, we first review that a high-order tensor is

decomposed into a sequence of 3-order tensors using the TR

model to find the TR cores of an uncompleted tensor (Yuan et al.,

2020), formulated as:

min
L,{U(n)}1: N

∑N

n�1Rank(L(n)) + 1
2
‖Y − L‖2F

s.t. L � M({U(n)}Nn�1)
(5)

Where Y � D(T ) is a high-order tensor of the observed data T
transformed by NCT, L is the reconstruction component and

L(n) is the standardmode-n unfolding of tensorL. The model can

identify the data’s low-rank structure and approximate the

recovered tensor. But the problem of determining the tensor

rank is NP-hard. ANTRRM in (Xuegang et al., 2022) is based on

mode-{d, l} unfolding with nuclear norm regularization via

nonlocal tensor ring. Whereas, the local smoothness and

consistency of the HSI in this approach is missed and the

time-consuming of SVD computation of mode-{d, l}

unfolding matrixes is more expensive than unfolding matrixes

of low-rank TR factors.

To solve the above issue (Wang et al., 2021), enforced weight

low-rankness on each TR factor. The optimization model can be

reformulated as follows,

min
L,{U(n)}1: N

∑N

n�1∑3

i�1
����U(n)

(i)
����
p
+ 1
2
‖Y − L‖2F

s.t. L � M({U(n)}Nn�1)
(6)

Where U(n)
(i) is the mode-i unfolding matrix of the nth core tensor

of {U(n)}n�1: N.
Model (6) can significantly reduce computational complexity

compared to model (5). But as the decay distributions of singular

values of the unfoldings of the TR factors along mode-n diverge.

Appropriate weights should be constructed to determine the

contributions of different nuclear norms in unfolding the TR

tensor components. Therefore, the approach described above still

has space for improvement because exploring low-rankness prior

is rarely adequate to extract the underlying data by unreasonable

weights. Furthermore, smoothness is another important prior

that can be found in high-dimensional HSI data.

From Figure 5, the distribution of singular values

significantly differs in the different unfolding matrixes.

Weights for different unfolding parts should be treated

differently. To reflect different contributions, the weight

parameters w play an essential role and need to tread

FIGURE 6
Restored results of all comparison methods for band 68 of WDC HSI data under Case 5: (A) Noisy, (B) L1-2 SSTV, (C) QRNN3D, (D) LRTDGS,
(E) SBNTRD, (F) LRTF-L0, (G) ANTRRM, (H) OURS.
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carefully. To adapt the TR ranks of different modes, auto-

weighted parameter optimization is utilized to measure the

importance of different singular values voluntarily, thus

minimizing the burden of failure caused by unreasonable

weights.

Inspired by this nature, combining the auto-weighted

strategy and hybrid smoothness regularization in our work,

we can rewrite problem Eq. 6 as the following problem.

min
L,w,{U(n)}1: N

∑N

n�1wn∑3

i�1
����U(n)

(i)
����
p
+ 1
2
‖Y − L‖2F + γ‖w‖2F

+λTV
����D−1

 (L)����TV + λPC
����P(D−1

 (L))����PC s.t.L � M({U(n)}Nn�1)
(7)

Where γ, λTV and λPC are regularization parameters, {wn}Nn�1
are the weight of the nth norm satisfying wn ≥ 0 and∑N

n�1wn � 1.

To solve the above problem, auxiliary variables M, Z and

{G(n)
(i) }

3

i�1 are introduced, and the equivalent minimization

problem is rewritten as

min
L,w,M,Z,{U(n)}1: N

∑N

n�1wn∑3

i�1
����U(n)

(i)
����
p
+ 1
2
‖Y − L‖2F

+γ‖w‖2F + λTV‖M‖TV + λPC‖Z‖PC
s.t. L � M({U(n)}n�1: N),D−1

 (L) � M,P(D−1
 (L)) � Z

(8)

The abovementioned problem (8) is divided into two blocks

for updating the variables L,w,G, M,Z, {U(n)}1: N. The first

block is w, which is as follows the problem Eq. 9.

min
w

∑N

n�1
⎛⎝∑3

i�1
����U(n)

(i)
����
p
⎞⎠wn + γ‖w‖2F

s.t. wT1 � 1, wn ≥ 0

(9)

Then, the second block is the others (such as L and {U(n)}1: N),
which is as follows the problem Eq. 10.

min
L,M,Z,{U(n)}1: N

∑N

n�1wn∑3

i�1
����G(n)

(i)
����
p
+ 1
2
‖Y − L‖2F

+λTV‖M‖TV + λPC‖Z‖PC
s.t.L � M({U(n)}Nn�1),D−1

 (L) � M,

P(D−1
 (L)) � Z andU(n)

(i) � G(n)
(i)

(10)

3.2 Optimization for solving the proposed
ATRFHS model

3.2.1 Auto-weighted mechanism
Through the problem solver (8), an auto-weighted

mechanism can voluntarily balance the importance of

different nuclear norms of TR factor matrices. The block

FIGURE 7
Restored results of all comparison methods for band 96 of INDIAN PINES data under Case 3: (A)Noisy, (B) L1-2 SSTV, (C)QRNN3D, (D) LRTDGS,
(E) SBNTRD, (F) LRTF-L0, (G) ANTRRM, (H)OURS.
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coordinate descent (BCD) optimization framework can optimize

the problem Eq. 9. When the variables {U(n)}1: N are fixed, the

nuclear norms {∑3
i�1‖U(n)

(i) ‖*}
N

n�1 are invariant. Namely, the

indicator vector η � [∑3
i�1‖U(1)

(i) ‖*,∑3
i�1‖U(2)

(i) ‖*, ...,∑3
i�1‖U(n)

(i) ‖*]T
is fixed. Then, the problem (9) for updating weighting

coefficients w, automatically weighing the importance of the

TR nuclear norm, can be defined as

F(w) � ∑N

k�1ηkwk + γ‖w‖2F − μ(wT1 − 1) − σTw (11)

where μ≥ 0 and σ � [σ1, σ2/σN]T ≥ 0 are the Lagrangian

multipliers. It is a convex Quadratic Programming (QP)

problem with equality and non-equality requirements that any

QP solver can solve. By taking the derivatives of Eq. 12 to w
and setting it as 0, zwF � η + 2γw − μ − σ � 0, we can get

wi � μ+σ i−ηi
2γ , The optimal solution w satisfies the KKT

condition. It can be discussed separately in three cases (Chen

et al., 2021).

1) if ηi − μ> 0, since σ i > 0, from the condition w*
iσ i � 0 and

σ i � 0, then wi � μ−ηi
2γ

2) if ηi − μ � 0, thenwi � σi
2γ. Sincew

*
iσ i � 0, so σ i � 0 andwi � 0

can be inferred

3) if ηi − μ< 0 and σ i > 0, we can find the positive integer h �
argmax

i
(ηi − μ> 0) satisfies the nonnegative constraint of wi

Therefore, the optimal solution to the problem in Eq. 11 is

given by

w+i �
⎧⎪⎨⎪⎩

μ − ηi
2γ

, ηi > μ

0 , ηi ≤ μ
(12)

Where μ � ∑N

i�1ηi−2γ
h .

3.2.2 Alternating minimization optimization
framework

Problem Eq. 10 is transformed into the following

unconstrained augmented Lagrangian function:

F(W) � ∑N

n�1wn(∑3

i�1
����G(n)

(i)
����
p
+ 〈A(n) ,G(n)

(i) − U(n)
(i) 〉 +

β

2

����G(n)
(i) − U(n)

(i)
����2
F
)

+1
2

�����Y −M({U(n)}Nn�1)�����2F + λTV‖M‖1 + β

2

����D−1
 (L) −M

����2F+
〈B,D−1

 (L) −M〉 + λPC‖Z‖1 + β

2

����P(D−1
 (L)) − Z

����2F + 〈C,P(D−1
 (L)) − Z〉

(13)

Where W � {L, M, {G(n)}Nn�1,Z, {U(n)}Nn�1, {A(n)}Nn�1, B, C},
{A(n)}Nn�1, B, {G(n)}Nn�1 and C are auxiliary variables. Based on

the framework of alternating minimization, the updates of

L, M, {G(n)}Nn�1,Z, {U(n)}Nn�1, {A(n)}Nn�1, B, C are given

respectively as follows.

Step 1: Update {U(n)}Nn�1 and L with fixing other variables, the

U(n) sub-problem is rewritten as

F(U(n)) � ∑3
i�1

β

2

��������G(n,i) − U(n,i) + 1
β
A(n)

��������
2

F

+ 1
2

����Y −M({U(n)}n�1: N)����2F
This is a least-squares problem. So for n = 1, . . . , N, U(n) can

be updated by

U(n)
+ � fold2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑3

i�1(βG(n,i)
(2) + A(n,i)

(2) ) + T< n>U
(≠n)
< 2>

U(≠≠n)
< 2> TU

(≠n)
< 2> + 3E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (14)

where E is an identity matrix.

By updated TR factors {U(n)}Nn�1 for every iteration, then L is

updated as

L+ � M({U(n)
+ }Nn�1) (15)

Step 2: Update G(n) with fixing other variables, by simplifying

(13), for i = 1, 2, 3, the augmented Lagrangian functions w.r.t. [G]
is expressed as

F(G(n)) � wn∑3
i�1

����G(n)
(i)
����
p
+ β

2

��������G(n) − (U(n) − 1
β
A(n))��������

2

F

Solving G(n)
(i) is a nuclear norm model and has led to a closed

form. So for n = 1, . . . , N, G(n) can be updated by

G(n)
+ � fold(i)(S wn

β
(U(n) − 1

β
A(n))) (16)

where S wn
β
represents the thresholding SVD operation (Chen

et al., 2018).

Step 3: Update M by fixing other variables. The optimization

model can be rewritten as

F(M) � λTV‖M‖1 + β

2

����M − (D−1
 (L) − B)����2F (17)

Optimizing (18) can be easily solved by a soft-thresholding

operator.

M+ � Ψ λTV
β
(D−1

 (L) − B) (18)

where Ψv is defined by Ψv(x) � sgn(x).*max(|x| − v, 0).

Step 4: Fixing other variables to update Z, the optimization

model can be rewritten as

F(Z) � λPC‖Z‖1 + β

2

����Z − (P(D−1
 (L)) − C)����2F (19)

Similarly, the closed-form solution is
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Z+ � Ψ λPC
β
(P(D−1

 (L)) − C) (20)

Step 5: Update {A(n)}Nn�1, B, C: When the (t+1)-th

iteration begins, the Lagrange multipliers are updated by the

following

⎧⎪⎨⎪⎩
A(n)

t+1 � A(n)
t + β(G(n)

t+1 − U(n)
t+1)

Bt+1 � Bt + β(Mt+1 −D−1
 (Lt+1))

Ct+1 � Ct + β(Zt+1 − P(D−1
 (Lt+1))) (21)

The specific process of the ADMM-based solver for the

ATRFHS HSI reconstruction model and BCD-based solver for

auto-weighting is introduced in Algorithm 1.

FIGURE 8
The comparative performance of different methods in terms of PSNR, SSIM, and FSIM under Case 2 on WDC Mall. (A) PSNR, (B) SSIM, (C) FSIM.

FIGURE 9
The comparative performance of different methods in terms of PSNR, SSIM, and FSIM under Case 4 on INDIAN PINES. (A) PSNR, (B) SSIM,
(C) FSIM.

TABLE 2 Quantitative comparison of all competing methods on the two GF-5 datasets (time unit: second).

Datasets L1-2
SSTV

LRTF-L0 LRTDGS SBNTRD QRNN3D ANTRRM OURS

ENL GF-5 (Shanghai) 84.27 83.98 84.57 85.31 85.37 85.47 85.98

EPI 0.9142 0.8934 0.9214 0.9298 0.9276 0.9317 0.9389

Time 102.4 253.7 534.1 492.7 590.6 357.9 303.4

ENL GF-5 (Baoqing) 87.45 86.72 85.96 86.74 87.14 87.74 87.98

EPI 0.9245 0.9167 0.9047 0.9204 0.9247 0.9278 0.9327

Time 110.7 196.7 573.1 684.7 610.3 348.7 312.4

The best results for each quality index are shown in bold.
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Input: observed HSI T ∈ Rx×y×b, TR rank {R1,R2, . . . RN},

λTV, λPC, β

Initialization: {A(n)}Nn�1 � 0,M � Z � B � C � 0 ,t=0,

β � 0.01, σ � 1.05, β max � 5 × 102,max_it=100,ter=1e-5,

w � {wj}Nj�1 � 1
N, Grouping nonlocal similar cuboids by

NCT to form tensor Y � D(T ); From n = 1 to N,

randomly initialize for core tensors U(n); Compute

L(0) � Φ{U(1) , . . . ,U(K)}. Calculation MPC by C(T (: , : , i)) via
(5) i=1, . . . ,b. While t ≤max_it and || Y -L last||2 < ter

Update {wj}Nj�1 by Eq. 12 Update {U(n)}Nn�1 by Eq. 14; UpdateL
by Eq. 15; Update {G(n)}Nn�1 by Eq. 16; Update M and Z by

Eqs 18, 20; Update {A(n)}Nn�1, B, C by (21), and the penalty

parameter update β � min(σβ, βmax); t=t+1; End Transform

L into a three-order tensor X � D−1
 (L)

return: restored HSI X.

Algorithm 1 The whole procedure of the ATRFHS algorithm.

3.3 Computational complexity

The computational complexity of our ATRFHS method is

analyzed as follows. For simplicity, we assume to transform HSI

data into a high tensor D ∈ RI×I,...,×I from by NCT and TR-rank

with R1 = R2 = · · · = RN = R. The updating of {wj}Nj�1, {U(n)}Nn�1,
and {G(n)}Nn�1 have closed-form solutions, as shown in Algorithm

1. It is obvious to observe that the most time-consuming parts are

updating {U(n)}Nn�1 and SVD operation of {G(n)}Nn�1. Then the

computational complexities of updating {U(n)}Nn�1 and {G(n)}Nn�1
are O(NINR2) and O(NINR3). The computational complexity

of updating weighting {wj}Nj�1 is O(3TN). Thus, the overall

complexity of our proposed algorithm can be written as

O(TNINR2(1 + R) + 3TN), where T is the number of iterations.

4 Experiments

Two simulated and two real datasets are utilized in the

experiments to demonstrate the efficacy of the proposed

algorithm with the auto-weight TR rank minimization

regular on HSI restoration. Six representative state-of-the-art

methods are considered for quantitative and visual comparison;

namely, L1-2 SSTV (Zeng et al., 2020) based on 3-D L1-2 spatial-

spectral total variation low-rank tensor recovery, LRTF-L0
(Xiong et al., 2019) based on a spectral-spatial L0 gradient

regularized low-rank tensor factorization, LRTDGS (Chen

et al., 2019a) based on weighted group sparsity-regularized

low-rank tensor decomposition, SBNTRD (Chen et al., 2020;

Oseledets, 2011) based on subspace nonlocal TR

decomposition-based method, ANTRRM(Xuegang et al.,

2022) based on nonlocal tensor ring rank minimization

(Xuegang et al., 2022) and QRNN3D based on 3D Quasi-

Recurrent RNN(Wei et al., 2020). All of our experiments are

conducted on a Desktop computer with 16 GB of DDR4 RAM

FIGURE 10
Restored results of GF-5 HSI data of Shanghai City: (A)Noisy, (B) L1-2 SSTV, (C)QRNN3D, (D) LRTDGS, (E) SBNTRD, (F) LRTF-L0, (G) ANTRRM, (H)
OURS.
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and a 3.2 GHz Intel Core i7-7700K CPU running MATLAB

R2018b. All of the competitors’ parameters are adjusted

following the literature’s guidelines.

4.1 Synthetic HSI experiments

Because the ground-truth HSI is provided for the simulated

experiments, four quantitative quality indices: peak signal-to-noise

ratio (PSNR), structure similarity (SSIM), feature similarity (FSIM),

erreur relative global adimensionnelle de synthèse (ERGAS) (Chen

et al., 2018) are adopted for validating the performance of the

proposed model on two synthetic experiment datasets, namely, the

Washington DC Mall and Indian Pines datasets. The MPSNR,

MSSIM, and MFSIM, computed by taking the average of all bands,

are used to evaluate performance.

The four indices evaluate spatial and spectral information

retention, and the PSNR, SSIM, and FSIM values are generated

by averaging all bands. The higher the PSNR, SSIM, and FSIM,

the lower the ERGAS, and the better the HSI denoising outcome.

1) TheWDCMall dataset: TheWashington DCMall dataset was

collected by the Hyperspectral Digital Imagery Collection

Experiment (HYDICE) with the permission of the Spectral

Information Technology Application Center of Virginia. The

original size is 1208×307×210. A sub-image of

256×256×128 from this data set is extracted for our

experiment.

2) The Indian Pines dataset: The Indian Pines dataset was

collected by AVIRIS sensor over the Indian Pines test site

in North-western Indiana. It contains 145×145 pixels and

224 spectral reflectance bands with wavelengths ranging from

0.4 to 2.5× 10−6 m. The Indian Pines dataset comprises

220 bands with a spatial size of 145×145 pixels. A sub-

image of 145×145×128 from this data set is extracted for

our experiment.

As for parameter settings, we empirically set the

regularization parameter λTV � 0.02, λPC � 0.05, β � 0.03. In

NCT, we set s=5, k=7, and p=32. Five different types of noise

cases were added to these two clean HSI datasets to simulate

FIGURE 11
Restored results of GF-5 HSI data of Baoqing: (A) Noisy, (B) L1-2 SSTV, (C) QRNN3D, (D) LRTDGS, (E) SBNTRD, (F) LRTF-L0, (G) ANTRRM, (H)
OURS. Please zoom in for better viewing.

TABLE 3 No-Reference Hyperspectral Image Quality Assessment on the GF-5 Baoqing image.

Approach L1-2 SSTV LRTF-L0 LRTDGS SBNTRD QRNN3D ANTRRM Ours

Score 17.68 16.85 16.35 17.98 16.98 16.74 15.31

Frontiers in Earth Science frontiersin.org13

Luo et al. 10.3389/feart.2022.1022874

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1022874


complicated noise cases in a real scene. The following is a detailed

description of these cases.

Case 1. (i.i.d. Gaussian Noise): Entries in all bands were

corrupted by zero-mean i.i.d. Gaussian noise N(0, σ2) with

σ=0.05.

Case 2. (Non-i.i.d. Gaussian Noise): Entries in all bands were

tainted by zero-mean Gaussian noise of different intensities. Each

band’s signal noise ratio (SNR) is generated by a uniform

distribution with a value between (Fan et al., 2017; Yokota

et al., 2018)dB.

Case 3. (Gaussian+Stripe Noise): Based on Case 2, some stripes

randomly selected from 20 to 75 are added from band 10 to band

98 in WDC Mall and Indian Pines datasets.

Case 4. (Gaussian+Deadline Noise): Based on Case 2, deadlines

are added from band 76 to band 106 in WDC and Indian Pines

datasets.

Case 5. (Gaussian+Impulse Noise): Based on Case 2, fifty bands

in WDC and Indian Pines datasets were randomly chosen to add

impulse noise with different intensities, and the percentage of

impulse is from 30% to 60%.

Table 1 displays the quantitative results of all comparable

approaches in theWashington DCMall and HYDICE urban data

on various cases. The best results for each quality index are

shown in bold. From Table 1, it is clear that our proposed

approach and SBNTRD obtain the best results over the other

compared methods in all cases, confirming our proposed

method’s advantage over others. It is worth noting that

SBNTRD fully exploits the spatial information by nonlocal prior

and TR decomposition. Due to the considerations of auto-weight

LR properties and efficiently exploiting the structure information

of HSI by NCT in our proposed method, the proposed method

obtains the best results over the other compared methods except

for a small number of indicator cases.

Regarding visual quality, Figure 6 and Figure 7 show the

denoised results by seven different methods under Case 5 in the

WDC dataset and Case 3 in the Indian Pines dataset, respectively.

As shown in the white square from the enlarged red areas of

restored images in Figure 6 and Figure 7C, QRNN3D methods

can remove noises but fail to retain structure information.

Moreover, it is clear to see that low-rank tensor recovery with

prior information regularization methods L1-2 SSTV, LRTDGS,

SBNTRD LRTF-L0, and ANTRRM can effectively remove random

noise and stripe noise in Figure 5 and Figures 6B,D–G, but the

image details cannot be preserved well shown in the enlarged box

of Figure 6 and Figure 7. The proposed ATRFHS method, in

contrast, can effectively remove all of the mixture noise and

preserve more edges and details, as shown in Figure 6 and

Figure7H. Because ATRFHS not only considers the more

FIGURE 12
Sensitivity analysis of regularization parameter.

FIGURE 13
Sensitivity analysis of spectral band length P
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reasonable LR with auto-weight TR rank minimization for

Gaussian noise and random noise in the HSI restoration task

but the deadlines and stripe noise can be removed shown in

Figure 6 and Figure7H by exploring high-order tensors structure,

as a higher-order tensor makes it more efficient to exploit the

local structures in transformed tensor. The our proposed

approach outperforms all the evaluated methods in terms of

four quantitative quality indices, eliminating all of the hybrid

noise while keeping the detailed edges and texture information in

the restored HSI. We further calculate the PSNR, SSIM, and

FSIM values of different bands in all simulated data cases and

show the curves of evaluation indices.

Figure 8 and Figure 9 show the curves of PSNR and SSIM

evaluation indices of each band on WDC Mall under Case 2 and

INDIAN PINES under Case 4, respectively. As displayed in

Figure 8A and Figure 9A, it is observed that the proposed

method performs higher PSNR values than other methods for

almost all bands in WDC Mall data and INDIAN PINES. For

SSIM indices, the proposed method can outperform other

methods in most bands, as demonstrated in Figure 8B and

Figure 9B. From Figure 8C and Figure 9C, it can be seen that

the proposed ATRFHSmethod achieves higher FSIM values than

other methods in almost all bands, which verifies the robustness

of the proposed method using the auto-weighted strategy of low-

rank approximation and also demonstrates the superiority of the

hybrid regularization compared with others. Our proposed

method has obtained the best restoration performance among

all competing methods, as evidenced by the distribution of

evaluating index of the restoration image in Figures 8 and

Figure 9.

In conclusion, the proposed method outperforms the other

methods in terms of visual quality and quantitative indices.

4.2 Real data experiments

The two GF-5 real-world hyperspectral data sets acquired by

the GaoFen-5 satellite: Shanghai City and Baoqing (available

URL: http://hipag.whu.edu.cn/resourcesdownload.html), were

used in the real HSI data experiments. GaoFen-5 satellite was

developed by the Chinese Aerospace Science and Technology

Corporation and launched in 2018. The original size of the GF-5

dataset is 2100 × 2048 × 180, and 25 bands are miss information.

This dataset is seriously degraded by the mixture of Gaussian,

stripes, and deadlines noises.

The selected GF-5 Shanghai City image is 307 × 307 pixels in

size and has 210 bands. The GF-5 Baoqing sub-image has a size of

300×300×305, with some abnormal bands removed. Both GF-5

images are extensively polluted by various stripes, including wide

stripe noise that emerges at the same position on the continuous

bands as dense stripe noise of varying widths. Furthermore,

several of the bands have much-mixed noise. Before

denoising, the gray values of authentic HSIs were band-by-

band normalized to [0, 1]. After removing the miss bands and

extracting a small region, a sub-HSI with the size of 300×

300×156 is chosen for experiments.

Both Equivalent Number of Looks (ENL) (Anfinsen et al.,

2009)and Edge Preserving Index (EPI) (Sattar et al., 1997) were

employed for performance evaluation. The larger the ENL and

EPI values, the better the quality of the restored images.

The quantitative assessment indices ENL and EPI values and

the running time of all competing methods are provided in Table 2

on the two GF-5 datasets. The best outcomes for each quality

indicator are highlighted in bold. From the table, it is clear that our

proposed approach achieves a significantly improved performance

in both the ENL and EPI indexes, as compared with other

competing methods. Because high-dimension tensor

decomposition can capture the global correlation in the spatial-

spectral dimensions, ATRFHS obtained better results than the

other tensor-based format methods by combining auto-weighted

low-rank tensor ring decomposition with total variation and phase

congruency regularization. Meanwhile, the effectiveness of the

suggested auto-weight TR nuclear standard is shown.

It can be observed from Table 2 that the L1-2 SSTV method is

the fastest method among all the compared methods. However,

as the previous experimental work demonstrated, it cannot

achieve good repair outcomes. Due to the use of updating U
and SVD operation of G for higher-order data computation, the

computational cost of the proposed ATRFHS is relatively higher

than L1-2 SSTV, QRNN3D including traning phase and LRTF-L0
methods but significantly lower than other methods, namely,

LRTDGS, ANTRRM and SBNTRD.

TABLE 4 Empirical analysis of each regularizer of the ATRFHS model.

Datasets Index ATRFHS No-PC No-TV No-TV-PC

WDC mall MPSNR (dB) 31.89 31.26 31.11 30.37

MSSIM 0.9217 0.9104 0.9198 0.9031

MFSIM 0.9674 0.9201 0.9314 0.9178

Indian pines MPSNR (dB) 34.58 34.14 34.01 33.41

MSSIM 0.9784 0.9587 0.9647 0.9247

MFSIM 0.9814 0.9714 0.9624 0.9431
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The restorations of band 96 in Shanghai City of GF-5 are

presented in Figure 10. To clearly illustrate the visualization of the

restoration results, a demarcated area in the subfigure is enlarged

in the bottom right corner. Figure 10A shows that the image suffers

from a mixture of Gaussian and sparse noise. It is straightforward

to observe that L1-2 SSTV, QRNN3D, and LRTDGS cannot

efficiently maintain edge information to a certain extent. The

approaches based on the low-rank prior perform more

effectively than other competing methods, as seen in Figure 10.

By combining the total variation and phase congruency into a

unified TV regularization and utilizing the auto-weighted low-

rank tensor ring decomposition to encode the global structure

correlation, our proposed ATRFHS method can better remove the

complex mixed noise. In particular, compared to other competing

methods, our proposed method preserves the most significant

detail edge, texture information, and image fidelity.

Figure 11 displays the restoration results of band 109 in

Baoqing data of GF-5. From Figure 11A, one can see that the

image is wholly contaminated by various noises, including

Gaussian, random noise, and heavy structure noise, including

stripes and deadlines. After denoising using the different HSI

restoration methods, the noise is removed. As shown in Figures

11C,D, the QRNN3D and LRTDGS methods cannot eliminate the

stripes in the results, as observed in the enlarged box on the image.

The L1-2 SSTV and SBNTRD can obtain a better visual result

than the othermethods, but some intrinsic information such as the

local smoothness underlying the HSI cube, was not exploited, as

shown in Figures 11B,E,F. LRTF-L0 and the proposed method can

remove much noise compared to the TV mentioned above, but

LRTF-L0doesnotpreserveedgesandlocaldetail information,aswell

asourproposedATRFHSmethod.Moredetailedvisual comparison

results can be seen in such red boxes. To summarize, the proposed

ATRFHS can still achieve the best performance for removing such

heavy mixed noise from this dataset.

To further investigate the effect of our method, we provide a

no-reference image quality assessment, as presented in (Yang

et al., 2017), to evaluate the real-world hyperspectral data before

and after denoising. The quality scores are presented in Table 3.

A lower no-reference image quality assessment score indicates

better denoising quality. The table shows that our proposed

ATRFHS method has the lowest score, demonstrating

ATRFHS’s superiority.

4.3 The impact of parameters

Three parameters in Eq. 9 need to be discussed, including two

regularization parameters λTV and λPC, and the penalty

parameter β .

1) The impact of parameters λTV , λPC and β:

TV and PC multichannel images have been widely exploited

for their edge-preserving characteristics.Toprevent theoverfitting

of the sharper edge of ourproposed approach from influencing the

experimental results, we present the MPSNR and MSSIM values

FIGURE 14
Convergence analysis of the algorithm in terms of (A) relative error, (B) the MPSNR values, and (C) the MSSIM values.

TABLE 5 Washington DC Mall-Classification accuracies obtained by different restoration approaches before using RF.

Index HSI L1-2 SSTV LRTF-L0 LRTDGS SBNTRD QRNN3D Ours

OA 67.54 78.69 80.47 86.74 85.36 86.39 90.58

AA 69.50 84.58 86.78 81.25 84.25 84.12 95.14
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achievedbyafunctionofλTV andλPC for theWDCdataset inCase1

asanexample toidentify thebestparametervalues.Figure12shows

the change inMPSNR values for the proposed algorithm for these

two regularization parameters λTV and λPC. It is evident that when

λTV is equal to 0.02 and λPC is set to 0.05, and the proposedmethod

can reach the peak of MPSNR.

2) The impact of parameters spectral band length P:

Furthermore, P also is an important parameter for taking

advantage of the spectral local low-rankness properties. As

shown from Figure 13 in the simulated WDC data

experiments, when P is equal to 32, the MPSNR value tends

to be stable. Thus, we suggest the use of p=32.

4.4 effectiveness of hybrid smoothness
regularization terms

The proposed ATRFHS is a tensor ring-based method

combining TV and PC priors. To verify the effectiveness of

the two priors in our model, we further compare our approach

with a simplified version of our model without the TV and PC

regularization terms, that is, set the parameters λTV � 0 and

λPC � 0 in our model (9). The test is conducted on two simulated

datasets by the MPSNR, MFSIM, and MSSIM evaluation indices

in Case 3 with a mixture noise. Experimental results are shown in

Table 4. ATRFHS is our proposed method, and No-PC is a

method using only TV prior without PC prior by λPC � 0, No-TV

is a method using only PC prior without TV prior by λTV � 0 and

No-TV-PC is the original weighted tensor ring-based method by

λTV � 0 and λPC � 0. The metric scores listed in Table 3 obtained

by ATRFHS are the highest among all the techniques. Hybrid

smoothness regularization with TV and PC priors is more

suitable for recovering HSIs with more texture information

than pure TV methods. The performance of the ATRFHS

method demonstrates the effectiveness of hybrid smoothness

regularization terms.

4.5 Empirical analysis for convergence of
the ATRFHS solver

The convergence behavior of the proposed algorithm is

discussed. We present an empirical analysis of the proposed

restoration approach convergence on the simulated WDC Mall

data set. We offer a numerical experiment to show the

convergence behavior in terms of relative error, the MPSNR

values, and the MSSIM values. In Figure 14, we can observe that

the curves of all assessment indexes come to a stable value when

the algorithm reaches a relatively high iteration number,

indicating that the proposed algorithm empirically

converges well.

4.6 Classification application

In this sub-section, we examine the impact of HSI noise

removal procedures as a preprocessing step for HSI classification.

We employed Random Forest (RF) classifier (Athey et al., 2019)

to make a comparison of the effectiveness of different restoration

approaches. The main idea of the RF classifier is to classify an

input vector by running down each decision tree in the forest.

Each tree outcomes in a unit vote for a specific class, and the

forest selects the final classification label based on the most votes.

Classification accuracy is utilized to evaluate the effectiveness of

different restoration approaches. Two metrics have been applied:

Overall Accuracy (OA) and Average accuracy (AA). The

percentage value of AA and OA is shown in Table 5. The

metrics AA and OA are reported in percentage. Table 5

shows that denoising approaches improve the performance of

the subsequent classification technique compared to directly

using the raw data after the denoising procedure. The

proposed ATRFHS approach achieves the highest OA and AA

values among all the classification results achieved by the seven

restoration approaches, indicating the best performance in HSI

restoration.

5 Conclusion

This article presents an auto-weighted low-rank Tensor Ring

Factorization with Hybrid Smoothness regularization (ATRFHS)

for HSI restoration. The global spatial structure correlation of

HSI was efficiently depicted by the low-rank factorization of TR,

which can embody the advantages of both rank approximations

and high-dimension structures. An auto-weighted measure of

factors rank minimization of TR factorization can more

accurately approximate the TR rank and better promote the

low-rankness of the solution. Moreover, we employed a hybrid

regularization incorporating total variation and phase

congruency to smooth the factor and preserve HSI’s spatial

piecewise constant structure. A well-known alternating

minimization framework was developed to solve the ATRFHS

model efficiently. Both simulated and real-world datasets were

used to demonstrate the performance and superiority of the

proposed methods over state-of-the-art HSI denoising methods.

In the future, we will try to incorporate more appropriate

regularization and nonconvex tensor ring factor rank

minimization into our tensor ring model to enhance its HSI

restoration capability further.
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