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The Zabuye Salt Lake in Tibet, China is the only salt lake in the world that

contains natural crystalline lithium carbonate. The grade and spatial distribution

ofmineral resources are of great importance to the development and utilization

of salt lake mineral resources. The use of remote sensing technology for salt

lakes observations can overcome the disadvantages of traditional station

observations, such as spatial discontinuity, high time consumption, and high

labor costs. In addition, machine learning algorithms can efficiently analyze the

information from remote sensing data. In this study, Landsat-8 remote sensing

image data and the Light Gradient Boosting Machine (LightGBM) algorithm

were used to perform inversions of the depth, salinity, and lithium

concentration of the Zabuye Salt Lake. Moreover, the water volume, total

salinity, and total lithium content of Zabuye Salt Lake in 2000 and 2017 were

estimated, and the distribution of mineral resources and changes during the

study period were analyzed. The results show that the water depth and volume

of the entire lake increased sharply in 2017, resulting in a decrease in salinity and

lithium concentration in the lake. Due to the inflow from the surrounding dry

salterns, the South Lake experienced a relatively small change. Furthermore, the

amount of lithium resources in North Lake decreased significantly in

2017 compared to 2000, possibly due to higher temperatures during the

month of observation, which led to precipitation of lithium carbonate. Our

study proves the feasibility and accuracy of the LightGBM machine learning

algorithm for rapid inversion of salt lakes, which provides technical insight into

remote sensing inversion of other mineral resources in salt lakes. Thus, the

development of remote sensing technology in recent years can provide

increasingly detailed assessments of salt lake resources in the future.
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1 Introduction

The Tibetan Plateau is one of the four concentrated

distribution areas of salt lakes in China. The salt lakes on the

Tibetan Plateau are rich in potassium salt, lithium chloride,

boron, and other mineral resources, and have high economic

value (Lu et al., 2016; Yang et al., 2017; Lei, 2019). The Zabuye

Salt Lake in Tibet has the second highest lithium grade followed

Chile’s Atacama Salt Lake in the world (Zheng et al., 2004). In

particular, it is the only salt lake in the world with naturally

occurring crystalline lithium carbonate (Zheng and Liu., 1987).

With a high lithium to magnesium ratio, it is easy to form natural

lithium carbonate deposits with high purity (Luo and Zheng,

2004). In recent years, the Zabuye Salt Lake Company has mainly

mined and developed lithium resources, with an annual

production capacity of about 5,000 tons and a gross profit

margin of about 29%.

Since 1990, the Zabuye Salt Lake has shown a dramatic

expansion trend, and this change will not only have an

impact on the surrounding grasslands and salt pans, but also

affect the salinity and lithium concentration in the brine during

the salt lake development. However, the degree and scale of the

impact is still unclear. Continuous observation of the Zabuye Salt

Lake has been conducted by the Salt Lake Research Team of the

Chinese Academy of Geological Sciences during the past

40 years, which has provided a large amount of

meteorological, hydrological, and hydrochemical data (Qi and

Zheng, 2006a, 2006b; Kong et al., 2017). However, there are some

limitations to the observational data. While temporal continuity

can be easily achieved, it is difficult to achieve spatial continuity

of the data.

Remote sensing technology can be used to observe salt lakes

from a macro perspective. It not only provides the spatial

distribution of objects at different times, but also can reduce

the required labor, material, and financial resources (Letey et al.,

2011; Zhang et al., 2013; Pan et al., 2015; Liu et al., 2018; Fan et al.,

2021). Therefore, remote sensing technology is an important tool

for monitoring salt lakes. The most important parameters for

remote sensing monitoring are chlorophyll concentration,

suspended solids content, dissolved organic matter, water

temperature, and water depth (Forget et al., 1999; Zhang

et al., 2009; Zhang et al., 2010; Shi et al., 2011; Siswanto et al.,

2011; Xi and Zhang, 2011; Zhu et al., 2011; Figueiredo et al., 2016;

Cao et al., 2021), but there are relatively few studies on remote

sensing inversion of mineral resources in salt lakes. Because the

composition of the water of salt lakes is quite different from that

of conventional freshwater lakes, it is difficult to transfer existing

remote sensing results from freshwater lakes to salt lakes.

Similarly, there are few studies on the spectra of the various

mineral concentrations of brines in salt lakes (Yan and Zheng,

2015).

In addition, existing remote sensing inversion methods for

salinity and lithium concentration in salt lakes generally use

empirical inversion methods, such as principal component

analysis, linear regression models, and multiple linear

regression models (Su et al., 2008). However, the applied

models usually have simple calculations and low inversion

accuracy (Lyzenga, 1978). In recent years, machine learning

algorithms have been increasingly used for inversion in

remote sensing. Numerous studies have shown that machine

learning algorithms have higher accuracy than traditional linear

regression methods (Rogan et al., 2003; Larya et al., 2016; Rouet-

Leduc et al., 2017; Maxwell et al., 2018). Machine learning

algorithms currently used in salt lake research primarily

include Back Propagation (BP) neural networks and Random

Forest (RF) (Zhou et al., 2016; Wang, 2019). Light Gradient

Boosting Machine (LightGBM) is an improved product based on

RF, Extreme Gradient Boosting (XGBoost) and other algorithms.

It is a new decision tree method proposed by Google in recent

years (Xie et al., 2019; Pan et al., 2021). So far, it has not been used

in salt lake research. However, in a few applications in other fields

(Zhou et al., 2016; Xie et al., 2019; Song, 2021; Pan et al., 2021), its

application results are better than those of traditional BP neural

network, RF, Support Vector Machine (SVM) algorithms and

other methods, with higher accuracy and running speed.

In this study, we used the LightGBM algorithm to perform an

inversion of the depth, salinity, and lithium concentration of

Zabuye Salt Lake from 2000 to 2017, to estimate the water

volume, total salinity, and total lithium content. Based on

these results, we analyzed the spatial distribution and changes

of the mineral resources in the salt lake, which provided technical

support for remote sensing inversion of other mineral resources

in the salt lakes.

2 Materials and methods

2.1 Study area

Zabuye Salt Lake is located in the hinterland of the Tibetan

Plateau at the northern foot of the western Gangdise Mountains.

Its geographical coordinates are 83°57′10″–84°15′08″ E and

31°27′10″– 31°34′30″ N. The salt lake is divided into the

South lake and the North lake. The South Lake is a solid-

liquid lake with a depth of less than 1 m, while the North

Lake is a brine lake with a depth of about 2 m. The South

Lake has been under industrial development for the

production of lithium carbonate since 2003.

The climate is characterized by low temperatures, large

temperature differences, strong radiation, low precipitation,

and high evaporation (Qi and Zheng, 2006b). Moreover, the

annual precipitation is only 192 mm, but the annual evaporation

can reach 2,269 mm. The lake is replenished by river water,

atmospheric precipitation, and groundwater (Tian et al., 2005; Qi

and Zheng, 2006a; Xu et al., 2017), and the water system around

the lake is relatively well developed. The LangmeGaqu,
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Luojuzangbo, Sangmujiuqu, Jiabuqu, and Quanshui rivers are the

main rivers in this region. Other springs are mainly located on

the travertine island in the middle of the lake and on the

Qiulinanmu in the northern part of the lake. These rivers and

springs contain various mineral resources, such as lithium and

boron. The main exposed strata in this area are Carboniferous,

Permian, Cretaceous, Paleogene, Neogene, and Quaternary

(Figure 1A). Lithium and boron in river water are mainly

derived from Quaternary sediments, surface weathering, and

subsurface rocks. Lithium in spring water is mainly from

surrounding rocks in contact with deep circulating

groundwater (Liu et al., 2007). Due to the strong evaporation,

the lithium concentration of Zabuye Salt Lake, which is greater

than 1 g/L, can form a natural lithium carbonate deposit

favourable for lithium extraction.

2.2 Datasets and preprocessing

2.2.1 Measurement data
In our study, there are two periods with measurement data:

January 2000 and August 2017. The 2017measurement data were

provided by the Zabuye Salt Lake Field Observatory of the

Chinese Academy of Geological Sciences, and the 2000 data

were obtained from the literature (Tian et al., 2005; Tian et al.,

2006). These data include the latitude and longitude coordinates,

water depth, salinity, and lithium concentration of each sampling

site. A distribution map of the sampling sites is shown in

Figure 1B. Sampling sites were selected according to the

Geological Exploration Standard of Saline Lake and Salt

Minerals, and arranged in a 2 km × 2 km grid. However, the

sampling data for the different study periods were slightly

different. The 2000 data were relatively complete and covered

the entire lake, while most of the 2017 data were from the North

Lake, and only onemeasured data was from the South Lake. Then

the data of the North and South Lake in 2000, the North Lake in

2017 were used as model training data in the inversion, and the

data of the South Lake in 2017 were used for validation.

2.2.2 Landsat remote sensing data
The image data in the study are Landsat data with a

medium resolution of 30 m. The Landsat data provide

data in the spectral range from visible near infrared to

thermal infrared (Yagmur et al., 2021) (Table 1). In

this study, Landsat seven and eight data from visible to

shortwave infrared were used to perform the remote

sensing inversion, including bule, green, red, near-infrared

(NIR), short-wave infrared1 (SWIR1), short-wave infrared2

FIGURE 1
(A) Geological map of the Zabuye watershed. (B) Distribution map of sampling points (The red points are in 2000, and the yellow points are in
2017).
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(SWIR2) and panchromatic bands. Landsat 7 data with the scene-

number LE07_L1TP_142038_20000215_20170213_01_T1 in

2000 and Landsat 8 data with the scene-number

LC08_L1TP_143038_20170823_20170912_01_T1 in 2017 were

selected. The acquisition times of these images were found to

be essentially the same as the sampling time of the measured data.

Radiometric calibration and atmospheric correction were

performed prior to remote sensing inversion to correct for

radiation distortion during image acquisition and to obtain

the reflectance from remote sensing imagery (Lu et al., 2019).

2.3 Methods

In this study, we examined the spectra of different water

depths, salinity, and lithium concentration, trained a LightGBM

regression model, and determined the relationship between

radiation data and measured values to predict and retrieve the

water depth, salinity, and lithium concentration of the Zabuye

Salt Lake. Since no records were abalibale for South Lake in 2017,

two data periods were used to train the LightGBM model to

improve its generalizability and obtain accurate water depth,

salinity, and lithium concentration data for South Lake in 2017.

Finally, using the area volume formul, and mass density volume

formula, the total water volume, total salinity and total lithium

content of the lake were calculated for each observation period.

2.3.1 Spectral measurements and analysis
Few studies have been made about the spectral

measurements of water depth and salinity of salt lakes;

therefore, the spectral responses are unclear. For this reason,

spectral measurements and analyzes of the salt lake water

samples were performed using Analyical Spectral Device

(ASD) FieldSpec4 spectrum analyzer. The detection range of

the FieldSpec4 covers the visible, near-infrared, and shortwave

infrared regions (350–2,500 nm), and the spectral resolution is

3 nm in the near-inferred wavelength region and 8 nm in short

wave-inferred wavelength region (MinJee et al., 2022).

RS3 software was used to optimize the instrument and

analyze the reflectance data.

Water depth measurements were performed as follows: 1)

The instrument was set up and the illumination was adjusted

to an angle of 45–60° between the light source and the water

surface (Tang et al., 2004). The positions of the instrument

and the sample remained unchanged during the

measurements. 2) We standardized and calibrated the

reflectance curve of the sample using a whiteboard. 3) We

filled 50, 100, 150, and 200 ml of the salt lake water samples

into the beakers. The temperature, light source, and salinity

level remained the same, only the water depth was changed. 4)

We recorded the reflectance curves of the samples with the

ASD spectrum analyzer and performed a comparative

analysis. The measurement procedure was similar for

different salinity. The water depth and water volume

remained the same, and only the salinity was changed.

2.3.2 Image fusion
Landsat satellite imagery has a panchromatic band with

higher spatial resolution at a wavelength of 0.52–0.90 μm.

Image fusion allows the use of spatial and spectral

information, improves the correlation between spectral values

and water depth, enhances texture and detail of ground objects,

and reduces spatial information redundancy between image

components (Dionisio et al., 2017; Vivone et al., 2020). Image

fusion was then performed to obtain a high-resolution

multispectral image. Research in recent years has shown that

the wavelet transform, High Pass Filter (HPF) transform, Gram-

Schmidt (GS) transform, and Nearst Neighbor Diffusion

(NNDiffuse) transform provide the best results. In this study,

these methods were compared and a correlation analysis of the

transformed spectral values with water depth, salinity, and

lithium content was performed.

TABLE 1 Landsat 7/8 image data band setting.

Sensor Band number Band name Wavelength (μm) Sensor Band number Band name Wavelength (μm)

Landsat 7 ETM+ 1 Blue 0.45–0.52 Landsat8 OLI 1 Coastal 0.43–0.45

2 Green 0.52–0.60 2 Blue 0.45–0.52

3 Red 0.63–0.69 3 Green 0.53–0.60

4 NIR 0.77–0.90 4 Red 0.63–0.68

5 SWIR1 1.55–1.75 5 NIR 0.85–0.89

7 SWIR2 2.08–2.35 6 SWIR1 1.56–1.67

8 Pan 0.52–0.90 7 SWIR2 2.10–2.30

6 TIR 10.40–12.50 8 Pan 0.50–0.68

9 Cirrus 1.36–1.39

TIRS 10 TIR1 10.60–11.19

11 TIR2 11.50–12.51
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2.3.3 Inversion band selection
Direct sunlight and scattered light received from a body of

water is strongly reflected in the red, green, and blue bands,

while bodies of water absorb light in the near-infrared (NIR)

wavelength. That is, the red, green, and blue bands reflect

more solar radiation and contain more information about the

water body. Waters with different depths, salinity, and

lithium content have differences in the reflectance and

absorption characteristics. Correlation analyses and

regression fits were performed between the spectral values

of the remote sensing images and water depth, salinity, and

lithium concentration to determine the optimal

inversion band (Li et al., 2013).

2.3.4 Inversion using LightGBM algorithm
The technical route of a salt lake inversion based on

LightGBM is shown in Figure 2. It mainly includes three

steps: the acquisition of spectral data from the sampling sites,

the construction of LightGBM regression model, and the

inversion of water depth, salinity, and lithium concentration.

The whole experimental process is performed in ArcGIS and

JupterNotebook, and the model accuracy is evaluated by the

average relative error, root mean square error, and chi-

square (R2) (Nhu et al., 2020).

2.3.4.1 Spectral data acquisition of the sampling sites

The spectral data used in this study were obtained from

remote sensing imagery. A mineral spectrum usually contains a

set of characteristic absorption bands that were interpreted for

each mineral. The vector data of the sample sites were generated

according to the latitude and longitude, and the spectrum values

of all remote sensing image bands in the same period were

extracted into the vector of sampling sies that attributes to

form the model training data according to the spatial location

(Chen et al., 1995).

2.3.4.2 LightGBM regression model construction

LightGBM is a gradient boosting decision tree that widely

used for various regression predictions (Duba et al., 2021; Gábor

et al., 2022). Multiple decision trees are integrated in LightGBM,

which can synthesize the decision results of multiple decision

trees and avoid the low accuracy of a single learner. In addition, a

histogram-based segmentation algorithm, a leaf growth strategy

with depth constraint, a Goss sampling method, and a unique

feature binding are used in LightGBM to improve the accuracy

and training speed and filter effective data features (Zhang et al.,

2019; Li et al., 2021; Song et al., 2021). Therefore, this algorithm is

suitable for solving problems related to the complex mapping

relationship between the radiation value and lithium

FIGURE 2
Technical flow chart of this study.
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concentration caused by the limited number of Landsat remote

sensing bands.

The LightGBM regression model is constructed as follows: 1)

First, the measured data and spectral data were divided into a

training set and a verification set; 2) The parameters of the

LightGBM regression model were initialized; 3) The training set

was used to train the LightGBM regression model. 4) The

verification set was used to evaluate the accuracy of the

training model. If the accuracy was not acceptable, the

parameters were updated and re-trained. 5) The training was

repeated until the accuracy was acceptable or could not be

improved, and the regression model was built.

2.3.4.3 Water depth, salinity and lithium concentration

inversion

Pixel, the basic unit of a remote sensing image, provides the

spectral properties of the brine. Therefore, the basic unit of

inversion of water depth, salinity, and lithium concentration is

also the pixel. First, the remote sensing image is read in and a

format conversion and rearrangement of the data is performed.

Each pixel of the remote sensing data is converted into training

data and input into the model, i.e., the pixel value of each band is

used as a set of spectral data, and the pixel value of each band is

used as an inversion feature. Second, the spectral data obtained in

the first step are input to the trained LightGBM regression model

to invert the value of each pixel point. According to the

distribution of the previous spectral data in the spatial

dimension of the remote sensing image, the obtained array of

values is then inverted and merged into a single band image.

Finally, the basic information such as the image coordinate

system and the number of rows and columns are specified,

and the image in TIFF format is output to obtain the

inversion result.

2.3.5 The total salinity and lithium content
assessment

When the water depth, salinity, and lithium concentration

data are inverted at each pixel, integrals can be used to calculate

the total water volume, salinity, and lithium of the entire lake

area, where the entire lake is regarded as a collection of n (n = lake

area/pixel area) times of water columns. The height of the water

column is the water depth at that point, and the length and width

of the water column are equal to the length and width of the pixel.

Since the pixel resolution of the Landsat image is 30 m, the length

and width of the water column are both 30 m, and the bottom

area of the water column is 900 m2.

According to the volume equation, the water depth retrieved by

each pixel multiplied by the pixel area is the water volume

corresponding to 900 m2 of water. Similarly, the mass of the lake

corresponding to each pixel can be determined by the product of

water volume and density. Then, the volume of the entire lake area

can be determined by a cumulative calculation. Salinity is calculated

by the ratio of the mass of salt dissolved in the water to the mass of

water, while lithium concentration refers to the mass of lithium ions

dissolved in a unit volume of water. Therefore, the salinity of each

pixel is the product of the salinity retrieved by the LightGBMand the

volume of water in the area, while the lithium content is the product

of the lithium concentration retrieved by the LightGBM and the

volume of water in the area. The total salinity and lithium content

can also be calculated using an accumulation calculation.

3 Results

3.1 Spectral measurement results

The spectra of waters with different depths and salinity

shared the water characteristic of high spectral reflctance in

blue, green, red, NIR bands and low reflectance in SWIR

bands. The most significant difference in the spectra of waters

with different depths is their reflectance (Figures 3A,B). As water

depth increases, reflectance decreases in all bands. The most

significant difference in the spectra of water with different

salinity is also the reflectivity, and the regions at

440–1,000 nm are suitable for distinguishing them (Figures

3C,D). The reflectivity increases with increasing salinity. Thus,

all bands in the visible light range up to the SWIR can be used to

retrieve the water depth.

3.2 Image fusion results

The images were fused using the wavelet transform, HPF

transform, and NNDiffuse transform and GS transform. The

correlation results show that the correlation between the spectral

value and the water depth improved significantly after the GS

transformation. The highest correlation coefficient (0.956)

occurs in the red band (Table 2). These results show that the

GS fusion improves the correlation between the spectral value of

the image and the water depth, and the fused image data is more

suitable for determining the water depth than the original data.

The results of the correlation analysis (Table 2) show weak

correlations between the reflectance values of different Landsat

bands and salinity, especially in the red and SWIR bands. The

panchromatic band show no correlation with salinity, for most of

the correlation coefficients are less than 0.1. The GS

transformation does not substantially improve the correlation,

so the image fusion result was not suitable for salinity inversion,

so as for the lithium concentration inversion.

3.3 Band selection results

In water depth inversion studies, blue, green, and red bands

have been widely used for distinguishing water depth, but the

accuracy of using one or two bands is not as high as using
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multiple bands (Mao et al., 2012). Based on the correlation

between salinity and reflectance of individual band, the

correlation coefficient between the blue band and salinity is

the highest with R2 of 0.88. However, the correlation

coefficient between all bands and salinity is 0.90, which is

higher than that of the individual bands (Table 3).

Lithium chloride and lithium carbonate are part of the total

salt mineral resources, and their concentrations are closely

FIGURE 3
Spectral measurement results of the water with different depths and salinities. (A) Measured spectra of water at different depths in the North
Lake; (B)Measured spectra of water at different depths in the South Lake; (C) Measured spectra of water at different salinities in the North Lake; (D)
Measured spectra of water at different salinities in the South Lake.

TABLE 2 The correlation between the spectral value and the water depth, salinity and lithium concentration before and after image fusion.

Water parameters Image processing Blue Green Red NIR SWIR1 SWIR2

Water Depth Before Fusion 0.72 0.53 −0.76 −0.71 −0.16 −0.11

After Fusion −0.61 −0.89 −0.956 −0.86 −0.77 −0.79

Salinity Before Fusion 0.88 0.81 −0.34 −0.54 0.01 0.01

After Fusion −0.08 −0.32 −0.60 −0.59 −0.63 −0.66

Lithium concentration Before Fusion 0.91 0.81 0.44 0.54 0.05 0.03

After Fusion 0.16 0.67 0.86 0.86 0.78 0.79

TABLE 3 The correlation between the reflectance of Landsat imagery and the measured spectral value in single band and all bands.

R2 Blue Green Red NIR SWIR1 SWIR2 All bands

Water Depth −0.61 −0.89 −0.96 −0.86 −0.77 −0.79 0.98

Salinity 0.88 0.81 −0.34 −0.54 0.01 0.01 0.90

Lithium Concentration 0.91 0.81 0.44 0.54 0.05 0.03 0.95
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related to salinity. Based on the correlation between lithium

concentration and reflectance at the measured points, the

correlation coefficient between all bands and lithium

concentration is the highest, with R2 of 0.95 (Table 3).

Due to the time interval between the two image dates is long,

the lake and the surrounding environment have changed

significantly. Therefore, the spectral values are likely to be

very different. It is feasible to use one or two bands to fit the

water depth value at one time point, but there are limitations to

fitting the measured value at multiple time. The best result of

fitting between reflectance and measured water depth is 0.96 for

the red band and 0.98 for all bands (Table 3). Using all

bands reduces the noise and highlights the effective

information. Therefore, it is best to use all bands for inversion.

3.4 Water depth, salinity and lithium
concentration inversion results

Linear fitting and three machine learning algorithms

including BP neural network, RF, and LightGBM, were

compared to determine the water depth, salinity, and lithium

concentration. The results are shown in Figure 4 and Table 4.

Machine learning algorithms have advantages over linear

FIGURE 4
Comparison of true and predicted values in the test data set with different machine learning algorithms. (A)Water depth inversion based on BP
neural network; (B)Water depth inversion based on Random Forest; (C)Water depth inversion based on LightGBM; (D) Salinity inversion based on BP
neural network; (E) Salinity inversion based on Random Forest; (F) Salinity inversion based on LightGBM; (G) Lithium concentration inversion based
on BP neural network; (H) Lithium concentration inversion based on Random Forest; (I) Lithium concentration inversion based on LightGBM.
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fitting. All three machine learning methods provide good fitting

accuracy, and all points of the test set are close to a straight line,

and the true value is close to the predicted value (Figure 4).

Moreover, the LightGBM algorithm has the highest accuracy

(Table 4). Therefore, the LightGBM algorithm was selected to

retrieve the water depth, salinity, and lithium concentration.

In 2017, the water depth at the South Lake verification point

was about 0.3 m. LightGBM predicted a water depth of 0.32 m at

this point without the training data of South Lake, which is a

good match. The water depth inversion result is shown in Figures

5A,B. This result shows that the machine learning algorithm can

accurately predict the water depth using images with different

dates. The water depth changes of the North and South Lakes are

completely opposite. The water depth of the North Lake in

2017 was more than 1.5 m, which was much higher than in

2000, while the water depth of the South Lake in 2017 was lower

than in 2000.

The salinity at the South Lake verification point was 23%, and

the predicted value was 22.5% in 2017. The salinity predicted by

LightGBM agreed well with the measurements, indicating the

machine learning algorithm can accurately predict the salinity of

lake water. The salinity inversion results are shown in Figures

5C,D. Salinity ranged from 21 to 29% in 2000 and from 19 to 21%

in 2017, indicating a downward trend in salinity in the

South Lake.

Figures 5E,F show the result of the inversion of lithium

concentration in lake water. It was above 530 mg/L in

2000 and below 530 mg/L in 2017, which shows a significant

downward trend in the last 20 years. The lithium concentration

at the South Lake verification point was 372 mg/L, and the

predicted value was 527 mg/L in 2017. The actual value is

lower than the inversion result, indicating that the actual

downward trend of lithium concentration is more significant

than the inversion result.

After inversion and calculation, the total lithium content

was determined (Figure 6). In the North Lake, the total water

volume in 2000 was 1,037.22 × 105 m3, resulting in a total salt

content of 35.94 million tons. The total water volume in

2017 was 1,667.19 × 105 m3, with a total salt content of

39.83 million tons. In the South Lake, the total water volume

in 2000 was 269.36 × 105 m3, and the total salt content was

7.734 million tons. After the development and exploitation of

South lake, the water volume and salt content have decreased by

about 27% and about 30%, respectively. In the last 20 years, the

water volume of the North Lake has increased significantly,

with a growth rate of 60.73%. In 2000, there were 653,700 tons

of lithium carbonate in the North Lake and 81,800 tons in the

South Lake; in 2017, there were 462,500 tons in the North Lake

and 53,000 tons in the South Lake. The lithium resources

decreased by 29.2% in the North Lake and 35.2% in the

South Lake.

4 Discussion

4.1 The changes of Zabuye Salt Lake from
2000 to 2017

In this study, Landsat remote sensing imagery is used to

determine the salinity and lithium concentration of the Zabuye

Salt Lake, and the influence of salt lake expansion on salt and

lithium content from 2000 to 2017 is analyzed. The Zabuye Salt

Lake is recharged by atmospheric precipitation, alpine ice and

snowmelt water, and spring water. Annual precipitation and

evaporation obtained from field observation stations (Figure 7A)

show no significant changes in precipitation and evaporation, so

atmospheric precipitation is not the major reason for those

changes in Zabuye Salt Lake.

Meteorological data from the Zabuye Salt Lake Observatory

show that the temperature in the area has increased over the past

20 years (Figure 7B). Under the influence of climate change, the

surrounding glaciers have melted, and river discharge in the

Zabuye area has increased significantly, resulting in an increase

in water volume and depth in the North Lake. The water depth in

South Lake has decreased over the past 20 years due to the

extensive development and utilization of lithium-bearing brine.

The expansion of the Zabuye Salt Lake will have a series of

impacts on the quality of mineral resources. The most important

impact on the lake water is the decrease in salinity and lithium

concentration. From 2000 to 2017, the salinity of the North Lake

shows a significant downward trend, while the salinity of the South

Lake decreased slightly. The main reason for this is the difference

TABLE 4 Fitting results for different methods.

Fitting method Water depth Salinity Lithium concentration

MSE R2 MSE R2 MSE R2

Linear Fitting 0.071 0.837 1.371 0.942 9,318.04 0.934

BP Network 0.057 0.908 0.554 0.966 5,726.205 0.947

Random Forest 0.055 0.902 0.900 0.945 1,006.985 0.991

LightGBM 0.008 0.92 0.305 0.98 382.642 0.996
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of replenishment between the two lakes. Another reason is the dry

salt flats replenish South Lake time to time. The difference in

recharge between the two lakes is due to surface runoff and

subsurface runoff. In addition to the spring water from

Qiulinanmu, the North Lake is recharged by four large surface

runoffs and several subsurface drains, while the South Lake is

FIGURE 5
Water depth, salinity and lithium concentration inversion results. Water depth in (A) 2000 and (B) 2017; Salinity in (C) 2000 and (D) 2017; Lithium
concentration in (E) 2000 and (F) 2017.
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mainly recharged by spring water from Zabuye Island. In addition,

the dry salt flats around the South Lake can replenish the salt in the

South Lake, so the salinity decrease is less than in the North Lake.

The downward trend of lithium concentration is also

obvious. In 2000, the lithium concentration in salt lakes was

above 530 mg/L, and after 2017, most of them were below

530 mg/L. The distribution of lithium concentration shows a

certain regularity that gradually increase from north to south.

Because the spring water is mainly distributed in the north of the

lake and flows into the lake from north to the south. Normally,

the lithium concentration of the spring water is lower than lake

water, so the lithium concentration tends to increase from north

to south.

The North Lake is an undeveloped lake, and the inversion

results show that the lithium resources of the North Lake have

decreased which may be related to the increasing temperature.

FIGURE 6
The total salinity and lithium content assessment results. Total salt content in (A) 2000 and (B) 2017; Total lithium content in (C) 2000 and (D)
2017.
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The increase in temperature in the lake catchment cause the

precipitation of lithium carbonate and then dissolved lithium

resources in lake waters decrease accordingly. One reason for the

decrease of lithium resources in the South Lake is the

precipitation of lithium carbonate, and another reason is the

development and utilization of the South Lake. In 2000, there

were 653,700 tons of lithium carbonate in North Lake and

81,800 tons in the South Lake; in 2017, there were

462,500 tons in North Lake and 53,000 tons in South Lake.

The lithium resources decreased by 29.2% in North Lake and

35.2% in South Lake. Based on the precipitation of lithium

carbonate in the North Lake which was 29.2% from 2000 to

2017, we suggested the decrease of 4,900 tons in the South Lake is

most likely attributed to the development and utilization.

However, the mining volume of lithium in South Lake has far

exceeded 4,900 tons in the past 20 years. Therefore, the spring

water and dry salt flats of South Lake have provided large

quantities of lithium for the South Lake.

4.2 Remote sensing inversion technology

Landsat satellite imagery has recorded global changes

over the past 50 years, and provides important historical

data for studying areas that have only recently been

developed and exploited, such as the Tibetan Plateau.

Satellite imagery and image processing can be used to

monitor resources and environmental changes

FIGURE 7
Evaporation, precipitation and temperature changes in Zabuye Salt Lake from 2000 to 2018. (A) Evaporation and precipitation trends from 2000
to 2018; (B) Temperature trend from 2000 to 2018.
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comprehensively and accurately, providing scientific support

for resource development and environmental protection. In

this study, the machine learning algorithms were used for

inversion and information extraction in areas with

incomplete data. The result shows that machine learning

algorithms can provide accurate predictions using limited

training data, and enable multi-dimensional feature analysis.

Existing inversion studies for the salt lake generally use

combination of one or more bands. While it is feasible to

fit the value of water parameters at a given time point,

scalability at multiple time points is limited. This study

uses the effective information of the whole band, while

using the automatic screening feature of the LightGBM

algorithm to reduce the data dimension and significantly

improve the inversion accuracy.

The idea of using Big Data is contribute to realize the

inversion and extraction of salt lake information. The

accumulation of measured data is of great significance.

When the amount of measured data is relatively large,

machine learning between different lakes in different time

periods can also make more accurate predictions. If the

measured data of multiple salt lakes in multiple time

periods are combined into a large data set, the mineral

concentrations of salt lakes can be predicted without

observation stations or measured data, which will save a lot

of manpower and material resources for managing the

development and utilization of salt lakes.

The inversion of mineral concentration in salt lakes also

depends on the quality of remote sensing images. In the future,

we can also strengthen the spectral exploration of minerals,

improve the ability of remote sensing satellites to acquire

information, and comprehensively improve the spatial and

spectral resolution. Thus, we can obtain relatively accurate

information about lake water without the support of

measurement data, and make better use of remote sensing

technology.

5 Conclusion

In this study, the Landsat remote sensing data and a high-

precision LightGBM algorithm were used for the inversion of

water depth, salinity, and lithium concentration. To improve the

generalizability of the model and overcome the shortcomings of

incomplete measured data, data in Zabuye Lake from 2000 to

2017 were selected for training the model. After a series of image

processing, data statistics, and analysis, we came to the following

conclusions:

Compared to 2000, the water depth of the lake increased in

2017, as did the water volume. The expansion of the Zabuye

Salt Lake led to the decrease in salinity and lithium

concentration. After the extensive development and

exploitation of the South lake, the total amount of salt and

lithium resources decreased from 2000 to 2017, with more

dramatical trend in South Lake.

The salt lake inversion method in this study proved that

the LightGBM algorithm has higher prediction accuracy than

conventional analysis methods. Machine learning algorithms

are feasible and superior in remote sensing inversion

research. In addition, the accumulation of measurement

data is of great significance to the analysis and prediction

of salt lakes.

Remote sensing images contain important spectral

information that can be used in inversion studies for salt

lakes. With the development of remote sensing technology in

recent years, the spatial and spectral resolutions of remote

sensing images have greatly improved, which is important for

more detailed assessment of salt lake resources in the future.
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